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Abstract

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or

early adulthood onset of psychosis, positive and negative symptoms, as well as cogni-

tive impairments. Despite a plethora of studies leveraging functional connectivity

(FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and

cognitive impairments of SZ, the findings have exhibited great heterogeneity. We

aimed to identify congruous and replicable connectivity patterns capable of predict-

ing positive and negative symptoms as well as cognitive impairments in

SZ. Predictable functional connections (FCs) were identified by employing an individ-

ualized prediction model, whose replicability was further evaluated across three inde-

pendent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across

cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network

were replicable in prediction of positive symptoms, while sensorimotor network was

predictive of negative symptoms. Temporal-parahippocampal network was consis-

tently identified to be associated with reduced cognitive function. These replicable

23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts

(82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs

showed comparable accuracies to those built using the whole-brain features in pre-

dicting symptoms/cognition of SZ across the three cohorts (r = .17–.33, p < .05).

Overall, our findings provide new insights into the neural underpinnings of SZ
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symptoms/cognition and offer potential targets for further research and possible clin-

ical interventions.
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1 | INTRODUCTION

Schizophrenia (SZ) is a chronic and disabling mental illness that affects

approximately 1% of the world's population (Cai et al., 2024; Kraguljac

et al., 2021; Liang et al., 2023; Tang et al., 2012). It is characterized by

the adolescence-to-young adulthood, onset of symptoms that include

psychosis, disorganized thoughts, apathy and cognitive decline (Zheng

et al., 2021). The core symptoms of SZ can be separated into positive

(including delusions, hallucinations, disordered thinking, and disorga-

nized behavior) and negative symptoms (including impaired motiva-

tion, reduction in affect and spontaneous speech, and social

withdrawal). Cognitive impairments in SZ involve deficits in attention,

memory, learning, and executive function (Joyce & Roiser, 2007; Qi

et al., 2020; S. Qi et al., 2021; Rodrigues-Amorim et al., 2017; Wang

et al., 2020). Advances in neuroimaging techniques, especially resting-

state functional MRI (rs-fMRI), have led to compelling insights into

human brain function of SZ (Raimondo et al., 2021; Zhao et al., 2022).

Moreover, the integration of brain imaging and machine learning

models has significantly contributed to the understanding of func-

tional alterations that occur in the brain of individuals with SZ

(Berman et al., 2016; de Filippis et al., 2019; L. Fan et al., 2021; Qiu

et al., 2021; Xi et al., 2021). Although previous studies utilizing rs-

fMRI have demonstrated extensive patterns of abnormal brain con-

nectivity in SZ (Baker et al., 2014; Dong et al., 2018; Mwansisya

et al., 2017; Skudlarski et al., 2010), the identification of replicable

abnormal connectivity patterns related to symptoms and cognitive

dimensions remains elusive (Adhikari et al., 2019; Elliott et al., 2021;

Guo et al., 2023).

Numerous studies have reported inconsistent or diverging results

regarding rs-fMRI based prediction of positive/negative symptoms

and cognitive impairments in SZ. A study revealed that between-

network connections of the frontoparietal control network (FPN)

were found to contribute the most in predicting the positive symp-

toms (Y.-S. Fan et al., 2022), while a combination of between-network

connections of the default mode network, FPN, and within-network

connections of the FPN significantly contributed to the prediction of

negative symptoms. Another study indicated that connections con-

tributing to the positive symptoms were predominantly those

between the FPN, dorsal attention network, and sensorimotor net-

work, while connections contributing to the negative symptoms

mainly involved the FPN, sensorimotor network, and the salience net-

work (Wang et al., 2020). A research discovered that connections

from the left hippocampus to the left inferior parietal sulcus, as well

as connections from the right hippocampus to the left hippocampus,

were predictive of positive symptoms (Usc�atescu et al., 2021).

Additionally, connections originating from the left hippocampus to the

dorsal anterior cingulate cortex, left inferior parietal sulcus, and right

hippocampus were predictive of negative symptoms. Researchers

have discovered that cognitive impairments of SZ were related to

decreased prefrontal-thalamic connectivity and increased

sensorimotor-thalamic connectivity (P. Chen et al., 2019). Another

research found that the connectivity between the medial prefrontal

and temporal regions predicted cognitive impairments (Abram

et al., 2017). These inconsistent findings may be due to the heteroge-

neity in sample characteristics (i.e., heterogeneity in patient popula-

tions and pharmacologic effects) and technical issues (i.e., differences

in hardware, scanning and analytic protocols) (J. Chen et al., 2021).

Furthermore, these studies predominantly focused on examining

group-level correlations between symptoms and brain measurements

instead of making prediction of core symptoms on a subject level.

Finally, none of these studies have examined replication of findings in

independent samples. In light of this, identifying reproducible and sta-

ble connectivity patterns to predict positive/negative symptoms or

cognitive impairments in SZ appears particularly necessary.

In this study, we aim to identify replicable and consistent connec-

tivity patterns that can predict positive/negative symptoms and cogni-

tive impairments in SZ. Specifically, we first constructed an

individualized model to predict the positive/negative symptoms and

cognitive impairments across three cohorts. This model combines fea-

ture selection and machine learning and has been previously employed

to predict cognitive domain scores, symptoms severity, and personality

traits (Beaty et al., 2018; Feng et al., 2022; Jiang, Calhoun, et al., 2020;

Jiang, Zuo, et al., 2020; Shen et al., 2017). Second, in order to identify

stable and consistent functional connections (FCs), we conducted a

statistical analysis of the reproducible FCs among the top 80% features

in the prediction model for each symptom set. Finally, we employed a

back-propagation neural network (BPNN) to verify the diagnostic abil-

ity of the identified replicable FCs on the three cohorts (Liang

et al., 2023). We also used the overlapping FCs in any two cohorts to

predict the corresponding symptoms in the third cohort. Eventually,

we identified replicable FCs that effectively predict positive and nega-

tive symptoms as well as cognitive impairments in SZ.

2 | MATERIALS AND METHODS

2.1 | Participants in three independent cohorts

Three independent sites contributed a total of 901 subjects in this

study, including 435 SZ patients (BSNIP [Bipolar and Schizophrenia
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Network for Intermediate Phenotypes]: SZ = 174; COBRE [Center

for Biomedical Research Excellence]: SZ = 100; FBIRN [Functional

Imaging Biomedical Informatics Research Network]: SZ = 161),

and 466 healthy controls (HC) (BSNIP: HC = 219; COBRE:

HC = 90; FBIRN: HC = 157). The demographic and symptomatic

information are listed in Table 1. Symptoms were assessed using

the Positive and Negative Symptom Scale of Psychotic Symptom

Severity (PANSS) (Kay et al., 1987), and cognitive performance was

measured using three different cognitive batteries. BSNIP: Brief

Assessment of Cognition in SZ, BACS; FBIRN: Computerized Mul-

tiphasic Interactive Neuro-cognitive System, CMINDS; COBRE:

Measurement and Treatment Research to Improve Cognition in SZ

Consensus Cognitive Battery, MCCB (Supplementary Tables 1–3).

Resting-state functional MRI scans were collected on 3T scanners

for all subjects. Details on imaging parameters and preprocessing

pipeline for the three cohorts can be found in Supplementary

“Imaging parameters and preprocessing” section in Data S1 and

Supplementary Table 4. The study was approved by the Institu-

tional Review Board at each respective site, and written informed

consent was obtained from all participants after providing a com-

prehensive description of the study procedure.

2.2 | Whole-brain FC extraction

For BSNIP, COBRE, and FBIRN cohorts, participants' brains were

segmented into 246 regions of interest (ROIs) using the Brainne-

tome Atlas, which consists of 210 cortical and 36 subcortical

nodes (L. Fan et al., 2016). The average time series of all voxels

within each ROIs were calculated to obtain the fMRI time series

for each node. Subsequently, the Pearson correlations were com-

puted between the time courses of any two nodes and normalized

to Z-scores using Fisher transformation, resulting in a 246 � 246

symmetric FC matrix for each subject (Jiang et al., 2018). The diag-

onal elements of each FC matrix were removed, and the lower tri-

angular elements of the FC matrix were extracted as predictive

features. Thus, each subject had a FC vector in a dimension of

(246 � 245)/2 = 30,135 (Figure 1a).

2.3 | Individualized prediction framework

Our data-driven predictive model which combines feature selection

and machine learning methods has been employed to predict multiple

health-related behaviors from connectivity data (Beaty et al., 2018;

Feng et al., 2022; Jiang, Calhoun, et al., 2020; Jiang, Zuo, et al., 2020;

Shen et al., 2017). In this study, we first employed Pearson correlation

to select features showing the most significant associations with the

target variable, and the optimal threshold was obtained through

the grid search method. Subsequently, we utilized partial least squares

regression (PLSR) to build the predictive model. PLSR is a widely used

multivariate regression method in various fields such as bioinformat-

ics, and neuroscience (Jiang et al., 2023; Jiang, Scheinost, et al., 2022;

McIntosh et al., 1996; Meskaldji et al., 2016; Nguyen & Rocke, 2002).

PLSR is particularly suitable when the number of predictors is rela-

tively large compared to the available samples (Shen et al., 2017).

PLSR is related to principal component analysis and multiple linear

regression, essentially representing variables with a small number of

latent components (Yoo et al., 2018).

We used leave-one-out cross-validation (LOOCV) to train multi-

ple models. LOOCV maximizes the utilization of data for training

and evaluation, enabling more accurate assessment of the model's

performance (Jiang, Zuo, et al., 2020; Shen et al., 2017; Sun

et al., 2020). In the leave-one-out loop, one subject is designated as

the testing data, while the remaining n-1 subjects are used as the

training dataset. During the training stage, we computed the Pear-

son correlation between each symptom set and each of the 30,135

connectivity features in the FC matrix. We obtained the r and

p values between each feature and the respective symptoms

(Abubacker et al., 2014; Sun et al., 2020). Subsequently, we desig-

nated the features that satisfied r > 0 and p < the positive threshold

as positive features. Similarly, features that satisfied r < 0 and

p < the negative threshold were designated as negative features.

The optimal positive and negative thresholds were determined

within the range of 0.001–0.05. Finally, all positive and negative fea-

tures were put into the PLSR model as selected features. The opti-

mal number of latent components was determined using a nested

LOOCV. The parameter was tested within the range of 1–20, and

TABLE 1 Demographic and clinical information.

Cohorts

BSNIP COBRE FBIRN

SZ HC p SZ HC p SZ HC p

Number n = 174 n = 219 NA n = 100 n = 90 NA n = 161 n = 157 NA

Age 34.5 ± 12.1 38.8 ± 12.6 5.8e�04 38.5 ± 14.1 38.0 ± 11.6 .8 39.0 ± 11.3 37.5 ± 11.3 .2

Gender (M/F) 120/54 90/129 2.2e�08 78/22 65/25 .4 120/41 112/45 .5

PANSS_Positive 16.4 ± 5.7 NA NA 15.0 ± 4.6 NA NA 14.4 ± 5.6 NA NA

PANSS_Negative 16.3 ± 6.1 NA NA 14.6 ± 5.2 NA NA 15.5 ± 5.1 NA NA

Cognition �1.7 ± 1.4 0.01 ± 1.1 4.5e�34 32.7 ± 12.9 49.9 ± 8.7 2.7e�19 �1.6 ± 1.3 0.01 ± 1.0 3.2e�28

Note: p value for two-sample t test among age, gender and cognition between SZ and HC.

Abbreviation: M/F, male/female.
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the value that yielded the highest prediction accuracy was deter-

mined as the optimum number of components. In our experiments,

the optimal number of latent components ranged from 3 to 10 for

most conditions. Setting the parameter value too small made it diffi-

cult to model brain–behavior relationships, while setting it too large

may lead to overfitting, resulting in higher prediction accuracy for

the training sample but poorer generalization to the test sample

(Jiang, Zuo, et al., 2020). This process was repeated n times (equal to

the number of subjects) to test all subjects. Figure 1a illustrates the

prediction framework employed in this study.

2.4 | Extracting consensus FCs

In LOOCV loop, after determining the optimal number of potential

components, we extracted features with higher contribution based on

F IGURE 1 Analysis framework for this study. (a) Constructing the FC matrix for each cohort using the Brainnetome Atlas. Feature selection
and PLSR were employed to build an individualized prediction model, which underwent testing using LOOCV on all subjects. Individualized
prediction of positive/negative symptoms and cognitive impairments of SZ on each cohort. (PANSS_P: PANSS Positive; PANSS_N: PANSS
Negative). (b) The top 80% contributing features in each prediction model were extracted, followed by overlaying them for the same symptoms
across the three cohorts to identify the consistent FCs. (c) Consensus FCs were used to classify SZ and HC (left) and predict positive/negative

symptoms, and cognitive impairments in each cohort (right).
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the regression weight coefficients (Liu & Li, 2017). To identify the

most important FCs for each symptom across the three cohorts, we

extracted the top 80% features that contribute to the prediction

model. Since we selected features that exhibit a high correlation with

the predicted symptoms, the number of features involved in predict-

ing symptoms were smaller. This process was performed for positive/

negative symptoms and cognition impairments in the three cohorts,

respectively. Within the same symptom set, we identified the features

that consistently appeared across the three cohorts, which were

defined as the consensus FCs for that particular symptom set (Jiang,

Woo, et al., 2022) (Figure 1b).

2.5 | Repeatability and robustness of the
consensus FCs

To verify the repeatability and robustness of the consensus FCs dis-

covered for each symptom set, we conducted the following experi-

ments. (1) The consensus FCs obtained for predicting positive/

negative symptoms and cognitive impairments were combined in

SZ. We used the BPNN classification model, which has proven suc-

cessful in distinguishing among SZ, schizoaffective disorder, psy-

chotic bipolar disorder and HC (Liang et al., 2023), to classify SZ and

HC in each cohort (Figure 1c, left). (2) For the three cohorts, we uti-

lized the consensus FCs associated with each symptom set as the

foundation and applied the previously established predictive

framework to predict the corresponding symptoms once again

(Figure 1c, right).

3 | RESULTS

3.1 | Consensus FCs in predicting the positive
symptoms

Figure 2 depicts the prediction results for the positive symptoms and

the consensus FCs consistently predicting positive symptoms across

the three cohorts. Specifically, significant correlations were observed

between model-predicted and actual clinical scores, with a Pearson

correlation of r = .27 (p = 4.6 � 10�4*), r = .33 (p = 9.0 � 10�4*),

and r = .22 (p = 5.7 � 10�3) for BSNIP, COBRE and FBIRN cohorts,

respectively (Figure 2a). (*) indicates statistical significance after 1000

permutation testing (Supplementary “Permutation test” section in

Data S1). Furthermore, the features showing the top 80% highest

contributions to the prediction model of positive symptoms in each

cohort were extracted (Figure 2b,c). Figure 2d illustrates the overlap-

ping FCs consistently identified by any two cohorts. Seven FCs were

consistently identified as the consensus features across three cohorts,

namely: left inferior frontal gyrus (33) and right superior frontal gyrus

(4); left inferior parietal lobule (137) and left superior temporal gyrus

(71); right thalamus (242) and left lateral inferior temporal gyrus (99);

right cingulate gyrus (180) and right parahippocampal gyrus (112); left

F IGURE 2 The prediction results for the positive symptoms in three cohorts. (a) Scatter plots showing model-predicted and actual scores for
positive symptoms in each cohort. (b and c) Distribution of the top 80% features contributing to predicting the positive symptoms. (d) Overlay of
the FCs from any two cohorts. (e) Overlay of the FC features consistently identified across the three cohorts.
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thalamus (237) and left postcentral gyrus (55); and right lateral occipi-

tal cortex (208) and left cingulate gyrus (177, 185) (Figure 2e). Num-

bers in parentheses indicate the labeling of individual FCs

corresponding to Brainnetome Atlas delineated brain regions

(Supplementary Tables 5 and 6). These consensus FCs were primarily

distributed among a frontal-temporal-cingulate-thalamic network.

3.2 | Consensus FCs in predicting the negative
symptoms

Figure 3 illustrates the prediction results for the negative symptoms

and the consensus FCs consistently predicting negative

symptoms across the three cohorts. Specifically, significant correla-

tions were observed between model-predicted and actual clinical

scores, with a Pearson correlation of r = .36 (p = 2.4 � 10�6*),

r = .33 (p = 6.9 � 10�4*), and r = .27 (p = 6.3 � 10�4*) for BSNIP,

COBRE, and FBIRN cohorts, respectively (Figure 3a). Additionally, the

features showing the top 80% highest contributions to the prediction

model of negative symptoms in each cohort (Figure 3b,c). Figure 3d

visually presents the overlapping FCs observed between any two

cohorts. Remarkably, seven FCs were consistently identified as con-

sensus features across three cohorts: left superior frontal gyrus

(1) and left and right inferior parietal lobule (137, 138); left superior

parietal lobe (133) and left precentral gyrus (55, 57, 59); left superior

parietal lobe (133) and left and right postcentral gyrus (155, 136)

(Figure 3e). These consensus FCs were predominantly localized within

the sensorimotor network.

3.3 | Consensus FCs in predicting the cognitive
impairments

Figure 4 depicts the prediction results for cognitive impairments

and the consensus FCs consistently predicting cognitive impair-

ments across the three cohorts. Specifically, significant correla-

tions were observed between model-predicted and actual clinical

scores, with a Pearson correlation of r = .33 (p = 1.1 � 10�5*),

r = .36 (p = 3.8 � 10�4*), and r = .34 (p = 2.2 � 10�5*) for BSNIP,

COBRE and FBIRN cohorts, respectively (Figure 4a). At the same

time, the features showing the top 80% highest contributions to

the prediction model of cognitive impairments in each cohort

(Figure 4b,c). Figure 4d illustrates the overlapping FCs between

any two cohorts. Overall, nine FCs were identified as consensus

features across three cohorts, namely, the left inferior temporal

gyrus (89) and left inferior temporal gyrus (95); left lateral inferior

temporal gyrus (89, 95, 101) and right parahippocampal gyrus

(112); left lateral inferior temporal gyrus (95) and right parahippo-

campal gyrus (114); left lateral inferior temporal gyrus (93, 95) and

left parahippocampal gyrus (111); left inferior temporal gyrus

F IGURE 3 The prediction results for the negative symptoms in three cohorts. (a) Scatter plots showing model-predicted and actual scores for
negative symptoms in each cohort. (b and c) Distribution of the top 80% features contributing to predicting the negative symptoms. (d) Overlay of
the FCs from any two cohorts. (e) Overlay of the FCs consistently identified across the three cohorts.
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(95) and left and right fusiform gyrus (103, 104) (Figure 4e). These

consensus FCs were primarily distributed among a temporal-

parahippocampal network. Note that, we also calculated the over-

lap among all features (100%) in the positive/negative symptoms

and cognitive prediction models across the three cohorts

(Supplementary Figures 1–3). All the predicted results remain sig-

nificant after excluding the influence of sites (Supplementary Fig-

ures 4 and 5).

3.4 | Robustness and reproducibility of
consensus FCs

The consensus 23 FCs from each prediction model were submitted

into BPNN algorithm to evaluate the classification potential between

SZ and HC within each cohort. The classification accuracies

between SZ and HC for BSNIP, COBRE, and FBIRN datasets were

82.7%, 90.2%, and 86.1%, respectively (Figure 5a–c). The consensus

FCs for each symptom set (7, 7, 9) were used to predict the corre-

sponding symptoms across the three cohorts to further validate the

reproducibility. Models built using these replicable FCs showed com-

parable accuracies to those built using the whole-brain features in

predicting symptoms/cognition of SZ across the three cohorts

(r = .17–.33, p < .05) (Figure 5d). Furthermore, the overlapping FCs

between any two cohorts can predict the corresponding symptoms in

the third cohort (Supplementary Figure 6). Finally, we counted the

overlap of all features (100%) in the positive/negative symptoms and

cognition prediction models. When using overlapping FCs of all fea-

tures (100%) in the prediction models, the classification accuracies for

BSNIP, COBRE and FBIRN were 82.8%, 91.7% and 88.4%, respec-

tively (Supplementary Figure 7). Note that there are group differences

in age and gender for BSNIP cohort. We also performed both predic-

tion and classification after regressing out age and gender for BSNIP.

Results showed that age and gender did not show a significant impact

on the accuracy of classification (Supplementary Figure 8) or predic-

tion (Supplementary Figure 9) for BSNIP cohort. The identified

23 reproducible FCs were also used to predict PANSS total for BSNIP

and COBRE (PANSS total is not available for FBIRN). The prediction

accuracy was r = .38 (p = 3.8 � 10�7*) for BSNIP and r = .25

(p = 1.2 � 10�2) for COBRE, respectively (Supplementary Figure 10).

4 | DISCUSSION

In this study, we successfully predicted the positive/negative symp-

toms and cognitive impairments in SZ using individualized prediction

framework. Moreover, we identified distinct brain connectivity pat-

terns associated with each symptom set and cognitive impairments

across three cohorts. Specifically, we observed abnormal FCs in

frontal-temporal-cingulate-thalamic network and sensorimotor

F IGURE 4 The prediction results for the cognitive impairments in three cohorts. (a) Scatter plots showing model-predicted and actual scores
for cognitive impairments in each cohort. (b and c) Distribution of the top 80% features contributing to predicting the cognitive impairments.
(d) Overlay of the FCs from any two cohorts. (e) Overlay of the FCs consistently identified across the three cohorts.
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network that were replicable for positive and negative symptoms,

respectively. Similarly, temporal-parahippocampal network was con-

sistently identified in cognition prediction. These replicable FCs can

successfully distinguish SZ from HC across three cohorts. More

importantly, models built using these replicable FCs showed compara-

ble accuracies to those built using the whole-brain features in predict-

ing symptoms/cognition of SZ across the three cohorts. To the best

of our knowledge, this is the first study to identify reproducible FCs

that predict positive/negative symptoms and cognition in SZ through

rigorous cross-cohort validation, which may more accurately reveal

the abnormal FCs associated in SZ.

Our results indicated that replicable FCs used for predicting posi-

tive symptoms of SZ were primarily distributed within frontal-tempo-

ral-cingulate-thalamic network. Relevant research evidence suggested

that the connectivity of the frontal, temporal, and cingulate regions

was associated with the severity of positive symptoms in SZ, provid-

ing support for our findings. From a neurocircuitry perspective, aber-

rant interactions between the prefrontal and temporal lobes might be

linked to the generation of positive symptoms in SZ (Choi

et al., 2005). Specifically, abnormal connections within the frontal and

temporal regions plays a crucial role in the formation of auditory hallu-

cinations (Pettersson-Yeo et al., 2011). Additionally, significant activa-

tion of the cingulate gyrus was observed during auditory

hallucinations (Silbersweig et al., 1995). Recent studies had also indi-

cated a significant correlation between the thalamus and temporal

lobe and hallucinations and delusions (Ferri et al., 2018; Kaur

et al., 2020; Perez-Rando et al., 2022). Thalamic dysregulation in con-

nectivity may have represented a core neurobiological feature of SZ,

underpinning positive symptoms (Ferri et al., 2018). This aligned with

the current findings of replicable connections between the thalamus

and temporal lobe in the positive symptom prediction. Therefore, this

study suggests that abnormalities in connections within frontal-tem-

poral-cingulate-thalamic network may serve as reliable FCs for pre-

dicting positive symptoms, offering valuable insights for the precise

diagnosis of positive symptoms in patients with SZ.

In predicting negative symptoms of SZ, abnormal connections

within sensorimotor network played a crucial role. Connections that

contributed most to the estimation of negative scores in SZ mainly

involved the sensorimotor regions (Wang et al., 2020), which is con-

sistent with our findings. Frontal lobe damage has been shown to be

associated with the lack of motivation and apathy (Costa et al., 2013;

Y.-S. Fan et al., 2022). The aberrant connectivity between the frontal

lobe and the parietal lobe is associated with symptoms of SZ, particu-

larly negative symptoms (Brady et al., 2017; Venkataraman

et al., 2012). Furthermore, the precentral gyrus is associated with

anhedonia (Y. Li et al., 2018), and connections between the parietal

and precentral gyrus regions may contribute to impaired motivation in

SZ. The postcentral gyrus is considered to be a key structure for

receiving and processing somatosensory information (H. J. Li

et al., 2015), and abnormal connections between the parietal lobe and

the postcentral gyrus may lead to decreased volitional behavior in the

negative symptoms of SZ. In summary, the replicable FCs in predicting

negative symptoms were predominantly distributed within the senso-

rimotor network, that hold significant potential for the investigation

of negative symptoms in SZ.

Finally, FCs primarily in temporal-parahippocampal network could

predict cognitive impairments in SZ. Specifically, the temporal lobe

and its associated neural pathways are believed to be involved in the

processing and retrieval of words and semantic knowledge (Binder

et al., 2009). Connections within the temporal lobe may have complex

F IGURE 5 Based on the identified consensus FCs for predicting positive/negative symptoms and cognitive impairments, BPNN was used to
classify SZ between HC in each cohort. Additionally, consensus FCs were employed to predict positive and negative symptoms, as well as
cognitive impairments, within each cohort. (a) BSNIP: SZ versus HC. (b) COBRE: SZ versus HC. (c) FBIRN: SZ versus HC. (d) The predictive
accuracy of the consensus FCs for predicting the corresponding symptoms/cognition within each cohort.
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associations with cognitive impairments in memory and learning abili-

ties. Aberrant connections between the parahippocampal gyrus and

the temporal lobe have been identified as critical in the processes of

memory encoding and retrieval (Bonnici et al., 2012; Luck

et al., 2010). Therefore, connections between the parahippocampal

gyrus and the temporal lobe could lead to inaccuracies in semantic

comprehension and semantic memory, resulting in cognitive impair-

ments. Furthermore, previous research has emphasized the crucial

role of the fusiform gyrus in face and object recognition (Briggs

et al., 2019), and connections involving these regions may play a criti-

cal role in shaping the seamless transmission and integration of visual

information, contributing to the overall cognitive processing of these

stimuli. In light of these factors, connections between the fusiform

gyrus and the temporal lobe could impact the transmission and inte-

gration of visual information (Weiner & Grill-Spector, 2013). In sum-

mary, we found that FCs located in temporal-parahippocampal

network played a crucial role in predicting cognitive impairments in

SZ. These reproducible FCs have the potential to serve as a key neural

circuitry foundation in the study of cognitive impairments in SZ.

The current findings of this study are further extended beyond

previous FC-based prediction analyses in BSNIP, COBRE, and FBIRN

cohorts. In an investigation leveraging the COBRE cohort, researchers

employed a deep learning approach and identified that the cerebel-

lum, temporal lobe, insula, and cingulate gyrus exhibited predictive

capabilities for positive symptoms (Yamaguchi et al., 2021). These

findings bear congruence with our observations regarding the tempo-

ral lobe and cingulate gyrus for positive symptoms. Utilizing the

BSNIP, COBRE, and FBIRN cohorts, another study revealed that

abnormalities within the frontotemporal network proved predictive of

cognitive impairments and the severity of negative symptoms across

the three cohorts (S. Qi et al., 2022). This is consistent with our find-

ing of abnormal connections in the frontal lobe on negative symp-

toms, as well as abnormal temporal lobe connectivity associated with

cognitive impairments. Furthermore, in a study leveraging the COBRE

and FBIRN cohorts, researchers identified that irregularities in the

salience network, corpus callosum, central executive, and default

mode networks predicted cognitive impairments (Sui et al., 2018).

These brain networks exhibit partial overlap with our findings con-

cerning cognitive impairments in the temporal lobe and parahippo-

campal gyrus. Comparing with previous single cohort FC-based

analyses, the current cross-cohort validated prediction offers a more

rigorous and replicable characterization of symptoms/cognition-

related functional architectures in SZ.

There are several limitations that should be acknowledged, which

may impact the interpretation of our results. Firstly, note that the

BSNIP and FBIRN cohorts utilized in our study were collected from

multiple sites, each employing different MRI scanners. However, the

predictive accuracy of including site as a covariate on BSNIP and

FBIRN remain significant (Supplementary Figure 5), as well as for the

round-robin validation by excluding one site at a time for BSNIP

(Supplementary Figure 4). Secondly, the three cohorts involved

chronically-ill SZ patients treated with antipsychotic medications.

Antipsychotic drugs not only improve symptomatology, they can

cause neuro-motoric side-effects and they affect the brain structurally

and functionally (Lesh et al., 2015; Zeng et al., 2022). Hence, the FC

networks identified in SZ may be confounded by medication effects

on the brain. Follow-up studies in early SZ with no or minimal medica-

tion exposure are necessary. Finally, the effect sizes of prediction

accuracy between model-predicted and actual scores were modest

(correlations approximately .22–.36) for both symptoms and cognitive

scores. Our main goal is to identify repeatable brain connection pat-

terns among different cohorts, rather than necessarily achieving the

highest prediction accuracy. Although the effect size between model-

predicted and actual clinical scores was modest, models based on our

identified replicable FCs achieved comparable prediction accuracy as

those achieved using whole-brain connections. This suggests that the

replicable FCs we found do capture meaningful individual differences

related to symptoms/cognition.

In summary, using machine learning-based predictive modeling,

our study identified reproducible FC patterns for positive/negative

symptoms and cognitive impairments in SZ across three cohorts. We

observed abnormal FCs in frontal-temporal-cingulate-thalamic net-

work that were replicable of positive symptoms, while sensorimotor

network was predictive of negative symptoms. Furthermore, the

temporal-parahippocampal network was consistently identified in pre-

dicting cognition. The identified replicable FCs distinguished SZ from

HC robustly across the three cohorts. More importantly, models built

using these replicable FCs showed comparable accuracies to those

built using the whole-brain features in predicting symptoms/cognition

of SZ across the three cohorts. Overall, our findings provide new

insights into the neural underpinnings of SZ symptoms/cognition and

offer potential targets for further research and possible clinical

interventions.
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