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TNF receptor 2 (TNFR2) has become one of the best potential immune checkpoints thatmight
be targeted,mainlybecauseof its vital role in tumormicroenvironments (TMEs).Overexpression
of TNFR2 in some tumor cells and essential function in immunosuppressive cells, especially
regulatory T cells (Tregs), makes blocking TNFR2 an excellent strategy in cancer treatment;
however, there is evidence showing that activating TNFR2 can also inhibit tumor progression
in vivo. In this review,wewill discuss drugs that block and activate TNFR2 under clinical trials or
preclinical developments up till now. Meanwhile, we summarize and explore the possible
mechanisms related to them.

Keywords: TNFR2, Treg, antagonist, agonist, tumor microenvironment
INTRODUCTION

Escape from the immune system is a well-recognized feature of cancer, which has made
immunotherapy the fourth most effective measure in cancer treatment after surgery,
chemotherapy, radiotherapy, and targeted therapy. Immune checkpoint inhibitors have sprung
up as a mainstream direction. The emergence of monoclonal antibodies (mAbs) against cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4), programmed death 1 receptor (PD-1), and its ligand,
PD-L1, has revolutionized the treatment landscape of cancer (1). Improved biomarkers may help to
better select patients who are more likely to respond to immunotherapy and benefit new drug
development. TNF receptor 2 (TNFR2) has become one of the best potential immune molecules that
might be targeted mainly because of its vital role in tumor microenvironments (TMEs) (2).

TME refers to the cellular environment in the tumor site that contains non-malignant cells,
tumor-infiltrating immune cells, vessels, intercellular components, metabolites, etc. (3). Recent
evidence shows that TME dramatically determines the efficacy of immunotherapy (4). Regulatory
T cells (Tregs) are the most extensively studied immunosuppressive cells; TNFR2 is preferentially
expressed in Tregs, especially in effector Tregs, and is essential for Treg expansion and function
maintenance through the classical NF-kB pathway. Meanwhile, some new molecules have also been
found involved in the TNFR2 pathway.

Targeting Tregs through TNFR2 antagonists seems really promising in antitumor therapy.
Interestingly, there is evidence that some TNFR2 agonists also show antitumor effects in vivo; some
of those agonists are now in the investigational new drug (IND)-enabling phase and about to
undergo clinical trials. It seems that all roads lead to Rome when targeting TNFR2 in the tumor.
Here, we will review the most potential TNFR2 antagonists and agonists that are about to get into or
org February 2022 | Volume 13 | Article 8449311
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already under clinical trials and try to explain why both blocking
and activating TNFR2 can inhibit tumor cells in vivo. The
answers might lie in the complex reactions of those non-
malignant cells in the TME.
TNFa, TNFR, AND THEIR SIGNAL PATHWAY

TNFa was first found in mice treated with bacterial endotoxin, a
serological protein with necrotic antitumor activity, and hence
was named tumor necrosis factor a (TNFa) (5). There are two
forms of TNFa: soluble and transmembrane TNFa (sTNFa and
tmTNFa). Transmembrane TNFa can be processed by TNFa-
converting enzyme (TACE) to release the soluble one, and both
of them are biologically active (6, 7). Many cell types are able to
produce sTNFa, and the myeloid cells and activated T cells are
the highest producers of this cytokine in the immune cells (8).
tmTNFa is expressed on a bunch of immune cells such as
macrophages and monocytes (9), dendritic cells (DCs), and
natural killer (NK) cells (10). Studies have verified that tumor
cells, such as in breast cancer, ovarian cancer, liver cancer, lung
cancer, gastric cancer, acute lymphoblastic leukemia, and lymphoma,
strongly express tmTNFa (11).

There are two receptors of TNFa: TNF receptor 1 (TNFR1)
and TNFR2 (12). TNFa can bind to both TNFR1 and TNFR2;
however, it is shown that sTNFa has a higher affinity for TNFR1,
while tmTNFa favors TNFR2 a lot (13, 14). When binding to
TNFR2, tmTNFa can mediate both forward and reverse
signaling between tmTNF-a- and TNFR2-expressing cells (15,
16). These receptors can be enzymatically cleaved from the cell
surface and form soluble TNFa receptors: sTNFR1 and sTNFR2.
sTNFRs may inhibit TNFa bioactivity by binding to sTNFa and
tmTNFa, or stabilize the trimeric structure of TNFa and prolong
its bioactivity, or stimulate tmTNFa, leading to a reverse
activation signal in macrophage cells, which express more
tmTNFa than others (15, 17).

Upon TNFa binding to TNFR1, the cytoplasmic tail of TNFR1
recruits the adaptor protein TNFR1-associated death domain
(TRADD) via its death domain. TRADD then interacts with
TRAF2, RIPK1, or cIAP1and cIAP2 to form complex 1; and
complex 1 ultimately leads to the activation of NF-kB and MAPK
pathways by phosphorylating and ubiquitylating other molecules.
This complex 1 pathway favors cell proliferation and survival.
However, when TRADD recruits Fas-associated death domain
(FADD) adaptors RIPK1 and RIPK3, complex 2 forms and leads
to cell death (18, 19). In contrast to TNFR1, TNFR2 does not
contain a death domain module. When TNFR2 is activated by
TNFa, the intracellular domain of TNFR2 will recruit TRAF2/
cIAP1/cIAP2 complexes (20, 21), resulting in the initiation of both
canonical and non-canonical NF-kB activation (22–25). The PI3K/
Akt pathway can also be activated reciprocally (26). Interestingly,
TNFR2-dependent P38 activation varies in different cells. p38
MAPK will be activated in macrophages and murine B cells upon
TNFR2 stimulation (27, 28). TNFa-induced upregulation of
TNFR2 can be abrogated by p38 MAPK-specific inhibitor in
CD4+ T cells (29). However, TNFR2 stimulation on TNFR2-
Frontiers in Immunology | www.frontiersin.org 2
overexpressing cancer cell lines does not result in p38 MAPK
activation (30). Moreover, TNFR2 can also induce cell death
indirectly by crosstalk with TNFR1 (22).

Recently, some new molecules have been found to be involved
in the TNFR2 pathway. 14-3-3ϵ was recently identified as a new
intracellular component of TNFR2 complexes in chondrocytes
when triggered with progranulin (PGRN), and TNFR2/14-3-3ϵ
signals through activating EIK-1 and suppressing NF-kB in
chondrocytes (31). However, 14-3-3ϵ may play a totally
different role in immunosuppressive cells in TMEs, and this
needs to be proved in the future. It was verified that cardiac
myocytes benefit from protection from TNFR2 activation against
stress by upregulation of optic atrophy 1 (OPA1) expression,
which results in improvements in mitochondrial morphology
and function. This process was facilitated by p300-mediated
Stat3 acetylation and Stat3/RelA interactions (32). There might
be other molecules involved in the TNFR2 pathway that need to
be found in the future.
TNFR2 IS HIGHLY EXPRESSED
IN Tregs AND ESSENTIAL FOR
FUNCTION MAINTENANCE

Tregs are the most extensively studied immunosuppressive cells,
and they are defined as CD4+CD25+Foxp3+ or CD4+CD25+
CD127low T cells (33, 34). Current research suggests that
TNFR2 is highly expressed in Tregs, especially in effector
Tregs, while TNFR1 is hardly detected (35–37). The presence
of high Tregs, especially TNFR2+ Tregs in the TME, is associated
with an unfavorable prognosis in various types of cancers (38–
40). Tregs in the peripheral blood of lung cancer patients express
high levels of TNFR2, which is associated with advanced clinical
stage and poor prognosis (41). This is the same situation in
patients with septic shock where TNFR2+ circulating Tregs are
more immunosuppressive (42).

TNFa can preferentially expand CD4+Foxp3+ Tregs in vitro
through TNFR2 (43). Other TNFR family members, such as 4-
1BB, GITR, and DR3, but not OX40, can also increase Tregs’
proliferation and survival through canonical NF-kB; TNFR2 is
the most efficient among them, and the transcriptome feature of
each group seems to be similar (44). Tsunoda et al. reported the
generation of a new TNFR2-selective agonist TNFa mutant,
termed R2gaoTNF; it could expand and activate mouse CD4+
CD25+ Tregs ex vivo, which makes it a new candidate for Treg
expansion (45). Another novel TNFR2 agonist antibody
developed by Faustman can also expand highly potent Tregs
(25, 46). Another novel dimeric dual-acting fusion cytokine
combining IL-2 and TNFR2-selective single-chain TNF mutein
(IL2-EHD2-sc-mTNFR2) showed high affinity and activation of
TNFR2 and IL-2R and thus promoted superior Treg expansion
(47). Paeoniflorin can ameliorate lupus nephritis in lupus-prone
B6/gld mice by increasing TNFR2 expression on CD4+FoxP3+
Tregs (48).

However, some researchers think that the role of TNFa on
the Tregs seems to be more complicated than it appears. On the
February 2022 | Volume 13 | Article 844931
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one hand, TNFa may promote the degradation of Foxp3 by
activating caspase-8 in Tregs (49) or may inhibit the expression
of Foxp3 (50). On the other hand, TNFa is important for both
the development and maintenance of the function of Tregs (51).
This still needs to be further investigated.

There is evidence that not only tumor-infiltrating Tregs but
also tumor-draining lymph nodes (TDLNs) TNFR2+ Tregs are
involved in tumor progression and metastasis. Some researchers
compared Tregs from tumors and matched tumor-invaded and
non-invaded TDLNs, and Tregs showed conserved suppressive
function in TDLN and tumor. Moreover, a common
transcriptomic signature sharing by Tregs from tumors and
lymph nodes was also described. TNFRSF1B transcription was
alleviated obviously in Tregs in both tumor and TDLNs,
regardless of lymph nodes with tumor invasion or not (52).
There is also other evidence indicating that the majority of CD4
+CD25+Foxp3+ Tregs are TNFR2+, and they expressed TNFR2
with the highest intensity in the TDLNs of breast cancer, up to
90.5% ± 11.3%, when compared with other CD4+ T cells, which
highlights the importance of TNFR2 in Tregs (53). However,
they also found that most TNFR2+CD4+ T cells were Foxp3
−CD25− in the TDLNs. It seems that TNFR2 is more vital in
Tregs, but we cannot ignore the majority expression of TNFR2 in
Foxp3−CD4+ T cells when considering targeting TNFR2
treatment, which may influence the therapy effects or shed
light on combination therapies.
TARGETING TNFR2: BLOCKING
AND ACTIVATING DRUGS UNDER
CLINICAL TRIALS OR
PRECLINICAL DEVELOPMENTS

TNFa inhibitors have now been widely used in patients with
autoimmune diseases and have greatly improved their outcomes.
Considering TNFR2’s high expression and its important role in
Tregs, it makes targeting TNFR2 a promising immunotherapeutic
approach (Table 1). However, all these data are from abstracts of
AACR Annual Meeting or company media releases, most of these
antibodies are still in the early stages of development, and detailed
information is unpublished. Aside from the important role that
TNFR2 plays in Tregs, TNFR2 is also an oncogene upregulated in
certain tumors and can improve cancer cell survival. Therefore,
TNFR2 antagonists can block both immunosuppressive cells and
certain tumor cells, which have the effect of killing two birds with
one stone.

There are several TNFR2 antagonist antibodies that seem to
be promising in the clinical transformation, some of them have
already undergone clinical study, and others are about to
undergo clinical trials. BI-1808 is a fully human IgG1 mAb
that targets TNFR2. A phase 1/2a study of BI-1808 as a single
agent or in combination with pembrolizumab in subjects with
advanced malignancies is now recruiting. Dose escalation and
safety will be assessed in a phase 1 study. Evaluation of BI-1808
infusions as a single dose in ovarian cancer, non-small cell lung
Frontiers in Immunology | www.frontiersin.org 3
cancer, and cutaneous T-cell lymphoma (Sézary syndrome and
mycosis fungoides) or in combination with pembrolizumab in
ovarian cancer and non-small cell lung cancer will be carried out
in a phase 2a study. iRECIST is applied for efficacy assessment of
targeting TNFR2 alone or in combination therapy (54). The
mechanism of BI-1808 was mediated through intra-tumor Treg
depletion, CD8+ T-cell expansion, and modulation of tumor-
associated myeloid cells. These findings were confirmed in a
humanized mouse model (55). BITR2101 from Boston Immune
Technologies and Therapeutics is about to conduct phase 1
clinical trials in order to test the effectiveness of the agent
alone or in combination with anti-PD-1 antibody tislelizumab
(56). APX601 is a rabbit monoclonal antagonist antibody from
Apexigen Inc., which has a high binding affinity of TNFR2. It can
reverse immune suppression by targeting TNFR2-expressing
Tregs and myeloid-derived suppressor cells (MDSCs) and
induce the killing of tumor cells (57, 58). AN3025 from Adlai
Nortye can significantly inhibit MC38 tumor growth without
impaction on body weight through Treg depletion and increased
expression of IFNg and granzyme. In addition, the combined use
of AN3025 and PD-1 antibody can achieve a synergistic effect in
vivo (59). SIM0235 is a mAb that targets and inhibits TNFR2
from Simcere. It is able to kill TNFR2+ Tregs and MDSCs
through antibody-dependent cellular cytotoxicity (ADCC),
antibody-dependent cellular phagocytosis (ADCP), and other
Fc-receptor functions. Meanwhile, it is able to kill TNFR2+
tumor cells directly. SIM0235 also has significant antitumor
efficacy and synergistic effects when combined with PD-L1
antibodies (60). LBL-019 from Leads Biolabs is a TNFR2
antagonist aiming at malignant tumors. It is a first-in-class
drug targeting TNFR2 that has been approved for a clinical
trial in China and has also been recently approved for a clinical
trial by the Food and Drug Administration (FDA) according to
its official website. Unfortunately, we could not find more
detailed information about that (61). NBL-020 from NovaRock
Biotherapeutics can block TNFa ligand binding and potently
inhibit TNFR2 signaling in the monocytic cells. Moreover, it can
enhance CD8 T-cell function to overcome the suppressive effect
from Tregs and invigorate exhausted CD8 T cells in an FcgR-
dependent manner. The antitumor effects alone or in
combination with PD-L1 inhibitors were also confirmed in
vivo. This NBL-020 is currently at the IND-enabling stage (62).

It is easy to understand the mechanisms of targeting tumors
with TNFR2 antagonists, and blocking TNFR2may have the effect
of killing two birds with one stone: boosting antitumor immune
responses and directly killing TNFR2 overexpressing tumor cells
and tumor mesenchymal cells. However, there are TNFR2 agonist
antibodies that also have remarkable antitumor effects in vivo.

In addition to BI-1808, BI-1910 from BioInvent International
AB is a TNFR2 agonist antibody that is administered in preclinical
development. Its potent antitumor efficacy has been demonstrated
both as a single agent and in combination with anti-PD-1 through
dramatic CD8+ T-cell increases, which results in improved CD8/
Treg ratios and tumor regression (63). HFB200301 is a first-in-
class agonistic anti-TNFR2 agonist antibody that binds potently
and selectively to TNFR2, which demonstrates potent antitumor
February 2022 | Volume 13 | Article 844931
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activity alone and in combination with anti-PD-1. HFB200301
activates CD4+, CD8+ T cells, and NK cells in vitro and induces
expansion of CD4+ and CD8+ T cells and NK cells in the TME
without affecting regulatory T cells numbers in vivo (64). Another
TNFR2 agonist antibody is MM-401, which shows T-cell co-
stimulation and robust antitumor activity and immune memory
in a mouse. It can also upregulate activation markers and cytokine
production of CD4+ and CD8+ T cells from healthy donors, as
well as promote ADCC in an NK cell-mediated in vitro assay and
deplete Tregs in ovarian cancer ascites samples; all these results are
going to be retested in patient-derived xenograft (PDX) mouse
models (65, 66).

It seems that all roads lead to Rome in either blocking or
activating TNFR2 in the tumor. How these two contradictory
drugs achieve the same antitumor effect remains to be
Frontiers in Immunology | www.frontiersin.org 4
investigated. TME is an indivisible whole complexity, all the
members in this environment may influence each other, and they
may react differently in different TNFR2 treatments. Here, we
show some typical cell types other than Tregs in TME, which
may be involved in targeting TNFR2 (Figure 1).
NON-MALIGNANT CELLS INVOLVED
IN TARGETING TNFR2 IN TME

CD8+ T Cells
Previous studies found that TNFR2, but not TNFR1, were the
predominant TNF receptor on CD8+ effector T cells (67, 68); the
proportion of proliferating transgenic tumor-specific CD8+
TABLE 1 | TNFR2 antibodies under clinical trials or preclinical developments.

Name Producer Stage of development Condition or disease Reported mechanisms References

Antagonist BI-1808 BioInvent
International AB

Phase 1/2a (NCT04752826):
monotherapy or combination
with anti-PD-1 (Merck)

Human advanced
malignancies

a) Intra-tumor Treg depletion
b) CD8+ T-cell expansion
c) Modulation of tumor-associated myeloid
cells

(54, 55)

BITR2101 Boston Immune
Technologies &
Therapeutics Inc.

Preclinical development (IND
enabling)

Caner (not detailed) Not detailed (56)

APX601 Apexigen Inc. Preclinical development (IND
enabling)

Mouse cancer model
(CT26 and MC38)

a) Blockade of the immunosuppressive
functions of both Tregs and MDSCs
b) Depletion of TNFR2-expressing Tregs,
MDSC, and tumor cells via ADCC and
ADCP
c) Tumor growth inhibition both as a single
agent and in combination with anti-PD-1

(57, 58)

AN3025 Adlai Nortye Preclinical development Jurkat cell line
Mouse cancer model
(MC38)

a) Treg depletion
b) Increased IFNg and granzyme
expression
c) Synergistic effect with anti-PD-1

(59)

SIM0235 Simcere Preclinical development (IND
enabling)

Cancer (not detailed) a) Kill TNFR2+ Tregs and MDSCs through
ADCC and ADCP
b) Kill TNFR2+ tumor cells
c) Synergistic effects with anti-PD-L1

(60)

LBL-019 Nanjing Leads
Biolabs Co. Ltd.

Phase 1 (in both China and the
USA)

Cancer (not detailed) Not detailed (61)

NBL-020 NovaRock
Biotherapeutics

Preclinical development (IND
enabling)

Mouse cancer model a) Enhance CD8 T-cell function through
overcoming the suppressive effect from
Tregs
b) Invigorate exhausted CD8 T cells in an
FcgR-dependent manner
c) Synergistic effects with anti-PD-L1

(62)

Agonist
BI-1910 BioInvent

International AB
Preclinical development Mouse cancer model

(CT26, MC38 and B16),
a) Increase CD8+ T cell
b) Improved CD8/Treg ratios
c) synergistic effects with anti-PD-1

(63)

HFB200301 HiFiBiO
Therapeutics

Preclinical development (IND
enabling)

Mouse cancer model
(MC38)

a) Activates CD4+, CD8+ T cells, and
NK cells in vitro
b) Expand CD4+T/CD8+T/NK cells in
TME without affecting Tregs numbers in
vivo

(64)

MM-401 Merrimack
Pharmaceuticals,
Inc.

Preclinical development T cells from healthy
donors; ovarian cancer
ascites samples

a) Upregulation of activation markers and
cytokine production of CD4+ and CD8+ T
cells from Healthy donors
b) Promote ADCC and deplete Tregs in
ovarian cancer ascites samples

(65, 66)
February 2022 | Volume 13 | A
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T cells in TNFR2 deficient mice was significantly reduced in
TDLNs (67). TNFR2 is also required for the secretion of effector
molecules and cytotoxic activity of CD8+ T cells (69). Some CD8
+ T cells can also secrete cytokines, which include TNFa (70),
and TNFa could influence other TNFR+ cells.

A mouse TNFR2 agonist antibody Y9 was identified and had
antitumor effects in mouse models, and the effects were mediated by
CD8+ T cells and NK cells. TNFR2 agonist treatment could
downregulate TNFR2 on T cells, thus leading to CD8+ T-cell
expansion and function improvement. However, this agonist did
not deplete Tregs. Meanwhile, they generated a parallel anti-human
TNFR2 antibody Ab1, which exhibits similar properties to the Y9
antibody, and it can increase proliferation, activation markers, and
cytokines in both CD4+ and CD8+ T cells. Moreover, it also has
antitumor activity in humanized mouse models (71). This result
broke the initial thinking that targeting TNFR2 in cancer only means
blocking, and it shed light on the potential possibility of TNFR2
agonist antibodies as antitumor agents in preclinical development.
Frontiers in Immunology | www.frontiersin.org 5
Natural Killer Cells
TNFR2 plays a vital role in the function maintenance of NK cells.
NK cells play a central role in the antitumor process in TME (2),
acting directly through cell-mediated cytotoxicity and by secreting
cytokines. Activation of the TNF/TNFR2 pathway enhances NK
cell cytotoxicity, and TNFa also enhanced murine NK cell IFNg
production via TNFR2 in vivo and in vitro (72). DCTNFa andNK
cell TNFR2 are required forDC-mediatedNKcell proliferation and
amplification of cytotoxic activity (10).

Macrophages
Macrophages are the major producers of TNFa and interestingly
are also highly responsive to TNFa through TNFR1 and TNFR2
(73). TNFR2-positive tumor-associated macrophages were
related to the metastasis of human triple-negative breast cancer
(74). tmTNFa can act as a receptor when interacting with
sTNFR2- or TNFR2-expressing cells. This reverse signaling is
proven to be profoundly important in the activation of
FIGURE 1 | Targeting TNFR2 in different cells in the tumor microenvironment (TME). TME is an indivisible whole complexity, and targeting TNFR2 may influence
different cells in it, thus leading to a cascade of reactions and reshaping the immune microenvironment, which achieves antitumor effects ultimately. (A) TNFR2 was
the predominant TNF receptor on CD8+ effector T cells and required for the secretion of effector molecules and cytotoxic activity of CD8+ T cells. (B) Activation of
TNF/TNFR2 pathway enhances NK cell cytotoxicity and IFNg production. (C) Macrophages are the major producers of TNFa, and M2 macrophages were more
potent in inducing Treg differentiation and proliferation. (D) TNFR2+ MSCs can suppress T-cell proliferation, activation, and pro-inflammatory cytokine production and
at the same time the induction of active Tregs. (E) tmTNFa can induce CXCR4 expression in myeloid-derived suppressor cells (MDSCs) through the TNFR2-
dependent pathway, which facilitates the recruitment of MDSCs to tumor tissue with the function of Treg induction and inhibition of T-cell function. (F) TNFR2+ EPCs
can suppress T-cell proliferation. (G) Progranulin can promote the switch from fibroblasts to cancer-associated fibroblasts (CAFs) through the TNFR2 pathway.
TNFR2-dependent secretion of IL-33 by CAFs enhances the migration and invasion of cancer cells.
February 2022 | Volume 13 | Article 844931
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monocytes (15, 75). The reverse signaling activated by mTNFa
could increase the production of TNFa (75). tmTNFa+ M2
macrophages were more potent in inducing Treg differentiation
and proliferation (48). 14-3-3ϵ was essential for TNFR2
signaling-mediated regulation of macrophage polarization and
switch (76).

Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) have the ability to modulate the
immune response and belong to immunosuppressive cells. TNFR2 is
a key regulator strongly involved in the immunosuppressive
properties of MSCs. This includes suppression of T-cell
proliferation, activation, and pro-inflammatory cytokine production
and at the same time the induction of active Tregs (77). TNFR2
expression by MSCs is also associated with enhanced tube formation
property. TNFR2 plays a critical role in controlling MSC biological
and functional properties (78, 79).

Myeloid-Derived Suppressor Cells
MDSCs are well known for their capacity of promoting immune
evasion in tumor sites. tmTNFa can induce CXCR4 expression
in MDSCs through the TNFR2-dependent pathway, which
facilitates the recruitment of MDSCs to tumor tissue. CXCR4
inhibitor could impair the MDSC accumulation in tumors of
TNFR−/− mice after the restoration of adoptive transfer of wild-
type MDSCs (80). So tmTNFa acts as a potent activator of
MDSCs via the TNFR2 pathway and promotes tumor immune
escape (81). Moreover, the ability of MDSCs to induce Tregs in
vivo has been described (82, 83), and they can also inhibit T-cell
function in a non-specific manner (84).

Endothelial Cells and EPCs
Endothelial progenitor cells (EPCs) are non-differentiated
endothelial cells (ECs). They are involved in cancer-associated
neo-vascularization, thus facilitating cancer progression (85).
Evidence showed that EPCs were able to suppress T-cell
proliferation, and the TNFa/TNFR2 signaling pathway in
EPCs played a key regulatory factor in this immunosuppressive
effect (86). Adequate TNFa preconditioning could increase
TNFR2 expression without an unrestrained increase of TNFR1
and prime EPCs towards more immunosuppressive functions (87).

Cancer-Associated Fibroblasts
Cancer-associated fibroblasts (CAFs) are the activated fibroblasts
in cancer stroma that can promote cancer progression by the
secretion of cytokines and interaction with the local extracellular
matrix. In gastric cancer, CAF-derived IL-33 enhances the
migration and invasion of gastric cancer cells by inducing the
epithelial–mesenchymal transition (EMT), and the secretion of
Frontiers in Immunology | www.frontiersin.org 6
IL-33 by CAFs is dependent on the activation of the TNFR2-NF-
kB-IRF1 pathway (88). Progranulin secreted by colorectal cancer
cells can promote the switch from fibroblasts to CAFs through
the TNFR2 pathway (89).

TNFR2 IN TUMOR CELLS

Besides immune and mesenchymal cells, increased TNFR2
expression has also been found in several types of tumors, such as
ovarian cancer, colon cancer, kidney cancer, andT-cell lymphomas
(39, 90–93). It seems that hematopoietic and lymphoid cells have
the highest expression of TNFR2 in 788 human tumor cell lines
(93), which indicated their vital role in the maintenance of tumor
cell vitality. In the retrospective studies, TNFR2expression is higher
in tumor sites than non-tumor sites in esophageal cancer, and
TNFR2 is positively correlated with high malignancy and poorer
survival (94). Similar results have been obtained in non-small cell
lung cancer and ovarian cancer (95, 96).
DISCUSSION

TNFR2 has emerged as a potential immune checkpoint in cancer
treatment; however, the role it played in TME is much more
complex than we thought. The antitumor effects of targeting
TNFR2 can be concluded as direct inhibition of cell proliferation
and influence immune cells and then kill tumor cells indirectly.
TNFR2 antagonist antibodies can inhibit TNFR2-positive cancer
cells and tumor supporting cells, such as CAFs, ECs, and EPCs,
directly by signal interference. TNFR2 antibodies could also
attenuate the function of immunosuppressive cells or enhance
the killing ability of effector T cells directly to achieve antitumor
effects. A new mechanism needs to be deployed considering the
complicated network of TME. Meanwhile, we are looking
forward to the results of these clinical trials and hoping
targeting TNFR2 may achieve huge success in immunotherapy
and benefit more tumor patients.
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