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Introduction

Since its discovery in the 1940s, the importance 
of folic acid in health and disease is being increasingly 
recognized. Folate is essential for cell multiplication 
and homoeostasis due to the role of folate-containing 
coenzymes in nucleic acid synthesis, methionine 
regeneration and shuttling; oxidation and reduction 
of one-carbon compounds are essential for cellular 
metabolism. Progress in basic, translational and clinical 
sciences has led to unfolding of knowledge about 
the complex relationship between folic acid, genes 
encoding various enzymes related to folate metabolism 

and cancer1,2. The present review aims to address the 
importance of folates in childhood cancers, including their 
association with the genes in folate metabolic pathway 
and the proposed role of folates in carcinogenesis as also 
the effect of folic acid fortification of food on paediatric 
cancer epidemiology. It also covers in short the sources, 
bioavailability, absorption and metabolism of folates 
along with the clinical aspects of folate deficiency.

Folic acid - historical perspective

The correction of macrocytic anaemia in pregnant 
women in Bombay3 (now Mumbai) by yeast extract 
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prompted the discovery of a new nutrient which was finally 
extracted from spinach in 19414 and named as folic acid. 
Pure crystalline form of folic acid was synthesized in 1943 
combining a pteridine ring, paramino benzoic acid and 
glutamic acid together named as ‘pteroylglutamic acid’5. 
The term ‘folates’ refers to a large group of compounds 
including natural folates and folic acid which take part in 
one-carbon metabolism. The term ‘folic acid’ is in turn 
used to denote the fully oxidized compound which is hardly 
ever found in natural food items. Soon after its discovery, 
folic acid was observed to enhance the growth of cancer 
leading to the use of folate antagonist 4-aminopteroyl 
glutamic acid (aminopterin) in the treatment of childhood 
acute lymphoblastic leukaemia (ALL), thus establishing 
the link between folate metabolism and cancer for the first 
time6. Later in the 1990s, the inverse relationship between 
colon cancer incidence and folate intake was shown in 
clinical studies7. The beneficial role of folate fortification 
of food on the incidence of certain childhood cancers has 
also been reported8.

Dietary sources and bioavailability of folate

Folates are present in a wide variety of food items, 
though in a relatively low density, except in the liver9. Diets 
containing adequate amounts of fresh green vegetables are 
good folate sources10. Important food sources according to 
their folate content are shown in Table I. Although folate 
content is high in foods from animal sources, but cereals, 
pulses and green leafy vegetables (GLVs) constitute the 
major sources in vegetarian diets11.

The bioavailability of folic acid is determined 
mainly by two factors, dietary source of folates and 
host factors which are discussed below:

Food sources

Bioavailability of folates depends on pre-consumption 
processing of food and food products. Although folates 

from animal sources (e.g. beef) have been found to be 
stable even after prolonged cooking, the method and 
duration of cooking have marked effects on the folate 
retention of green vegetables. Accurate estimation of 
dietary folate availability is still a challenge, and studies 
designed to investigate the impact of different cooking 
methods and duration on folate content of food are 
limited12.

Host factors

Intestinal folic acid absorption occurs through a 
carrier-mediated process in the proximal small intestine 
which acts optimally at low pH. Genetic association 
studies have identified an intestinal folate transporter 
called the human proton-coupled folate transporter 
(SLC46A1). Mutations leading to loss of function of 
this transporter were associated with hereditary folate 
malabsorption13. Other diseases causing malabsorption 
including coeliac disease, Crohn’s disease and 
ulcerative colitis were also found to be commonly 
associated with impaired folate absorption14.

Folate absorption and metabolism

After ingestion, many labile forms of folate get 
destroyed in the acidic environment of stomach in the 
absence of protective factors such as ascorbic acid or 
thiols. The dietary folate which is mostly in the form 
of polyglutamate has to be reduced to absorbable 
monoglutamates, a reaction catalyzed by folate 
conjugase, a rate limiting step in folate absorption. 
Passive diffusion of folates also occurs in the intestine 
but only with very high doses15. Majority of folate is 
absorbed in the duodenum and jejunum and a small 
amount from the colon. The absorbed monoglutamates 
are taken up by the liver and reconverted to 
polyglutamates for storage in the liver itself or release 
into the blood. Liver stores about half of the total 
body folate, a part of which is secreted into the bile 
and undergoes enterohepatic circulation. Most of this 
is reabsorbed, ‘supposedly to moderate between-meal 
fluctuations’ in serum folate levels16. In the plasma, 
folate is bound primarily to albumin and transported to 
the cells through a number of folate transport systems11.

Folate in one-carbon metabolism and its genetic 
regulation

A simplified account of folate metabolism, its role 
in nucleotide (purine/pyrimidine) synthesis, conversion 
of homocysteine to methionine and methylation of 
DNA is shown in Fig. 1. The relationship between folate 
levels and risk of cancer and response to chemotherapy 

Table I. Various common diets according to their folate 
content
Folate content 
(µg/100g wt)

Food sources

Rich sources 
(100-350)

Hen eggs, goat liver, yolks, 
spinach, soybean (raw), strawberry, 
Bengal gram, green gram

Good sources 
(56-83)

Broccoli (raw), soybean (boiled), 
lentils (raw), potato, banana

Moderate 
sources (15-30)

White breads, onions, tomato

Source: Refs 10,11
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is variably modified by the polymorphisms in key 
folate metabolizing enzymes. 

Alteration in folate metabolism can occur due to 
altered activity/availability of folate pathway enzymes, 
which in turn depends on the polymorphisms in 
their coding genes. These polymorphisms result in 
decreased folate availability at the site of reaction, 
leading to hyperhomocysteinaemia and modulate the 
risk of certain cancers17 through epigenetic influences 
such as DNA methylation, uracil misincorporation 
and altered purine synthesis (vide section on folate 
and carcinogenesis). The toxicity of antifolate agents 
used in the treatment of cancer is also influenced by 
the alteration of genes encoding the proteins of the 
folate pathway, namely the carrier protein reduced 
folate carrier (RFC) and enzymes such as thymidylate 
synthase (TS), 5,10-methylenetetrahydrofolate 
reductase (MTHFR), methionine synthase reductase 
(MTRR) and methionine synthase (MS)17-21. 

Reduced folate carrier (RFC)

Folate being a water soluble vitamin is highly 
lipophobic and hardly crosses the plasma membrane 
by passive diffusion22. Reduced-folate carrier (RFC; 
additionally known as RFC-1, FOLT, RFT-1 or 
SLC19A1) is a 60 KDa transport protein with 12 

membrane-spanning domains involved in transportation 
of reduced folates as well as classical antifolates such 
as methotrexate (MTX) into the cell23,24. RFC is located 
in brush-border membrane of small intestine, colon, 
basolateral membrane of the renal tubular epithelium, 
hepatocytes and the retinal pigment epithelium25.

Loss of RFC expression or function may 
have important implications in cancer biology, 
including response to antifolates24. Among nearly 
seven single-nucleotide polymorphisms (SNPs) in 
its encoding gene, only 80G→A translocation is 
significant as it causes amino acid sequence alteration, 
whereas others are silent26. This polymorphism alone or 
in combination with others in the folate pathway may 
significantly alter folate and homocysteine status27. 
Reduced expression of RFC has been associated with 
inferior outcome in childhood ALL probably due to 
intrinsic MTX resistance in these children28,29.

Thymidylate synthase (TS)

TS, catalyzing the methylation of deoxyuridine 
monophosphate (dUMP) to deoxythymidine 
monophosphate (dTMP), is one of the key enzymes in 
the de novo synthesis of dTMP, an essential precursor of 
DNA30. Being a rate limiting step in DNA synthesis, it has 
been used as a potential target of many anticancer drugs. 

Fig. 1. Simplified scheme for one-carbon metabolism. THF, tetrahydrofolate; DHF, dihydrofolate; RFC, reduced folate carrier; hFR, human 
folate receptor; MTHFR, 5,10-methylenetetrahydrofolate reductase; DHFR, dihydrofolate reductase; Met, methionine; Hcy, homocysteine; 
SHMT, serine-hydroxy-methyltransferase; MS, methionine synthase; TS, thymidylate synthase; MT, methyltransferases (enzymes of this pathway 
are depicted as unshaded boxes, substrates are shown in unshaded ovoid shapes whereas shaded boxes represent biosynthetic/biochemical 
pathways and shaded cylinders stand for membrane receptors/transporters).
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The promoter enhancer region of the TS gene contains 
polymorphism of a double (2R) or triple (3R) 28-base 
pairs (bp) tandem repeat31. The triple repeat results in 
increased TS gene expression, whereas the double repeat is 
associated with decreased TS gene expression. Increased 
synthesis of dTMP due to higher expression of TS 
enzyme reduces rate of uracil misincorporation, thereby 
protecting against oncogenesis31. The 3R polymorphism 
of the promoter region has been shown to be protective for 
adult ALL and lymphoma32,33 and improves the outcome 
of ALL in children34, whereas the 2R polymorphism has 
been associated with poor outcome in childhood ALL34.

5,10-methylenetetrahydrofolate reductase 
(MTHFR)

MTHFR, one of the most well-studied enzymes in 
the folate pathway, is a 77 kDa protein encoded by a gene 
located on the short arm of chromosome 1 (1p36.3)35. It 
catalyzes the step producing 5-methyltetrahydrofolate 
(5-MTHF), the circulating form of folic acid which is 
also a methyl donor for the conversion of homocysteine 
to methionine36 (Fig. 1). Methionine, when converted 
back to homocysteine, causes methylation of DNA. 
SNPs in the MTHFR gene lead to alteration in enzyme 
activity by affecting its thermal stability or affinity 
towards coenzyme, thereby reducing 5-MTHF 
production. Although many SNPs in the MTHFR gene 
have been described, till date two of these (at loci 677 and 
1298) have been found to be of clinical significance36.

C677T polymorphism

A common variant of MTHFR involves a cytosine 
(C) to thymine (T) transition at position 677 within exon 
4 of the gene, resulting in an alanine to valine amino acid 
substitution in the protein, reducing MTHFR enzyme 
activity to 65 and 30 per cent of the CC genotype in the CT 
heterozygote and TT homozygote variants, respectively37. 
Similar findings have also been documented in a meta-
analysis where folate levels were found to significantly 
differ across 677 genotypes (CC>CT>TT), the difference 
being most significant between the wild-mutant (CC) and 
homozygous-mutant (TT) variants38. This untoward effect 
of a mutated genotype can be circumvented by adequate 
dietary folate39. However, in the absence of sufficient 
folic acid availability, intracellular homocysteine 
accumulates, methionine resynthesis is decreased and 
essential methylation reactions are hampered40.

A1298C polymorphism

An A-to-C transition at locus 1298 within exon 
7 results in a change from amino acid glutamate to 

alanine, reducing MTHFR activity to approximately 
60 per cent of the wild state in the homozygous 
mutated state. The effect of polymorphism at 1298 
locus is less pronounced than that at the 677 locus. The 
enzyme activity is further reduced in the compound 
heterozygote state (677CT and 1298AC) than in either 
of the two mutations alone41,42.

MTHFR gene variants have been proposed 
to modulate risk of childhood cancer. Most of the 
case-control studies investigating the association 
between MTHFR polymorphisms and childhood ALL 
have reported protective effect of 677T allele43,44 
whereas some of these reported no effect45 and some 
showed increased risk46. 1298C allele was however, 
not found to have any effect on the risk of childhood 
ALL42,46, except in a few studies which reported reduced 
risk45. These disagreements have been attributed to lack 
of adequate power47 of the individual studies due to 
inadequate sample size. In an attempt to circumvent this 
problem, many meta-analyses47-54 have been performed 
(Table II). Though most of these meta-analyses reported 
a protective effect of 677T variant on childhood ALL, 
it was significant in only three of these50,52,54. When 
the studies were grouped according to the local folate 
fortification guidelines, the protective effect was only 
seen in population covered under mandatory food 
fortification by folic acid further highlighting the 
importance of gene-environment interaction, where 
availability of folic acid enhances the benefit of a 
favourable genotype54. Conversely, the 1298C variant 
was not seen to alter the risk of childhood ALL in all 
these meta-analyses except two which showed it to 
marginally increase the risk50,54 (Table II).

The protection conferred by 677T allele may 
be due to inhibition of hypermethylation of CpG 
islands leading to increased expression of certain 
tumour suppressor genes conferring protection against 
leukemogenesis54. The lack of association between 
1298C and risk of childhood ALL may be largely due 
to the less significant effect of this polymorphism on 
the MTHFR enzyme level54.

5,10-methylenetetrahydrofolate reductase 
(MTHFR) polymorphisms, outcome and toxicity of 
cancer chemotherapy

Polymorphisms in MTHFR (C677T and T677T) have 
been reported to increase relapse rate of childhood ALL 
when controlled for other risk factors55. MTHFR677TT 
genotype has been associated with higher MTX toxicity 
as compared to others56. Children having genotypes with 
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reduced enzyme activity were found to be at enhanced 
risk of thrombocytopenia and deranged creatinine in 
response to high-dose MTX in a study; MTX toxicity was 
considerably ameliorated when the doses were adjusted 
depending on MTHFR genotype57. An increased risk 
of hepatic, bone marrow, mucocutaneous toxicity with 
MTHFR677CT genotype and a decreased risk of skin 
toxicity of MTX with MTHFR1298AC genotype were 
also reported in a meta-analysis58, but these findings did 
not compare favourably with another meta-analysis59 
which failed to show any role of genotype on the severity 
of MTX toxicity. Though the adverse effects of MTHFR 
polymorphism on the toxicity of MTX and the outcome 
of childhood ALL are most likely due to alteration in 
the folate metabolism, none of these studies accounted 
for the folate levels of the patients. It is possible that 
the differences in clinical outcomes could be due to the 
interaction with other genes as well as nutrients and not 
the effect of the MTHFR genotype alone.

Methionine synthase reductase (MTRR), 
methionine synthase (MS)

Synthesis of methionine by methylation of 
homocysteine is mediated by two enzymes MTRR and 
MS which are located on chromosomes 5p15.3-p15.2 
and 1q43, respectively. MS is maintained in its active 
form by MTRR60. The A→G polymorphism at locus 
2756 in the protein binding region of MS substitutes 
aspartate with glycine61. Polymorphism in this 
gene may cause elevation of homocysteine, but its 
significance and effect on folate status are uncertain 
due to conflicting reports62,63.

The A66G polymorphism in the MTRR gene leads 
to substitution of isoleucine with methionine at codon 
2260. Individuals homozygous for the common allele 
(AA) had higher homocysteine levels compared to those 
with other genotypes62,63; its effect on folate status is 
also not clear. In adults, MS and MTRR polymorphisms 
have been shown to be associated with a reduced risk 
for ALL64; however, paediatric data are lacking20.

Folate - its dual role in cancer

The role of folate in cancer is paradoxical65. 
Studies, mostly based on laboratory models, show 
that folate supplementation protects against certain 
cancers while hastening the progression of some 
pre-malignant lesions65,66. Folate is critically important 
for cell division because of its role in de novo purine 
and pyrimidine synthesis and also in the DNA repair 
mechanism. Cancer cells need more substrates for 
DNA synthesis due to their rapid turnover and thus 
have higher folate requirement. Folate deficient states 
or blockade of folate metabolism by antifolates lead 
to arrest of cell proliferation. Paradoxically, folate 
supplementation was found to be protective against 
development of certain cancers due to its crucial 
role in maintaining the genomic integrity67. Folate 
deficiency may lead to DNA strand breaks, impaired 
repair, increased mutations and abnormal methylation 
of DNA, leading to carcinogenesis66,68. The proposed 
paradoxical role of folate in oncogenesis2,69 is depicted 
in Fig. 2. Though much light on this issue has been 
shed by epigenetic studies in animals, extrapolation 
to human system is subject to usual caveats more so 

Table II. Summary of recent meta-analyses of case-control studies determining association between 5,10-methylenetetrahydrofolate 
reductase genotype and risk of childhood acute lymphoblastic leukaemia
Study Year Number of 

studies included
Cases: controls OR (95% CI)

C677T A1298C C677T A1298C
Pereira et al48 2006 8 and 7† 1914:2980 1710:2712 0.88 (0.73-1.06) 0.80 (0.56-1.16)
Wang et al49 2010 21 3358:6961 - 0.90 (0.88-1.04) -
Vijayakrishnan et al53 2010 1715† 2770:4713 2496:4403 0.87$ (0.73-1.03) 

0.87ҙ (0.73-1.03)
1.07‡ (0.96-1.20) 
1.05§ (0.88-1.25)

Tong et al50 2011 28 4240:9289 4182:8569 0.81*,¥ (0.71-0.92) 1.16**,‡ (1.01-1.33) 
1.16**,∞ (1.00-1.34)

Zintzaras et al51 2012 23 4517:7117 4360:6717 0.91 (0.82-1.00) 1.04 (0.93-1.16)
Yan et al52 2012 21 4340:6880 4230:6414 0.83*,¥ (0.72-0.95) 1.02 (0.89-1.17)
Wang et al47 2012 33 5710:10,798 5356:9906 0.90 (0.82-0.99) 1.01 (0.91-1.11)
Roy Moulik et al54 2014 3127† 5709:8637 5309:7963 0.90* (0.82-0.99) 1.19** (1.01-1.40)
†Studies on 677 and 1298 polymorphisms, respectively; *Significant risk reduction; **Increase in risk; ¥For TT vs CT/CC; 
ҙTT vs CC; $CT vs CC; ‡CA vs AA; ∞CA/CC vs AA; §CC vs AA. OR, odds ratio; CI, confidence interval
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due to conflicting evidence from randomized studies in 
human beings2,70,71.

Folic acid fortification of food - its impact on 
paediatric cancers

In response to the overwhelming evidence in favour 
of periconceptional supplementation of folic acid in 
preventing serious birth defects such as neural tube 
defect (NTD)2,72, the United States and Canada initiated 
mandatory fortification of food products with folic acid 
from mid-1990s73,74. Though this trend was followed by 
many other countries75,76, more than 70 per cent of the 
world population remains uncovered as many countries 
including those under the European Union opted against 
fortification due to safety concerns. The concerns were 

acceleration of cognitive decline with age and reduction 
of the efficacy of antifolate drugs such as MTX used 
in cancer chemotherapy/rheumatic disorders and 
antiepileptics. The dual role of folates in cancer was 
another important concern77. While being remarkably 
successful in achieving its primary objective of reducing 
NTDs by 50 per cent78, mandatory fortification also 
provided an opportunity to assess unrelated effects of 
folates in otherwise healthy population without any 
ethical concerns. As a sequel to this, many studies 
were conducted to compare the incidence of childhood 
cancers between the pre- and post-fortification periods. 
Even before post-fortification data were available, many 
case-control studies indicated a possible protective role 
of maternal supplementation with certain vitamins 
(mostly vitamins B and folic acid) for childhood cancers 
such as ALL77,79, neuroblastoma78,80, brain tumours81-83, 
germ cell tumour84 and primitive neuroectodermal 
tumours83 (Table III). This observation was further 
strengthened by a meta-analysis, wherein maternal 
ingestion of prenatal multivitamins was associated with 
decreased risk for paediatric brain tumours, leukaemia 
and neuroblastoma, without any specifications as to 
which component of multivitamins was responsible 
for this87. Another case-control study involving a large 
number of childhood leukaemia cases documented a 
protective role of folic acid on childhood leukaemia86. 
A decline in incidence rate ratios of many childhood 
cancers was demonstrated by a number of studies done 
in the post-fortification era with inconsistent findings 
between studies8,85,88-90 (Table IV). The mechanism 
through which cancer risk in the offspring is modulated 
by maternal folic acid supplementation is speculative 
and is hypothesized to be similar to its role in adult 
cancers87 despite the fact that origin of cancer in children 

Table III. Studies on association of maternal folate/multivitamin intake and incidence of childhood cancers
Study Year Country Disease OR (95% CI)
Sarasua and Savitz79 1993 USA ALL 0.50 (0.22-1.13)

Brain tumour 0.70 (0.26-1.86)
Bunin et al83 1993 North America Brain tumour 0.83 (0.45-1.52)
Michalek et al80 1996 USA Neuroblastoma 0.38 (0.26-0.55)
Preston-Martin et al81 1998 North America, Europe, Israel Brain tumour 0.5 (0.3-0.8)*

Olshan et al78 2002 North America Neuroblastoma 0.68 (0.50-0.94)
Wen et al85 2002 North America, Australia ALL 0.64 (0.52-0.80)
Milne et al82 2012 Australia Brain tumour 0.56 (0.35-0.89)**

Metayer et al86 2014 Multinational ALL 0.80 (0.71-0.89)
*In under-5 children whose mothers took supplements for all three trimesters; **Pre-pregnancy folic acid without iron. 
ALL, acute lymphoblastic leukaemia; OR, odds ratio; CI, confidence interval

Fig. 2. Proposed dual role of folate in oncogenesis.
Source: Refs 2,69
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and adults is not identical. This rapidly growing body 
of knowledge is yet to generate definite evidence in 
favour of folic acid in the absence of randomized trials 
in children87; though many randomized studies on folate 
supplementation in adults exist, showing conflicting 
results70,71; therefore, the facts from the post-fortification 
cohort need to be interpreted with caution before more 
long-term data are available.

Folates and children on cancer chemotherapy

Folate deficiency is known to manifest as disordered 
haematopoiesis and bone marrow dysfunction, similar 
to that produced by the antifolate chemotherapeutic 
agents in haematological malignancies, by limiting 
intracellular folate availability and blockade of folate 
dependent one-carbon metabolism. Thus, MTX forms 
an important part of chemotherapeutic protocols for 
childhood ALL and non-Hodgkin’s lymphoma55,56. 
Non-antifolate chemotherapeutic agents also cause 
variable degree of myelosuppression. Bone marrow 

recovery following chemotherapy is at least partly 
dependent on the folate status of the patients; therefore, 
folate supplementation may be an effective intervention 
to reduce the myelotoxicity of chemotherapeutic 
agents91. However, the idea of recommending folate 
supplementation to patients on cancer chemotherapy 
needs exploration as it has not been adequately studied91 
probably due to the concern that folates may interfere 
with the efficacy of antifolate agents and thus support 
tumour growth, similar to observations made in studies 
on clinical response of patients on MTX for rheumatic 
disorders92. Excess of folates may also lead to resistance 
to antifolates; higher doses of folinic acid rescue 
following high-dose MTX have also been correlated 
with increased chances of relapse in paediatric ALL93.

Though the non-malignant cells are rescued from 
the toxicity of high-dose MTX by folinic acid, in the 
absence of any such rescue, the normal cells have to 
rely on the intrinsic folate status to recover following 

Table IV. Studies comparing the incidence of various paediatric cancers before and after the onset of mandatory food folate fortification 
in the US and Canada
Study Year of publication Years compared Country Incidence rate ratios (95% CI)
French et al8 2003 1985-1997 vs 1998-2000 Canada

Neuroblastoma 0.40 (0.25-0.64)*

Infant ALL 0.97 (0.41-2.27)
Hepatoblastoma 0.81 (0.35-1.89)

Grupp et al88 2011 1985-1997 vs 1998-2006 Canada
Childhood ALL 1.06 (0.94-1.20)
Wilms tumour 0.74 (0.57-0.95)*

Embryonal cancer 0.98 (0.84-1.12)
Brain tumours 0.95 (0.75-1.19)

Linabery et al90 2012 1986-1999 vs 1999-2008 USA
Lymphoblastic leukaemia 1.02 (0.93-1.12)
Myeloid leukaemia 1.01 (0.90-1.13)
Ependymomas 0.70 (0.51-0.97)*

Astrocytomas 1.10 (0.93-1.31)
Medulloblastomas 1.10 (0.81-1.49)
PNET 0.56 (0.37-0.84)*

Neuroblastoma 0.98 (0.87-1.11)
Retinoblastoma 0.90 (0.74-1.10)
Nephroblastoma 0.80 (0.68-0.95)*

Hepatoblastoma 1.23 (0.91-1.67)
Rhabdomyosarcoma 0.94 (0.71-1.24)
GCT 1.05 (0.82-1.36)

*Significant risk reduction in post-fortification period. PNET, primitive neuroectodermal tumour; GCT, germ-cell tumour; 
ALL, acute lymphoblastic leukaemia; CI, confidence interval
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lower doses of MTX, which might vary among 
individuals as well as between populations due to dietary 
differences as well as differences in folate fortification 
recommendations across regions. Therefore, promoting 
folate restriction uniformly to all patients on antifolates 
needs to be carefully reconsidered. This is more relevant 
for the developing countries as folate deficiency might 
be one of the contributors for the higher incidence 
of toxic deaths during chemotherapy seen in these 
countries91. More studies on this aspect from various 
regions of the world are warranted to arrive at a proper 
consensus guideline91.

Folate status of Indian children with cancer

Though nutritional anaemia is common in Indian 
children stemming from nutritional deficiencies of iron, 
folic acid and vitamin B12, Indian data on prevalence 
of folate deficiency in children are incomplete due to 
lack of national data or multicentric surveys. Most of 
the surveys conducted have been limited to children in 
large cities. In a study on toddlers and preschool children 
from Delhi, about 15 per cent children were found to 
be having folate deficiency94 whereas another study 
from the same region showed over 40 per cent children 
between five and 11 yr and nearly one-third of those 
between 12 and 18 yr to be folate deficient95. A study on 
urban healthy children from southern India found folate 
deficiency in nearly all the children studied96.

With the available data on folate deficiency in Indian 
children, the documented prevalence has been clearly 
higher than in children from many developed countries 
such as the USA or European countries according to a 
review comparing folate and vitamin B12 deficiencies 
across the globe97. Deficiency of folate in healthy Indian 
children continues to be a common problem due to lack of 
dietary folate, unlike in developed countries where it has 
significantly declined after initiation of food fortification.

The data on folate status of Indian children with 
cancer are also sparse. A case-control study from 
southern India demonstrated significantly lower 
levels of folate in children with ALL98. Two more 
studies from north India also showed a high baseline 
prevalence of folate deficiency in children with newly 
diagnosed ALL as well as decline in folate levels with 
chemotherapy99,100. Furthermore, folate deficiency in 
these children was associated with adverse outcome 
during their initial phases of treatment99,100.

Future directions

Recent evidence suggests an important role 
of folates in relation to cancer in both adults and 

children. Epidemiologic data from countries with 
mandatory folic acid fortification of food recording 
decline in incidence of certain paediatric cancers need 
to be confirmed to generate robust evidence in favour 
of fortification. Therefore, more epidemiological 
and basic research is warranted in this field to 
establish the role of folic acid in cancer prevention, 
epidemiologically and mechanistically, respectively. 
In addition, more studies are needed to elucidate 
the association between folate deficiency and 
toxicities encountered in children undergoing cancer 
chemotherapy taking into consideration nutrition and 
other related confounders. Based on such findings, 
randomized trials assessing the efficacy and safety of 
folic acid supplementation in folate deficient children 
undergoing chemotherapy are needed to generate 
convincing evidence. This is particularly important 
for population with high prevalence of folate 
deficiency as in India where folic acid fortification is 
not mandatory.
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