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Methylglyoxal, a major precursor of advanced glycation end products, is elevated in the
plasma of patients with type 2 diabetes mellitus. Islet b-cell function was recently shown to
be regulated by N6-methyladenosine (m6A), an RNA modification consisting of
methylation at the N6 position of adenosine. However, the role of m6A methylation
modification in methylglyoxal-induced impairment of insulin secretion in pancreatic b cells
has not been clarified. In this study, we showed that treatment of two b-cell lines, NIT-1
and b-TC-6, with methylglyoxal reduced m6A RNA content and methyltransferase-like 3
(METTL3) expression levels. We also showed that silencing of METTL3 inhibited glucose-
stimulated insulin secretion (GSIS) from NIT-1 cells, whereas upregulation of METTL3
significantly reversed the methylglyoxal-induced decrease in GSIS. The methylglyoxal-
induced decreases in m6A RNA levels and METTL3 expression were not altered by
knockdown of the receptor for the advanced glycation end product but were further
decreased by silencing of glyoxalase 1. Mechanistic investigations revealed that silencing
of METTL3 reduced m6A levels, mRNA stability, and the mRNA and protein expression
levels of musculoaponeurotic fibrosarcoma oncogene family A (MafA). Overexpression of
MafA greatly improved the decrease in GSIS induced by METTL3 silencing; silencing of
MafA blocked the reversal of the MG-induced decrease in GSIS caused by METTL3
overexpression. The current study demonstrated that METTL3 ameliorates MG-induced
impairment of insulin secretion in pancreatic b cells by regulating MafA.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a public health problem of
considerable magnitude that is characterized by hyperglycemia,
insulin resistance, and gradual exhaustion of insulin secretion
from pancreatic b cells (1). Methylglyoxal (MG), a highly
reactive dicarbonyl product of glucose metabolism, is believed
to be the most important precursor of advanced glycation end
products (AGEs). We (2) and others (3, 4) have demonstrated
that plasma MG levels are significantly higher in T2DM patients
than in control individuals. MG may be involved in the
development of DM and diabetic complications by acting as
either a precursor of AGEs or a direct toxin (5–7). MG reduced
islet b-cell insulin secretion both in vivo and in vitro (8–10);
however, the molecular mechanism by which MG treatment
results in decreased insulin secretion has not been elucidated.

N6-Methyladenosine (m6A), the most frequent mRNA
modification in eukaryotes, has garnered wide interest in
recent years because of its roles in regulating mRNA splicing,
output, translation, and stability (11, 12). m6A levels are mainly
regulated by methyltransferases such as methyltransferase-like 3
(METTL3) and methyltransferase-like 14 (METTL14), as well as
demethylases, fat mass, obesity-associated protein (FTO), and a-
k e tog lu t a r a t e -dependen t d ioxygena s e homo log 5
(ALKBH5) (13).

The m6A modification is essential for the physiological
function of pancreatic b cells (14). Levels of m6A RNA in the
pancreatic islets and plasma of patients with T2DM were
markedly lower than those in control subjects (14–18). These
changes in m6A levels were attributed to decreases in METTL3
and METTL14 expression (14, 18–20) and an increase in FTO
expression (16). Musculoaponeurotic fibrosarcoma oncogene
family A (MafA), a key regulator of insulin gene transcription,
is markedly decreased in the b cells of patients with T2DM (21).
Wang et al. showed that METTL3 specifically targets MafA and
regulates its protein expression (18). However, to the best of our
knowledge, it remains unclear whether the m6A modification is
involved in MG-induced dysfunction of b-cell insulin secretion.
Therefore, the present study was designed to explore the
connection between MG and m6A levels and to clarify the
mechanisms underlying the role of the m6A RNA modification
in MG-induced b-cell dysfunction.
MATERIALS AND METHODS

Cell Culture
The mouse insulinoma b-cell lines NIT-1 and b-TC-6 were
purchased from Procell Life Science and Technology Co.
(Wuhan, China). The cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; Gibco, California, USA) containing 10%
fetal bovine serum (Gibco, California, USA). NIT-1 and b-TC-6
cells were treated with 1mMofMG (Sigma,Missouri, USA) for the
duration indicated in each experiment. This concentration of MG
was selected based on previous studies (9, 10), which showed that
1 mM of MG sufficiently decreased islet b-cell function in vitro.
Frontiers in Endocrinology | www.frontiersin.org 2
Cell Transfection
Small interfering RNAs (siRNAs) targeting METTL3 (si-
METTL3), the receptor for advanced glycation end products
(RAGE, si-RAGE), glyoxalase 1 (Glo-1, si-Glo-1), and MafA (si-
MafA), as well as a negative control siRNA (si-NC), were
synthesized by Riobio Technology Co. (Guangzhou, China).
The siRNA sequences were as follows:

siRNA METTL3-1: 5′‐GGACTCGACTACAGTAGCT‐3′;
siRNA METTL3-2: 5′‐CAAGTATGTTCACTATGAA‐3′;
siRNA METTL3-3: 5′‐GACTGCTCTTTCCTTAATA‐3′;
siRNA RAGE-1: 5′‐GCATTCAGCTGTTGGTTGA‐3′;
siRNA RAGE-2: 5′‐CCACTGGAATTGTCGATGA‐3′;
siRNA RAGE-3: 5′‐CCAGCAGCTAGAATGGAAA‐3′;
siRNA Glo-1: 5′‐CTATGAAGTTCTCGCTCTA‐3′;
siRNA Glo-2: 5′‐GCAAACGATGCTAAGAATT‐3′;
siRNA Glo-3: 5′‐AGAAGACAGCATGGACGTT‐3′;
siRNA MafA-1: 5′‐TCAACGACTTCGACCTGAT‐3′;
siRNA MafA-2: 5′‐TGATGAAGTTCGAGGTGAA‐3′;
siRNA MafA-3: 5′‐GATGAAGTTCGAGGTGAAG‐3′.

Lipofectamine 3000 reagent (Invitrogen, California, USA),
Opti-MEM medium (Gibco, California, USA), and siRNAs were
mixed and incubated at room temperature for 15 min and then
added to cells and incubated for 36 h. Three siRNA sequences
were synthesized for each target gene, and the siRNA targeting
METTL3-2, RAGE-1, Glo-1-2, and MafA-3 with the highest
inhibition efficiencies were selected for subsequent experiments
(Supplementary Figure S1).

Recombinant adenovirus constructs with either METTL3
(Ad-METTL3) or an empty vector (Ad-NC) and pCDNA3.1
plasmids carrying either MafA (pCDNA-MafA) or the empty
vector (pCDNA) were synthesized by HanBio Technology Co.
(Shanghai, China). Cells were infected with Ad-NC or Ad-
METTL3 for 48 h. Cells were transfected with pCDNA or
pCDNA-MafA using Lipofectamine 3000 reagent (Invitrogen,
California, USA) for 48 h.

m6A RNA Methylation Quantification
m6A RNA methylation was quantified using the m6A RNA
Methylation Quantification Kit (Abcam, Cambridge, UK).
Total RNA was extracted from NIT-1 and b-TC-6 cells using
TRIzol reagent (Tiangen, Beijing, China). Briefly, the negative
control, positive control, and 200 ng of sample RNA were added
to the designated wells. Diluted capture antibody, detection
antibody, and diluted enhancer solution were then added to
each well. The m6A content was quantified colorimetrically; the
absorbance at 450 nm was measured using a microplate reader;
and the m6A content was calculated based on a standard curve.
The percentage of total RNA containing m6A was calculated
using the formula provided by the manufacturer.

Quantitative Real-Time PCR
Total RNA was extracted and reverse transcribed using a reverse
transcription kit (Tiangen, Beijing, China) according to the
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manufacturer’s instructions. Gene expression was analyzed by
qPCR using the SYBR Green PCR Kit (Tiangen, Beijing, China).
Expression levels of target genes were normalized to b-actin and
differences were calculated using the 2−DDCt method. The primer
sequences used were as follows:

M E T T L 3 f o r w a r d p r i m e r : 5 ′ -
CATCCGTCTTGCCATCTCTACGC-3′,

reverse primer: 5′-GCAGACAGCTTGGAGTGGTCAG-3′;
M E T T L 1 4 f o r w a r d p r i m e r : 5 ′ -

TCGACCGAAGTCACCTCCTC-3′,
reverse primer: 5′-AGGAGTAAAGCCGCCTCTGT-3′;
F T O f o r w a r d p r i m e r : 5 ′ -

GACACTTGGCTTCCTTACCTGACC-3′,
reverse primer: 5′-ACCTCCTTATGCAGCTCCTCTGG-3′;
A L K B H 5 f o r w a r d p r i m e r : 5 - ′

GCAAGGTGAAGAGCGGCATCC-3′,
reverse primer: 5′-GTCCACCGTGTGCTCGTTGTAC-3′;
M a f A f o r w a r d p r i m e r : 5 ′ -

GCTTCAGCAAGGAGGAGGTCAT-3′,
reverse primer: 5′-TCTCGCTCTCCAGAATGTGCCG-3′;
b - A c t i n f o r w a r d p r i m e r : 5 ′ -

CGTGAAAAGATGACCCAGATCA-3′,
reverse primer: 5′-CACAGCCTGGATGGCTACGT-3′.

Western Blot Analysis
NIT-1 and b-TC-6 cells were washed twice with cold PBS and
lysed in 100 ml of modified RIPA buffer (Beyotime, Shanghai,
China). Proteins were separated using SDS-PAGE and
immediately transferred to nitrocellulose membranes. The
membranes were incubated with the primary antibody
overnight and then with the appropriate secondary antibodies
for 2 h. The antibodies used were as follows: anti-METTL3 (Cat.
No.: ab195352, 1:1000; Abcam, Cambridge, UK), anti-METTL14
(Cat. No.: ab220030, 1:1000; Abcam, Cambridge, UK), anti-
RAGE (Cat. No.: 42544, 1:800; CST, Massachusetts, USA),
anti-Glo-1 (Cat. No.: NP-006699.2, 1:500; ABclonal, Wuhan,
China), anti-MafA (Cat. No.: 79737, 1:1000; CST, Massachusetts,
USA), and anti-b-actin (Cat. No.: T0022, 1:3000; Affinity,
Melbourne, Australia). The target proteins on the blots were
detected using a Tanon 5200 visualizer. The results were assessed
by densitometry using ImageJ software.

Glucose-Stimulated Insulin Secretion
As described in our previous study, cultured cells were washed
with Krebs buffer (128.8 mM of NaCl, 4.8 mM of KCl, 1.2 mM of
MgSO4, 1.2 mM of KH2PO4, 1.2 mM of CaCl2, and 10 mM of
HEPES, pH 7.4) containing 0.2% bovine serum albumin. NIT-1
cells were incubated in Krebs buffer containing 2.8 mM of
glucose for 30 min, and basal insulin secretion was measured
(22–24). Stimulated insulin secretion was measured after
incubating NIT-1 cells in Krebs buffer with 25 mM of glucose
for 60 min. An aliquot of the buffer was collected, and insulin
release was measured using an ELISA kit (Abcam, Cambridge,
UK). The glucose-stimulated insulin secretion (GSIS) index was
calculated by dividing the insulin secreted in cells exposed to
25 mM of glucose by the insulin secreted in cells exposed to
2.8 mM of glucose (24).
Frontiers in Endocrinology | www.frontiersin.org 3
Methylated RNA Immunoprecipitation
Coupled With qPCR Assay
Methylated RNA immunoprecipitation coupled with qPCR
(MeRIP-qPCR) was performed using the MeRIP kit (Bersinbio,
Guangzhou, China), according to themanufacturer’s instructions.
Briefly, total RNA was extracted from NIT-1 cells using TRIzol
reagent, and the extracted RNA was fragmented using ultrasound
treatment. The processed fragments were approximately 300 bp.
After fragmentation, 50 ml of each RNA sample (the input sample)
was stored at −80°C and the remaining portion of each RNA
sample was immunoprecipitated with an anti-m6A antibody
(Abcam, Cambridge, UK) or anti-IgG antibody. The RNA-
antibody hybridization solution was incubated with Protein A/G
magnetic beads for 1 h at 4°C in a vertical mixer. The beads were
washed three times and digested with proteinase K at 55°C for
45min. The supernatant was transferred to new RNase-free tubes,
and the RNA was purified and subjected to qPCR. The MafA
primer sequences were as follows:

Forward: 5′-CAGGAAAAGCGGTGCTGGAGG-3′,
Reverse: 5′-CGAAGCTCTGACCCCGGAAGG-3′.

RNA Stability Assay
NIT-1 cells were treated with 5 mg/ml actinomycin D (Sigma,
Missouri, USA) to inhibit mRNA transcription. After incubation
for the indicated times, the treated cells were collected, and total
RNA was extracted using TRIzol reagent. MafA mRNA expression
was measured by qPCR. b-Actin was used for normalization.

Statistical Analysis
Data are presented as the mean ± standard deviation (SD). One-
way analysis of variance followed by the Newman–Keuls test was
used to compare differences among groups. Statistical
significance was set at p < 0.05.
RESULTS

m6A RNA Modification and METTL3
Expression Levels Were Reduced in
MG-Treated Pancreatic b Cells
To explore the potential role of MG in the m6A modification in
pancreatic b cells, the m6A content in total RNA was measured
in MG-treated and untreated NIT-1 and b-TC-6 cells. As shown
in Figure 1A, the m6A levels in RNA were significantly reduced
in NIT-1 (reduced by 36.8%) and b-TC-6 (reduced by 39.3%)
cells after MG treatment, indicating an MG-induced decrease in
m6A modification in pancreatic b cells. We then evaluated the
mRNA and protein expression of the m6A methyltransferases
METTL3 and METTL14 and the demethylases FTO and
ALKBH5 in MG-treated and untreated NIT-1 and b-TC-6
cells. Following treatment with MG for 24 h, METTL3 mRNA
levels were markedly downregulated in both NIT-1 cells
(reduced by 43.5% versus the untreated control (Con),
p < 0.05) and b-TC-6 cells (reduced by 35.5% versus Con,
p < 0.05) (Figures 1B, C). In contrast, the mRNA expression
levels of METTL14, FTO, and ALKBH5 did not change
July 2022 | Volume 13 | Article 910868
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significantly (Figures 1B, C). Immunoblotting analysis showed
that MG treatment decreased METTL3 protein expression in
NIT-1 cells in a time-dependent manner (reduced by 29.4% at
4 h, 35.3% at 6 h, 50.4% at 12 h, and 65.2% at 24 h versus Con,
p < 0.05; Figure 1D). In contrast, in MG-treated b-TC-6 cells,
METTL3 protein expression was only reduced after 24 h of
treatment (reduced by 44.5% versus Con, p < 0.05; Figure 1F).
These findings suggest that MG may reduce m6A levels in
pancreatic b cells by decreasing METTL3 expression; NIT-1
cells are more sensitive than b-TC-6 cells to this MG
treatment-induced decrease in METTL3 expression. Therefore,
we selected NIT-1 cells to further characterize this effect.

Effects of METTL3 on Glucose-Stimulated
Insulin Secretion From Pancreatic b Cells
To clarify the role of METTL3 in b-cell insulin secretion, we
assessed the effects of METTL3 on GSIS from NIT-1 cells under
normal culture conditions. We suppressed the expression of
Frontiers in Endocrinology | www.frontiersin.org 4
METTL3 with siRNA (Figures 2A, B) and found that the GSIS
index was significantly reduced (by 22.2%, p < 0.05 versus si-NC,
Figure 2C). To further investigate the biological function of
METTL3, an adenovirus vector to overexpress METTL3 was
transfected into NIT-1 cells (Figures 2D, E). Upregulation of
METTL3 significantly reversed the MG-induced reduction in the
GSIS index in NIT-1 cells (by 44.2%, p < 0.05; Figure 2F).

Effects of RAGE Knockdown on METTL3
Expression and m6A RNA Levels in NIT-1
Cells
Advanced glycation end products (AGEs) exert biological effects
via specific receptors; the most well-characterized is RAGE (25).
Treatment of NIT-1 cells with MG, a major precursor of AGEs,
enhanced RAGE expression (Figures 3A, B). To investigate
whether the effects of MG on the m6A modification are
mediated by RAGE, we knocked down RAGE expression using
a siRNA (Figures 3A, B). The MG-induced reductions in
B C

D E

F G

A

FIGURE 1 | Methylglyoxal (MG) treatment decreased m6A RNA methylation and METTL3 expression levels in pancreatic b cells. (A) m6A levels in total RNA from NIT-1
and b-TC-6 pancreatic b cells treated with 1 mM of MG (MG) for 24 h and untreated control cells (Con). (B, C) mRNA expression of the m6A methyltransferases METTL3
and METTL14 and the demethylases FTO and ALKBH5 in NIT-1 (B) and b-TC-6 (C) cells treated with 1 mM of MG for 24 h as measured by qPCR. The mRNA level of
each gene was normalized to b-actin. (D–G) Immunoblotting of METTL3 and METTL14 protein expression levels in NIT-1 (D, E) and b-TC-6 (F, G) cells treated with
1 mM of MG for different time periods. b-Actin was used as an internal control. Results are presented as the means ± SD of 3–4 independent experiments. *p < 0.05.
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METTL3 expression (Figures 3A, C) andm6ARNAmodification
levels (Figure 3D) were not reversed by knockdown of RAGE.

Effects of Glo-1 Knockdown on METTL3
Expression and m6A Levels in NIT-1 Cells
Glo-1 is the main component of the glyoxalase system and is
essential for MG detoxification in all mammalian cells (7).
Similar to previous studies (26–29), MG treatment decreased
Glo-1 expression in NIT-1 cells (Figures 4A, B). Interestingly,
Glo-1 knockdown further reduced METTL3 expression
(decreased by 50.2% versus MG treated, p < 0.05; Figures 4A,
C) and m6A RNA levels (decreased by 52.3% versus MG treated,
p < 0.05; Figure 4E) in MG-treated NIT-1 cells. These effects
were attributed to decreased MG degradation and an increased
intracellular MG concentration (increased by 23.7% versus MG
treated, p < 0.05; Figure 4D).

Loss of METTL3 Attenuated the
Expression of MafA
Similar to the results observed in specific b cells in the islets of
METTL3/14 knockout mice (18), we found that MafA protein
and mRNA expression levels were markedly downregulated in
NIT-1 cells after METTL3 knockdown (decreased by 44.6% and
57.0%, respectively, versus si-NC, p < 0.05; Figures 5A–D). We
conducted rescue experiments and observed that overexpression
of METTL3 reversed the decreases in MafA protein and mRNA
expression in MG-treated NIT-1 cells (increased by 38.5% and
Frontiers in Endocrinology | www.frontiersin.org 5
39.1%, respectively, versus MG, p < 0.05; Figures 5E-G). MeRIP-
qPCR confirmed that the m6A levels in MafA mRNA were
decreased by METTL3 silencing in NIT-1 cells under normal
culture conditions (decreased by 34.6% versus si-NC, p < 0.05;
Figure 5H). The m6A levels in MafA mRNA were increased by
upregulation of METTL3 in MG-treated NIT-1 cells (increased
by 81.2% versus MG, p < 0.05; Figure 5I). We conducted an
RNA stability assay to investigate the relationship between m6A
and MafA mRNA stability. As shown in Figure 5J, MafA mRNA
levels were decreased in METTL3-silenced NIT-1 cells after
ActD treatment, indicating METTL3 knockdown led to
reduced stability of MafA mRNA. MafA mRNA decay induced
by MG treatment in NIT-1 cells was significantly ameliorated by
transfection with Ad-METTL3 (Figure 5K). These results
indicate that METTL3 regulates MafA expression in an m6A-
dependent manner.

A Change in MafA Expression Was
Associated With METTL3-Regulated GSIS
From NIT-1 Cells
To test whether METTL3 regulates GSIS from NIT-1 cells
through MafA, rescue experiments were conducted by
transfecting NIT-1 cells transfected with both si-METTL3 and
either pcDNA or pcDNAMafA (Figures 6A–C). Overexpression
of MafA (pcDNA MafA) greatly improved the decrease in GSIS
triggered by METTL3 silencing in NIT-1 cells (increased by
36.7% versus si-METTL3 + pcDNA, p < 0.05). NIT-1 cells were
B C

D E F

A

FIGURE 2 | Effects of METTL3 on GSIS from pancreatic b cells. (A, B) Immunoblot of METTL3 protein expression in NIT-1 cells transfected with METTL3 siRNA (si-
METTL3) or a nonspecific control siRNA (si-NC), which was set to 1. (C) The GSIS index of NIT-1 cells transfected with si-METTL3 or si-NC. (D, E) Immunoblot of
METTL3 protein expression in NIT-1 cells (MG), NIT-1 cells transfected with METTL3 expression adenovirus (MG+Ad-METTL3), and NIT-1 cells transfected with a
nonspecific control adenovirus (MG+Ad-NC) that were treated with 1 mM of MG for 24 h. (F) The GSIS index in NIT-1 cells was transfected with Ad-METTL3 or Ad-
NC and treated with 1 mM of MG for 24 h. Results are presented as the means ± SD of n = 3–4 independent experiments. *p < 0.05.
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transfected with Ad-METTL3 + si-NC or Ad-METTL3 + si-
MafA and the GSIS index was measured (Figures 6D–F). The
reversal of the MG-induced GSIS decrease caused by METTL3
overexpression in NIT-1 cells was abrogated by knockdown of
MafA (decreased by 42.4% compared to MG + Ad-
METTL3, p < 0.05).
DISCUSSION

Accumulation of MG in plasma has been implicated in the
development of both DM and diabetic complications (5–7).
We previously showed that plasma MG levels are markedly
enhanced in patients with newly diagnosed T2DM, indicating
that MG accumulation plays an important role in the onset of
DM and not merely its complications (2). In fact, MG levels are
increased and insulin content and GSIS were reduced in
pancreatic islets isolated from a rat model with chronic MG
infusion-induced T2DM, suggesting that MG accumulation
leads to pancreatic b-cell dysfunction in T2DM (8). Therefore,
the current study was designed to explore the regulatory
mechanisms of MG b-cell dysfunction.

Although increasing evidence suggests that m6A plays a role
in many pathological processes in eukaryotic cells, studies on its
Frontiers in Endocrinology | www.frontiersin.org 6
roles in controlling pancreatic b-cell maturity and physiological
function have just begun (14). We reported here, for the first
time, that MG treatment significantly decreased m6A levels in
NIT-1 and b-TC-6 cells. Although MG treatment had no effect
on the expression of METTL14, FTO, and ALKBH5, it obviously
reduced METTL3 mRNA and protein expression. METTL3 and
METTL14 form stable heterodimers and maintain high levels of
m6A (30). METTL3 may be more important for regulating
pancreatic b-cell function than METTL14 because the increase
in blood glucose is higher in b-cell METTL3 knockout mice than
in b-cell METTL14 knockout mice (19, 20). Therefore, the
decrease in m6A levels in b cells was attributed to MG-induced
downregulation of METTL3 expression. Silencing of METTL3
impaired GSIS from NIT-1 cells under normal culture
conditions, whereas upregulation of METTL3 in NIT-1 cells
ameliorated the MG-induced decrease in GSIS. These data
suggest that METTL3 plays a significant role in MG-induced
reductions in pancreatic b-cell m6A levels and GSIS.

AGE-RAGE interaction stimulates the generation of reactive
oxygen species and inflammation mechanisms that enhance
AGE-induced cell and tissue injury (25). MG can increase
AGE accumulation and RAGE expression, resulting in human
endothelial cell injury (31, 32). RAGE-deficient mice have
characteristics that antagonize the decrease in insulin
B

C D

A

FIGURE 3 | Effects of RAGE knockdown on METTL3 expression and m6A RNA methylation levels in NIT-1 cells. (A–C) Immunoblotting of RAGE and METTL3
protein expression in NIT-1 cells transfected with RAGE siRNA (si-RAGE) or a nonspecific control siRNA (si-NC) and treated with 1 mM of MG for 24 h. (D) m6A
levels in total RNA from NIT-1 cells treated as described for (A–C). Results are presented as the means ± SD of n = 3–4 independent experiments. *p < 0.05.
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sensitivity caused by MG administration (33). Thus, we
investigated whether the MG-induced changes in m6A levels
and METTL3 expression were associated with RAGE. However,
RAGE silencing failed to reverse the MG-induced reductions in
METTL3 expression and m6A levels in RNA, indicating that
these m6A changes are not closely related to the RAGE pathway.

As described in our previous studies (34) and others (9),
incubation of pancreatic b cells with MG dramatically increased
intracellular MG content. Further experiments were performed
to determine whether the intracellular accumulation of MG in
NIT-1 cells is involved in the m6A-related changes caused by MG
treatment. The glyoxalase system detoxifies most cellular MG,
and Glo-1 converts MG into a nontoxic hemithioacetal
metabolite using glutathione (28, 29). Upregulation of Glo-1
reduced hyperglycemia-induced carbonyl stress, AGE
accumulation, and oxidative stress in diabetic rats (35). Similar
to previous studies (26–29), Glo-1 expression was markedly
suppressed in NIT-1 cells following MG treatment, which
promoted intracellular accumulation of MG. The results
showed that Glo-1 silencing increased the intracellular
concentration of MG and further reduced METTL3 expression
and m6A RNA levels. Taken together, our findings suggest that
the decreases in METTL3 expression and m6A content in NIT-1
cells after MG exposure may be attributed, at least in part, to the
increase in intracellular MG accumulation.

In a rat model of MG-induced T2DM, MafA expression was
reduced in pancreatic tissue (8, 36). We also confirmed that MafA
Frontiers in Endocrinology | www.frontiersin.org 7
mRNA and protein expression were decreased inMG-treated NIT-
1 cells. In the present study, METTL3 silencing markedly decreased
the half-life of MafA mRNA and protein levels in NIT-1 cells,
indicating that MafA might be a direct target of METTL3.
Moreover, upregulation of METTL3 reversed the MG-induced
reduction in MafA expression. The results of the MeRIP-qPCR
assay suggested that m6A levels in MafA mRNA were increased by
METTL3 overexpression in MG-treated NIT-1 cells. MafA mRNA
decay in NIT-1 cells induced by MG exposure was significantly
ameliorated by upregulation of METTL3. Therefore, we conclude
that MafA is a critical transcription factor regulated by METTL3
during MG-induced pancreatic b-cell damage.

MafA is not only a key activator of insulin transcription but
also a master regulator of genes involved in maintaining b-cell
function (37). Knockdown of MafA with siRNA led to impaired
insulin secretion in EndoC-bH1 cells (a human-derived b-cell
line) and human islets (38). Matsuoka et al. generated transgenic
db/db mice that specifically overexpress MafA in islet b cells and
found that these mice had significantly lower plasma glucose
levels, higher plasma insulin levels, and augmented islet b-cell
mass (39). This is consistent with our observations that MafA
overexpression reversed the b-cell GSIS impairment caused by
METTL3 silencing. MafA silencing significantly abolished the
protective effects of METTL3 upregulation against GSIS
reduction in MG-treated NIT-1 cells. Taken together, these
data indicated that changes in MafA expression are associated
with METTL3-regulated GSIS in NIT-1 cells.
B

C D E

A

FIGURE 4 | Effects of Glo-1 knockdown on METTL3 expression and m6A RNA methylation levels in NIT-1 cells. (A–C) Immunoblotting of Glo-1 and METTL3 protein
expression in NIT-1 cells transfected with Glo-1 (si-Glo-1) or a nonspecific control siRNA (si-NC) and treated with 1 mM of MG for 24 h. (D) Intracellular MG levels in
NIT-1 cells were treated as described in (A–C). (E) m6A levels in total RNA from NIT-1 cells treated as described in (A–C). Results are presented as the means ± SD
of n = 3–4 independent experiments. *p < 0.05.
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FIGURE 5 | Loss of METTL3 attenuates the expression of MafA. (A–D) METTL3 and MafA protein and mRNA levels were measured by immunoblotting and qPCR,
respectively, in NIT-1 cells transfected with METTL3 siRNA (si-METTL3) or a nonspecific control siRNA (si-NC), which was set to 1. (E–G) MafA protein and mRNA
expression levels in NIT-1 cells transfected with Ad-METTL3 or a nonspecific control adenovirus (Ad-NC) and treated with 1 mM of MG for 24 h were measured by
immunoblotting and qPCR, respectively. (H, I) m6A MafA mRNA levels as detected by MeRIP-qPCR in NIT-1 cells transfected with si-METTL3 or si-NC, which was set to
1 (H), or Ad-METTL3 or Ad-NC and treated with 1 mM of MG for 24 h (I). (J, K) MafA mRNA as measured by qPCR in NIT-1 cells transfected with si-METTL3, si-NC,
Ad-METTL3, or Ad-NC and treated with ActD to block transcription. Results are presented as the means ± SD of n = 3–4 independent experiments. *p < 0.05.
B C

D E F

A

FIGURE 6 | Changes in MafA expression were associated with METTL3-regulated GSIS from NIT-1 cells. (A) Immunoblot of MafA expression in NIT-1 cells
transfected with si-METTL3 + pcDNA or si-METTL3 + pcDNA MafA. (B) Quantification of the immunoblot in (A). (C) The GSIS index of the cells described in (A). (D)
Immunoblot of MafA expression in NIT-1 cells transfected with Ad-METTL3 + si-NC or Ad-METTL3 + si-MafA and treated with 1 mM MG for 24 h. (E) Quantification
of the immunoblot in (D). (F) The GSIS index of the cells described in (D). Results are presented as means ± SD of n = 3‐4 independent experiments. *p < 0.05.
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Our study provides new insights into the cause of islet b-cell
dysfunction in patients with diabetes. The decrease in pancreatic
b-cell m6A levels could be partly attributed to MG accumulation
in pancreatic islets during DM development. Increasing METTL3
expression in islet b cells may be a novel method for ameliorating
MG-induced diabetic b-cell dysfunction. However, further animal
and clinical studies are required to confirm this finding.
CONCLUSION

In summary, the present study demonstrated, for the first time,
the connection betweenMETTL3-regulated m6A RNA levels and
MG-induced pancreatic b-cell insulin secretion dysfunction. We
found that treatment with MG reduced the m6A levels in b cells
by decreasing METTL3 expression. Upregulation of METTL3
ameliorated MG-induced impairment of insulin secretion in
pancreatic b cells by regulating MafA expression.
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