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Abstract

Alzheimer’s disease (AD) is associated with disturbances in blood glucose regulation, and type-2 

diabetes elevates the risk for dementia. A role for amyloid-β peptide (Aβ) in linking these age-

related conditions has been proposed, tested primarily in transgenic mouse lines that overexpress 

mutated amyloid precursor protein (APP). Because APP has its own impacts on glucose 

regulation, we examined the BRI-Aβ42 line (“Aβ42-tg”), which produces extracellular Aβ1–42 in 

the CNS without elevation of APP. We also looked for interactions with diet-induced obesity 

(DIO) resulting from a high-fat, high-sucrose (“western”) diet. Aβ42-tg mice were impaired in 

both spatial memory and glucose tolerance. Although DIO induced insulin resistance, Aβ1–42 

accumulation did not, and the impacts of DIO and Aβ on glucose tolerance were merely additive. 

Aβ42-tg mice exhibited no significant differences from wild-type in insulin production, body 
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weight, lipidemia, appetite, physical activity, respiratory quotient, an-/orexigenic factors, or 

inflammatory factors. These negative findings suggested that the phenotype in these mice arose 

from perturbation of glucose excursion in an insulin-independent tissue. To wit, cerebral cortex of 

Aβ42-tg mice had reduced glucose utilization, similar to human patients with AD. This was 

associated with insufficient trafficking of glucose transporter 1 to the plasma membrane in 

parenchymal brain cells, a finding also documented in human AD tissue. Together, the lower 

cerebral metabolic rate of glucose and diminished function of parenchymal glucose transporter 1 

indicate that aberrant regulation of blood glucose in AD likely reflects a central phenomenon, 

resulting from the effects of Aβ on cerebral parenchyma, rather than a generalized disruption of 

hypothalamic or peripheral endocrinology. The involvement of a specific glucose transporter in 

this deficit provides a new target for the design of AD therapies.
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1. Introduction

Alzheimer’s disease (AD) is classically characterized by the histopathologic presence of 

amyloid-β plaques and tau tangles within the AD brain, but there is a growing appreciation 

for associated somatic pathologies (Folch et al., 2018). For instance, the prevalence of either 

impaired glucose tolerance or type-2 diabetes (T2D) is higher in patients with AD (Janson et 

al., 2004; Ohara et al., 2011), although this finding is not consistent across cohorts 

(Thambisetty et al., 2013). Despite this tendency toward elevated blood glucose 

concentration ([Glc]b), patients with AD exhibit a decrease in cerebral metabolic rate of 

glucose (CMRglc) (Gabel et al., 2010; Hoffman et al., 2000). Although T2D is also 

associated with diminished CMRglc (Baker et al., 2011), this disorder does not appear to 

exacerbate accumulation of amyloid-β peptide (Aβ) (Peila et al., 2002; Roberts et al., 2014), 

suggesting that T2D does not predispose to AD.

The mechanism by which diabetic conditions cause a decline in CMRglc has been 

investigated in animal models and a limited number of human studies. A considerable 

number of studies have documented diminished expression and/or activity of glucose 

transporters in brain endothelium in response to chronic hyperglycemia and/or diet-induced 

obesity (DIO) (Cornford et al., 1995; Gjedde, 1981; Jais et al., 2016; Lutz and Pardridge, 

1993; Mooradian and Morin, 1991; Pardridge et al., 1990). In most cases, this phenomenon 

has been traced to a reduction in endothelial expression of glucose transporter 1 (GLUT1), 

the primary glucose transporter in cerebrovasculature. Whereas other tissues are bathed in 

high glucose under diabetic conditions, the brain—owing to the restrictions of the blood-

brain barrier (BBB)—suffers a reduction in CMRglc when there is a reflexive 

downregulation of glucose transporters in the cerebrovasculature (Baker et al., 2011; Boyle 

et al., 1995; Roberts et al., 2014). Attempts to characterize transporter levels or function in 

AD and its models have been less consistent and detailed.
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To explore relationships between AD and somatic glucose regulation, we probed the 

physiological status of a mouse model that accumulates Aβ in the CNS. Previous studies of 

these parameters have relied primarily on models of AD that overexpress mutant forms 

amyloid precursor protein (APP) and other APP peptide fragments formed from proteolytic 

cleavage. Our studies (Kulas et al., 2019) and those of others (Botteri et al., 2018; Needham 

et al., 2008; Tu et al., 2012) indicate that APP has direct effects on insulin and glucose 

regulation independent of Aβ. Because the vast majority of AD cases are sporadic and 

derive from accumulations of Aβ without APP mutation or overexpression, we investigated 

glucose regulation in a model that accumulates Aβ1–42 alone: the BRI-Aβ42 mouse line 

(McGowan et al., 2005). For comparison with circumstances in which metabolic syndrome 

prevails, we invoked DIO through feeding “western” diet. We find that overproduction of 

human Aβ1–42 in mice is sufficient to produce reductions of peripheral glucose tolerance and 

CMRglc. This glucose perturbation was independent of insulin resistance, insulin deficiency, 

obesity, an-/orexigenic hormones, and overt inflammatory events. Through a diverse, 

multifaceted set of experiments, we conclude that the elevation of blood glucose levels 

resulting from Aβ production is explained primarily by reduced transport of glucose into the 

brain due to aberrant subcellular localization of GLUT1 in brain parenchyma with no 

apparent involvement of vascular transporters.

2. Materials and methods

2.1. Human tissue

Specimens were obtained from a brain bank maintained locally which catalogs and 

characterizes autopsy material from the University of Arkansas for Medical Sciences UAMS 

Department of Pathology and the Central Arkansas Veterans Healthcare System Pathology 

Service. They were acquired from autopsies of individuals diagnosed as AD (without 

Parkinson’s disease or mixed Lewy body pathology) or age-matched controls (AMC), as per 

National Institute on Aging-Reagan guidelines (Montine et al., 2012), which incorporate 

consortium to establish a registry for Alzheimer’s disease evaluation of neuritic plaque 

density and Braak & Braak staging of neurofibrillary tangles. Samples were obtained by 3-D 

dissection of autopsy-provided material from left prefrontal cortex, which were flash frozen 

in N2 (l) and stored at −80 °C. Specimens did not qualify as human subject research as per 

US Department of Health and Human Services Exemption 4. The N = 10 for each group. 

Average age of the AD cases was 81.1 year old, and they were 40%/60% female/male; the 

AMC cases were 83.0 year old and 30%/70% female/male; each group was 9:1 

Caucasian:African-American. Postmortem intervals were 5 and 9 hours for AD and AMC, 

respectively.

2.2. Animals

Each protocol was approved by the Institutional Animal Care and Use Committee of the 

Central Arkansas Veterans Healthcare System (CAVHS) or of the UAMS. Mice were housed 

in a 12-h light/dark cycle at 23°C at the AAALAC-certified CAVHS vivarium unless 

otherwise noted. A normal diet (ND) and water was provided ad libitum (kcal: 22% protein, 

16% fat, and 62% carbohydrates; LabDiet JL Rat and Mouse/6FOvals w/Hysil; 5k67-RHI-

W 30). Mice were weaned at age 25 days or older and housed at a cage density of ≥82 cm/
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mouse of floor space. Both sexes were evaluated in some assessments, but females showed 

no effect of genotype or diet, so only data from male mice are presented here.

Hemizygous BRI-Aβ42 (Aβ42-tg) transgenic mice [(McGowan et al., 2005); akin to 

MMRRC stock: #34842] were provided by Dr Todd Golde (University of Florida). The 

transgene is a fusion construct in which the Aβ1–42 sequence replaces the C-terminal 23 

amino acids of the BRI British dementia protein, directing a proteolytic liberation of Aβ1–42 

into the extracellular space, without overexpression of APP. The prion promoter construct 

used in this line results in transgene expression primarily in the CNS (Borchelt et al., 1996), 

and plasma levels of Aβ in the BRI-Aβ42 line are ~100-fold below those in an APP-

transgenic line (Levites et al., 2006). All analyses were performed on mice hemizygous for 

the transgene. With the exception of the adrenalectomy study, all mice were backcrossed to 

C57BL/6N wild-type (WT, Harlan) to produce WT and Aβ42-tg littermates that were Nnt+/+ 

(as C57BL/6J are Nnt−/−). Adrenalectomized mice were obtained from the Jackson 

Laboratory (Bar Harbor, ME) in a stock that had been maintained in C57BL/6J (JAX stock: 

#007182). Genotyping was performed by PCR for the transgene with the following primers: 

5′- AAG GCT GGA ACC TAT TTG CC −3′ and ‘5- TAG TGG ATC CCT ACG CTA TG 

−3’ (307-bp product). A T-cell receptor gene was used in a positive-control reaction with the 

following primers: 5′- CAA ATG TTG CTT GTC TGG TG-3′ and 5′- GTC AGT CGA 

GTG CAC AGT TT −3’ (200 bp).

2.3. Diet-induced obesity

To test for interactions between the glycemic effects of Aβ and those of DIO, we feed some 

mice western diet (WD; EnvigoTeklad TD.88137; kcal: 15% protein, 42% fat, 43% 

carbohydrate), an obesogenic nutritional source high in sucrose (34% by weight) and milk 

fat. Mice were split into four experimental groups: WT ND, WT WD, Aβ42-tg ND, and 

Aβ42-tg WD. At week 0, all mice were 6 week old ±3 days. Glucose tolerance tests (GTTs) 

and insulin tolerance tests (ITTs), both detailed below, were administered on alternating 

weeks to reduce handling stress effects. After the first ITT on week 1, half of each litter had 

the normal chow diet replaced with the WD. They were maintained on the diet until 

euthanasia at diet week 20. In addition to GTTs and ITTs, these mice were used for data on 

insulin production, hypothalamic gene expression, and circulating and tissue levels of 

hormones and cytokines.

2.4. Glucose, insulin, and pyruvate tolerance testing

Glucose tolerance was assessed through an intraperitoneal administration of glucose 

followed by intermittent monitoring of blood glucose concentration ([Glc]b) for 120 

minutes. Before glucose tolerance testing, mice were fasted (with drinking water provided) 

for 5 h. The fasting was conducted primarily during the mornings, typically starting between 

8 am and 9 am, with GTTs beginning between 1 pm and 2 pm. Mice were weighed, and 2 

g/kg of D-(+)-glucose (Sigma, St. Louis, MO) in sterile water (Baxter Healthcare Inc, 

Deerfield, IL) was administered (190–230 μL total volume) intraperitoneally. The glucose 

solution was filtered using a 0.24-μm syringe filter before use. An AlphaTRAK 2 

glucometer (Zoetis Inc, Kalamazzo, MI) was used to sample blood from the tip of the tail 

just before injection and at 15, 30, 60, and 120 minutes after injection. Total area under the 
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curve (tAUC) was calculated from a baseline of 0 mg/dL using the trapezoid rule. 

Incremental area under the curve (iAUC) was calculated by rendering the y-axis as the 

difference of each time point from the initial glucose reading for a given animal. Pyruvate 

tolerance testing was performed in a similar manner using 1 g/kg of 10% sodium pyruvate 

diluted in phosphate-buffered saline (PBS).

Insulin tolerance testing was performed in a similar manner as GTTs; however, mice were 

not fasted unless otherwise indicated. Insulin (Humulin R; Lily USA, Indianapolis, IN) was 

diluted in saline (Molecular Biologicals International, Irvine, CA) and administered ip at 

0.35 U/kg. Because insulin evokes a downward deflection in [Glc]b, the integral reported is 

area over the curve (AOC), calculated by rendering the y-axis as the absolute value of the 

difference of each time point from the initial glucose reading for a given animal.

2.5. Comprehensive lab animal monitoring system (CLAMS)

CLAMS cages (Oxymax; Columbus Instruments, Columbus OH) were used to assess several 

aspects of activity and metabolism, including food consumption and indirect calorimetry. A 

unique cohort of 13- to 17-week-old Aβ42-tg mice and their WT littermates, distinct from 

those used in other assays, was evaluated in this paradigm. Mice were housed individually 

inside CLAMS cages at the UAMS facility with water and food ad libitum under a 14/10 

hours light/dark cycle. The mice were acclimated for 21 hours before starting data 

collection, and data were collected for 48 hours. Body weights were obtained before and 

after the CLAMS session. The instrument simultaneously measures CO2, O2, food 

consumption, and 3-D physical movement. Energy expenditure and respiratory exchange 

ratio were calculated from the gas measurements. Activity was measured as the number of 

infrared beam breaks. The beams were stationed in the Z dimension to create two X-planes, 

one above the other, allowing inclusion of movement in the Z direction. Grooming and 

ambulation were recorded in aggregate based on the number beam breaks in the lower plane. 

Ambulation was differentiated by consecutive beam breaks in the lower plane and also 

recorded. Beam breaks in the upper plane (Z-axis) accounted for rearing and jumping 

movements. Sleep was defined by relatively prolonged periods of inactivity and has been 

validated with an 88%–94% agreement with electroencephalogram and video analysis (Pack 

et al., 2007).

2.6. Morris water maze (MWM)

A unique cohort of mice housed at the UAMS facility was assessed for spatial memory via 

MWM as described previously (Alexander et al., 2018). At 10 weeks of age, 14 mice per 

genotype were randomized into two groups: ND or WD (above); groups of Aβ-tg mice and 

WT mice were all from the same litters. At 16 weeks of age, the mice were trained to locate 

a clearly marked platform (visible-platform training, days 1 and 2), confirming that groups 

were similar regarding swimming and learning ability. Start locations were changed for each 

trial. Swimming paths are recorded with an EthoVision XT video tracking system (Noldus 

Information Technology). Mice were subsequently trained to locate the platform hidden 

beneath the surface of the opaque water (hidden-platform training, days 3–5). Mice were 

trained 4–8 times a day for 5 days. After training, a probe trial was conducted on day 6 

comprising 60 seconds without a platform; the outcome measure was time spent in each 
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quadrant of the pool. During the course of this testing, animals were maintained on their 

respective diets.

2.7. Assessment of adrenalectomized mice

To evaluate contributions of the hypothalamic-pituitary-adrenal (HPA) axis to the glycemic 

effects of Aβ, adrenalectomy was performed on BRI-Aβ42 mice [B6.Cg-tg(Prnp-ITM2B/

APP695*42) A12Emcg/J; stock no. 007182] and WT littermates at 5.5 weeks of age by the 

Jackson Laboratory (Bar Harbor, ME); unoperated littermates were provided at the same 

time (6 per group). They were maintained on an ad libitum ND, and adrenalectomized mice 

were provided a 0.9% saline solution to counter the effects of mineralocorticoid deficiency 

on kidney function (Bristol and Drill, 1952). The animals were shipped to the CAVHS 

facility and allowed to acclimate for one week before testing. In one-week intervals, they 

underwent GTTs, ITTs, and a GTT in which blood was collected via retro-orbital eye bleed 

to measure insulin response to glucose challenge at 0 and 30 minutes. The following week 

all animals were euthanized. One Aβ42-tg adrenalectomized and two WT adrenalectomized 

mice died during the second GTT. The DetectX Corticosterone Enzyme Immunoassay Kit 

(Arbor Assays) was used to compare circulating levels of glucocorticoids in serum of 

adrenalectomized mice at the time of euthanasia.

2.8. Tissue collection

Mice were rapidly anesthetized using intraperitoneal injection of 250 mg/kg sodium 

pentobarbital (Nembutal, Oak Pharmaceuticals or Diamondback Drugs). Blood was taken 

from the left and right ventricles of the heart in a heparinized syringe and placed on ice. A 

50 μL aliquot was mixed with protease inhibitors. Blood was then centrifuged at 7500g for 

15 minutes at 4 °C, and the resulting serum layer was carefully pipetted and stored at −80 

°C. Mice were perfused with heparinized (50 U/mL) saline for approximately 5 minutes, 

when clear saline solution was leaving the body cavity and the liver appeared to blanch. The 

brain was extracted, and the hypothalamus, right cortex, and right hippocampus were flash 

frozen in liquid nitrogen. The left half brain was fixed by immersion in 10% formalin.

2.9. Comprehensive metabolic panel

The Piccolo Comprehensive Metabolic Panel and Piccolo Xpress chemistry analyzer were 

used to assess the concentration of alanine aminotransferase, albumin, alkaline phosphatase, 

amylase, calcium, creatinine, glucose, phosphorous, potassium, sodium, total bilirubin, total 

globulin, total protein, and blood urea nitrogen in heparinized whole blood. Blood was 

collected during euthanasia into a sodium heparinized tube, and 100 μL was added to each 

panel disc.

2.10. ELISA for insulin and Aβ

Serum was collected from the tail vein of the cohort of mice used for DIO analysis, 

including the corresponding ND animals (above). Insulin levels were also assessed in eye 

bleeds from the cohort used for adrenalectomy, including the unoperated animals (above). 

Mice were fasted and injected with glucose as per the GTT assays. Blood was collected 

before and 30 minutes after injection, and it was allowed to clot before collection of serum 
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by centrifugation. Insulin was measured using an Insulin Mouse Ultrasensitive ELISA 

(Crystal Chem Inc) as per manufacturer’s instructions for the wide range assay (0.1–12.8 ng/

mL). Standards and samples were assayed in duplicate. Data points for individual samples in 

which a coefficient of variability between duplicates was greater than 20% were excluded. 

Aβ1–42 was extracted from brain, plasma, and other tissues in three steps to yield fractions 

soluble in buffered saline, Triton X-100, and formic acid (McDonald et al., 2012). The 

peptide was measured in each fraction by Quantikine ELISA Kit (R&D Systems), as per 

manufacturer’s instructions.

2.11. Cerebral metabolic rate of glucose (CMRglc) measurements

To test whether Aβ42-tg mice showed deficits in CMRglc as seen in other AD mouse models 

and AD itself, we assayed the accumulation of [3H]2-deoxyglucose (2-DG) and its primary 

metabolite in the cerebral cortex of Aβ42-tg mice and WT littermates. Unanesthetized 15-

week-old mice were acclimated to a restraint tube by 45-second restraint sessions conducted 

daily for one week. On the day of assay, 100 μCi/kg [3H]2-DG and 10 μCi/kg [14C]sucrose 

was injected into the lateral tail vein. Blood was collected from a separate (distal) tail site at 

3, 7, 11, and 15 minutes after injection into heparinized tubes. Mice were euthanized via 

decapitation immediately after the final time point, trunk blood was collected in a tube 

containing heparin, and brain was quickly dissected and snap-frozen. Both hemispheres of 

the cerebral cortex were homogenized in radio-immunoprecipitation (RIPA) buffer (150 mM 

NaCl, 50 mM Tris HCl, 1 mM EDTA, 1% Triton X-100, 0.5% sodium deoxylcholate, 0.1% 

SDS, pH 7.4) and extracted with 65% ethanol. Liquid scintillation counting was used to 

measure cpm of 3H and 14C in plasma and in the soluble and insoluble fractions of tissue. 

CMRglc was calculated based on the study by Vallerand et al. (1987). Specifically, the 

extracellular volume (in μL/mg) was calculated by dividing the amount of brain 14C (dpm 

per milligram of tissue) by the amount of 14C in blood (dpm per μL of plasma) at the time of 

death. The amount of extracellular [3H]2-DG (dpm per mg of tissue) was obtained by 

multiplying the extracellular volume (in μl per mg of tissue) by the blood concentration of 

[3H]2-DG (dpm per μl of plasma) at the time of death. This blood concentration of [3H]2-

DG (dpm per mg of tissue) was subtracted from the total concentration to obtain the 

parenchymal concentration of [3H]2-DG (dpm per mg of tissue).

2.12. Quantitative real-time PCR

Tissue was homogenized in Qiagen RLT buffer using a Lysing Matrix D tube (MP 

Biomedicals; component of FastRNA Green Kit) and the FastPrep-24 instrument (MP 

Biomedicals) on setting “6” for 2 × 20 seconds. Lysate was centrifuged at 16,300g for 1 

minute. Samples were transferred to a new tube and spun again for 3 minutes before 

carefully adding supernatant to a gDNA Eliminator spin column of the RNeasy Plus Mini 

Kit (Qiagen), and the RNA was extracted following the kit instructions. The quality of the 

RNA was assessed using the Agilent 2100 Bioanalyzer. All samples had an RNA integrity 

number greater than 7. A two-step RT-PCR protocol was used; RT (cDNA synthesis) was 

completed using the ImProm-II Reverse Transcription System (Promega) and random 

hexamer primers. A portion of each sample was pooled and serially diluted to form a 

standard curve for absolute quantification. Samples were diluted to fall within the center of 

the standard curve and combined with primers (Supplemental Table 1) and SYBR Green 
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PCR Master Mix (Applied Biosystems) for amplification and detection using an ABI 

7900HT Fast Real-Time PCR System. Rplp0, reported to be a stably expressing transcript in 

the hypothalamus under various diabetic conditions (Li et al., 2014), was used as a reference 

gene in all experiments. All reactions used the following three-stage protocol: Incubation/

denaturation: 50 °C for 2:00/95 °C for 10:00; PCR amplification for 50 cycles: 95 °C for 

0:15, 55 °C for 0:15, and 72 °C for 1:00; and melt curve: 95 °C for 0:15, 60 °C for 1:00, and 

95 °C for 0:15.

2.13. GLUT1 determinations by SimpleWes

Glucose transport and utilization can be dramatically affected by changes in the subcellular 

distribution from intracellular stores to the plasma membrane. To determine if this 

contributed to differences in glucose uptake in AD or in Aβ42-tg mice, we optimized 

conditions for separation of plasma membrane fractions and for resolution/detection of 

various GLUT isoforms. Tissue from cerebral cortex of human subjects and most mouse 

brains was pulverized in with mortar and pestle chilled in liquid nitrogen, and the powder 

was mixed to homogeneity.

For a subset of mice, brain microvessel isolates were prepared, making use of both cerebral 

hemispheres. After dissection from the skull and other brain regions, the hemispheres were 

carefully stripped of meningeal tissue while in ice-cold PBS, then Dounce-homogenized on 

ice in 0.6 mL Buffer D [2.7 mM KCl, 1.46 mM KH2PO4, 136.9 mM NaCl, 8.1 mM 

Na2HPO4, 5 mM D-glucose, 1 mM sodium pyruvate, 0.9 mM CaCl2, 0.5 mM MgCl2, and 5 

mg/mL protease inhibitors (Pierce Mini Tablets, EDTA-free), pH 7.4]. The homogenate was 

mixed 1:1 with 30% Ficoll and centrifuged at 5800 × g for 15 minutes at 4 °C. The 

supernatant was discarded, and the pellet was resuspended in 1 mL of another 1:1 mixture of 

Buffer D and 30% Ficoll. After another centrifugation at 5800 × g for 15 minutes at 4 °C, 

the supernatant was discarded and the pellet was resuspended in Buffer D and centrifuged at 

1000 × g for 3 minutes at 4 °C. The supernatant was discarded, and the pellet was stored at 

−80 °C.

Pulverized tissue, microvessel isolates, and cultured astrocyte pellets were processed via the 

Minute Plasma Membrane Protein Isolation and Cell Fractionation Kit as per the 

instructions from the manufacturer (Invent Biotechnologies, Plymouth MN) to separate 

plasma membrane from the remainder (cytosol plus organelle membranes). We confirmed 

identity of the fractions by exclusive detection of plasma membrane calcium ATPase, 

sarcoplasmic/endoplasmic calcium ATPase, and β-actin in their expected fractions.

Fractions were analyzed for GLUT1 protein using the SimpleWes capillary electrophoresis 

instrumentation (Protein Simple, San Jose CA). Fractions from mouse cortical preparations 

were loaded at 1.4 mg/mL; anti-GLUT1 antibody (rabbit monoclonal EPR3915; abcam, 

Cambridge MA) was loaded at a 1:50 dilution. Fractions from mouse microvessel isolates 

were loaded at 0.2 mg/mL, and remainder fractions were loaded at 0.47 mg/mL. For human 

samples, plasma membrane fractions were loaded at 1.8 mg/mL, and remainder fractions 

were loaded at 0.32 mg/mL; antibodies were loaded recognizing GLUT1 (1:50), −3 (1:100), 

or −4 (1:20). For samples from astrocyte cultures, plasma membrane fractions were loaded 

at 0.22 mg/mL, and remainder fractions were loaded at 0.41 mg/mL; anti-GLUT1 antibody 
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was loaded at a 1:50 dilution. Gaussian peak integration was performed on the 

chemiluminescence values along the length of the capillaries, with peaks at ~45 kDa and 

~55 kDa analyzed separately for GLUT1.

2.14. Primary cultures of astrocytes

Mixed-glia cultures were established from neonatal Sprague-Dawley rats as described 

previously (McMullan et al., 2012). The cultures were maintained in the Minimal Essential 

Medium (Earle’s salts) supplemented to 10% with fetal bovine serum for 10–14 days. 

Microglia were removed by physical dislodgement, including aggressive lavage. Astrocytes 

were then trypsinized, subcultured in 15-cm plates in the Minimal Essential Medium /fetal 

bovine serum. Characterization of these cultures with cell type-specific antibodies 

demonstrated them to be ≥95% astrocytes (Supplement Fig. 1). The cultures were treated 

after they had reached 90% confluency. Lysates were prepared with the Minute Plasma 

Membrane Protein Isolation and Cell Fractionation Kit as per the instructions from the 

manufacturer (Invent Biotechnologies, Plymouth MN) to produce plasma membrane and 

cytosolic fractions.

Aβ1–42 (Anaspec) was dissolved at 1 mM 4 hours in hexafluoroisopropanol, aliquoted, and 

evaporated to dry; it was stored under desiccant at −80 °C. For aggregation, an aliquot was 

dissolved at 2 mM in anhydrous dimethylsulfoxide, and then diluted to 150 μM in PBS at 4 

°C. The peptide was incubated in PBS at 4 °C for 24 hours before use.

2.15. Immunofluorescence

Primary astrocyte cultures were plated onto glass coverslips coated with rat tail collagen. 

After treatment, the cultures were fixed for 15 minutes in ice-cold PBS containing 4% 

paraformaldehyde, followed by three washes with PBS. Some cultures were permeabilized 

by application of PBS containing 0.3% Tween-20 at room temperature for 30 minutes, 

followed by three washes with PBS; other cultures were subjected immediately to blocking 

without permeabilization. Blocking comprised exposure for 1 hour to blocking solution: 

PBS containing 1% fatty acid-free bovine serum albumin. Primary antibody against GLUT1 

(1:300; GT14-A, Alpha Diagnostic International, San Antonio TX), glial fibrillary acidic 

protein (1:1000; ab53554, Abcam), Iba1 (1:1000; 013-27,691, FUJIFILM Wako), pan-

neuronal marker (1:25; MAB2300, Millipore-Sigma), phosphotyrosine (1:100; 05-947, 

Millipore-Sigma), S100B (1:200; NCL-S100p, Novocastra), or VE-cadherin (1:25; 

#36-1900, ThermoFisher) was applied for 2 hours at room temperature in blocking buffer, 

followed by three washes with PBS. Secondary antibodies were Alexa Fluor 488 donkey 

anti-rabbit (for GLUT1, S100, and VE-cadherin) and Alexa Fluor 594 donkey anti-goat (for 

GFAP) or anti-mouse (for Iba1, pan-neuronal, and phosphotyrosine), applied for 1 hour at 

room temperature in blocking buffer (1:500), followed by three washes with PBS. 

Coverslips were mounted onto microscope slides with ProLong Gold Antifade Mountant 

containing DAPI (ThermoFisher). Images were acquired with a Nikon Eclipse Ti using an 

Illuminator Sola and excitation/emission (nm) pairs of 360/460 (DAPI), 480/535 (AF488), 

and 560/630 (AF594). The camera was an Andor Zyla 5.5 sCMOS. For quantitative 

comparisons of GLUT1 across treatment conditions, consistent illumination intensity and 

acquisition times were used for all images.

Hendrix et al. Page 9

Neurobiol Aging. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.16. Statistical analysis

For comparisons between two groups, Student’s t-test with Welch’s correction was used. 

One-way ANOVA with Bonferroni post hoc was used in assessing groups of 3 or more. 

Two-way ANOVA with Bonferroni post hoc was used in assessing multiple comparisons 

over time. Grubb’s test was used to assess for outliers using GraphPad’s online assessment 

tool (https://www.graphpad.com/quickcalcs/Grubbs1.cfm). All statistics were carried out 

using GraphPad Prism 7 software. Enzyme-linked immunosorbent assay (ELISA) curves 

were assessed using a four-parameter logistic regression curve (https://www.myassays.com/

four-parameter-logistic-curve.assay).

3. Results

3.1. Spatial memory is impaired in Aβ42-tg mice

Mouse models of Aβ accumulation in the CNS have shown impairments in spatial memory 

consistent with hippocampal deficits; several such models have also shown aberrations in 

regulation of peripheral glucose. However, many of these models rely on overexpression of 

APP, which appears to have effects on insulin and glucose dynamics itself. To exclude such 

contributions, we examined glucose regulation in the BRI-Aβ42 mouse (“Aβ42-tg”), which 

releases Aβ1–42 into CNS interstitial fluid without an APP transgene. This line also avoids 

any Aβ-independent effects of APP mutation; the latter may be more relevant for modeling 

familial AD than sporadic AD. Aβ42-tg showed a deficit in spatial memory. Specifically, 

WT mice trained in the MWM showed a preference for the target quadrant during a probe 

trial (removal of escape platform after training), whereas their Aβ42-tg littermates did not 

(Fig. 1).

3.2. Aβ overproduction influences systemic glucose homeostasis

Compared with WT littermates, Aβ42-tg mice displayed impairments in an intraperitoneal 

GTT. Blood glucose levels ([Glc]b) in Aβ42-tg mice spiked to higher levels and were slower 

to recover, resulting in an increase in tAUC (Fig. 2A, B). After a 5-h fast, Aβ42-tg mice also 

had a higher basal [Glc]b and trended toward a higher basal [Glc]b in the nonfasted (fed) 

state (Fig. 2C, D). The dynamic range of the response was calculated by subtracting the 

basal [Glc]b for each mouse individually to arrive at an iAUC. This value was also elevated 

significantly in Aβ42-tg mice (Supplement Fig. 2). The following week, an ITT was 

performed to measure insulin sensitivity in the same cohort of mice. Because an ITT detects 

a decrease from baseline, integration of this parameter was performed as AOC. Responses in 

ITTs were equivalent in both genotypes (Fig. 2E, F). Likewise, no differences were detected 

in pyruvate tolerance tests, a measure of hepatic gluconeogenesis (Supplement Fig. 3).

3.3. DIO and Aβ have only additive effects on glucose intolerance

To test for potential interactions of Aβ with the diabetes-inducing aspects of obesity, WT 

and Aβ42-tg mice were subjected to DIO through feeding a “WD.” DIO was manifest as 

significant weight gain in all mice fed WD, regardless of genotype (Fig. 3A). DIO was also 

accompanied by hyperlipidemia and hypercholesteremia; total blood cholesterol levels were 

61.5 ± 8.5 mg/dL in ND mice and 185.5 ± 32.9 mg/dL in DIO mice (mean ± SEM). 
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Impairments in GTTs and ITTs were observed in all DIO mice (Fig. 2A, B). Glucose 

intolerance developed over several weeks in DIO mice but was consistently present in Aβ42-

tg mice (Fig. 3B). Glucose tolerance was even further disrupted in DIO Aβ42-tg mice, 

generally appearing as an additive effect of DIO and Aβ expression. Glucose levels in Aβ42-

tg mice were significantly different from WT at 60 minutes on either diet, but DIO had a 

stronger influence on glycemic rise overall. Basal [Glc]b was elevated in DIO Aβ42-tg mice 

in both fasting and fed states (Fig. 2C, D), consistent with metabolic syndrome and incipient 

diabetes. DIO did not alter the levels of Aβ in any tissue assayed (mean: 8.9 ng/mg protein 

in cerebral cortex; 0.45 nM in plasma). DIO produced insulin resistance in both WT and 

Aβ42-tg, reflected in the small AOC (Fig. 2E, F). By contrast, overexpression of Aβ1–42 did 

not impair insulin tolerance (AOC) in either dietary condition (Fig. 2F).

We also tested the effects of DIO on memory performance. Consistent with prior reports 

(Jeon et al., 2012; Kasper et al., 2018; Lu et al., 2011; Mi et al., 2017), impaired 

performance was observed in DIO mice (Fig. 1). A combined effect of DIO and Aβ 
expression could not be detected because either alone removed essentially all preference for 

the target quadrant. Swim speed and distance swum were not impacted by diet or genotype. 

It is noteworthy that the mice began training at 16 weeks of age, at a time when soluble 

Aβ1–42 is abundant in the CNS but approximately 7 months before the development of 

cerebral plaques.

3.4. Insulin production is not impaired in Aβ42-tg mice

Blood was collected during the course of GTT on week 6 of the DIO study. Samples were 

taken immediately before (i.e., after a 5-h fast) and 30 minutes after an i.p. glucose 

administration, and insulin levels were measured in serum by ELISA. Mice fed an ND had 

similar fasting (T0) insulin levels and responded to glucose with an elevation (Table 1); no 

significant differences were observed between genotypes. DIO mice of both genotypes 

showed hyperinsulinemia and poor responses to glucose. There was no significant difference 

between genotypes.

3.5. Hypothalamic control of glucose homeostasis appeared unaltered in Aβ42-tg mice

The hypothalamus plays a key role in the coordination of circulating glucose, appetite, 

energy utilization, and fat metabolism. It is acted upon by both neurologic signals and 

humoral/endocrine factors; its output is similarly diverse. Based on the alterations in glucose 

handling revealed by the GTT, we chose to assess feeding behavior, activity cycles, sleep 

patterns, and energy metabolism using CLAMS cages.

Mice were acclimated in CLAMS cages for 20 h before 48 h of data collection during a 

14/10-h light/dark period. Thirteen-week-old Aβ42-tg mice consumed the same amount of 

food and were not different in body weight compared with their WT counterparts (Fig. 4A). 

Physical activity (motility) was equivalent between WT and Aβ42-tg (Fig. 4B, a–b), and 

extrapolation of the beam breaks used for this assessment indicated no differences in time 

sleeping (Fig. 4B, C). The WT and transgenic mice did not differ by the amount of oxygen 

consumed or carbon dioxide expelled (Fig. 4C, a–d). Energy expenditure and respiratory 
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exchange ratio (reliance on carbohydrates for energy) did not differ by genotype (Fig. 4C, e–

f).

A biochemical assessment of hypothalamic function may be achieved through measures of 

expression of relevant neuropeptides. The peptides themselves were below the level of 

reliable measurement without pooling tissue from multiple animals, so we analyzed mRNA 

in hypothalamic homogenates using qRT-PCR. The expression levels of Agrp, Pomc, and 

Crh and Ptgs2 in 28-week-old mice were equivalent across genotype (Fig. 5A). Transcripts 

of receptors and signaling proteins Insr, Irs1, and Mc4r, all important to melanocortin 

system function, were also unaltered in Aβ42-tg mice (Fig. 5B).

3.6. HPA axis contributions to Aβ-induced glucose intolerance

The HPA axis is one mechanism through which neurologic events can impact peripheral 

glucose levels. Because the hyperglycemic tendency of Aβ42-tg did not appear to be insulin 

dependent, we tested whether a hyperactive HPA axis might be producing excessive 

glucocorticoids and thereby stimulating hepatic glucose production. Aβ42-tg and WT mice 

were adrenalectomized (“Aβ42-ADX” and “WT-ADX”) and compared with unoperated 

littermates as controls (“Aβ42-tg” and “WT”). Adrenalectomy decreased corticosterone 

levels in both genotypes (Fig. 6A). Because glucocorticoids can impact insulin production, 

we also measured circulating insulin levels in the adrenalectomized mice. Neither fasting 

insulin nor insulin level in response to glucose challenge differed between the groups 

(Supplement Fig. 4A). GTTs and ITTs were performed on these groups as described 

previously. Replicating our previous findings, Aβ42-tg had had a slower decline in [Glc]b 

than WT, and this effect of Aβ expression was also apparent between genotypes within the 

ADX groups (Fig. 6B). Unoperated Aβ42-tg mice had an impairment compared with 

unoperated WT in the tAUC, and iAUC showed a significant impairment in Aβ42-tg mice 

compared with WT in both intact and ADX mice (Fig. 6C). ADX of both genotypes showed 

higher in [Glc]b than intact controls during ITTs, but Aβ expression again produced no 

effect on ITTs (Fig. 6D, Supplement Fig. 4B). After fasting, mice had no difference in basal 

[Glc]b (Fig. 6D).

3.7. Cerebral metabolic rate of glucose (CMRglc) was diminished in Aβ42-tg mice

The absence of any aberration in insulin production or sensitivity suggested that the 

impaired glucose tolerance in Aβ42-tg mice may have resulted from aberrant utilization in an 

insulin-independent compartment, such as the CNS. AD is associated with reductions in 

CMRglc, typically assessed in humans with fluorodeoxyglucose positron emission 

tomography (PET) imaging. To perform an equivalent assessment in mice, we performed 

[3H]2-deoxyglucose uptake assays in 15-week-old WT and Aβ42-tg mice. [14C]Sucrose was 

coinjected to account for blood volume contributions. Blood samples from the tail vein were 

taken to measure the component of transport calculations dependent upon blood 

concentration. These measurements revealed that net [3H]2-deoxyglucose uptake was lower 

in Aβ42-tg mice than controls (WT Ki: 0.2259 ± 0.0354; Aβ42-tg Ki: 0.1334 ± 0.0219; p = 

0.043).
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3.8. Aβ impairs translocation of GLUT1 to plasma membrane in astrocytes

Assessment of CMRglc depends partially on the activity of hexokinase to trap the 2-DG 

intracellularly, but it occurs at concentrations of glucose below saturation of that enzyme. 

Therefore, CMRglc appears to be dictated by rates of both phosphorylation and transport of 

glucose, the latter being a multiple step process dependent upon saturable transporters 

(Barros et al., 2005). Conceivably, differences in mobilization by other transporters within 

the brain parenchyma could also affect this process through shifting the glucose equilibrium. 

We assessed the state of GLUT1 and related transporters in cerebral cortex to determine 

whether impairment in one or more transporters might explain both the lower CMRglc and 

the surfeit of [Glc]b in Aβ42-tg mice. This venture was informed by proteomic analysis we 

recently performed on Aβ42-tg and WT cerebral tissue that had been fractionated for 

membrane versus cytosolic fractions (Ayyadevara et al., 2019). Among those data, the 

membrane:cytoplasm ratio of GLUT1 was found to be reduced by 22% in Aβ42-tg brain. 

Thus, in addition to total expression levels, we determined the fraction of transporter that 

was functionally localized by fractionating plasma membrane and comparing it with the 

remainder of cellular fractions. Steady-state levels of transporters in fractionated cerebral 

cortex of WT and Aβ42-tg mice were assessed by a process of capillary electrophoresis 

coupled to immunodetection (“SimpleWes”) because of its sensitivity, quantitative validity, 

and commendable size resolution within the range of 40–60 kDa. Endothelial cells express a 

GLUT1 moiety migrating at 55 kDa, whereas CNS parenchymal cells express a 45-kDa 

GLUT1, considered to be primarily astrocytic. The proportion of 45-kDa GLUT1 at the 

plasma membrane was significantly lower in Aβ42-tg than in WT cortical homogenates (Fig. 

7A, C). No significant differences in 55-kDa GLUT1 were detected between WT and Aβ42-

tg mice (Fig. 7A, C). Attempts were made to perform similar analyses of other glucose 

transporters. GLUT2 could not be subjected to fractional calculation because plasma 

membrane levels in most specimens were below the level of detection, but total GLUT2 

levels were reduced by 45% in the cortex of Aβ42-tg mice (Fig. 7B). No difference was 

apparent in the fractional distribution of GLUT3 or GLUT4 (Fig. 7C). Total expression 

levels of all glucose transporters other than GLUT2 were similar across the genotypes 

(Supplement Fig. 5). GLUT1 and GLUT3 total levels were also unaltered in AD 

(Supplement Fig. 6).

The difference detected between 45-kDa and 55-kDa GLUT1 suggested that Aβ 
accumulation impacted GLUT1 trafficking in parenchymal cells but not in the vascular 

endothelial cells. To test this more directly, we performed microvessel isolation on the 

cortical tissue of WT and Aβ42-tg mice; microvessels were then subjected to fractionation 

into plasma membrane and remainder. Similar to the results with total cortical homogenates, 

the membrane trafficking of the 55-kDa GLUT1 in this preparation was not different 

between WT and Aβ42-tg (Fig. 7D).

Differences in total levels of GLUT1 have been reported in AD for some brain regions, but 

this does not appear to be a regionally consistent phenomenon (Vannucci et al., 1997). To 

determine if AD patients could suffer deficiencies in CMRglc as a consequence of GLUT1 

trafficking, we prepared membrane fractions of tissue homogenates from cerebral cortex of 

AD and AMC. As seen in the Aβ42-tg mice, human AD cortical tissue showed a lower 
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distribution of 45-kDa GLUT1 to the plasma membrane (Fig. 7E). GLUT3 appeared to be 

unaffected, either in subcellular distribution or total levels.

To determine whether the lower plasma membrane fraction of GLUT1 could be a direct 

effect of Aβ, we treated primary cultures of astrocytes with oligomeric preparations of 

Aβ1–42. Fractionated samples were assayed by SimpleWes as with cortical homogenates. 

After 6 hours of exposure to Aβ (5 μM), the 45-kDa GLUT1 present in these cultures 

showed a lower fractional partitioning to the plasma membrane than seen in control cultures 

(Fig. 8A). This effect was replicated by treatment with proinflammatory cytokines. 

Attenuated delivery of GLUT1 to the surface of Aβ-treated primary astrocytes was also 

detected by immunocytochemistry. Cultures were subjected to a mild fixation and 

immediately processed in either a permeabilized or unpermeabilized state, confirmed by 

differential detection of GFAP, an intracellular marker. Aβ treatment was associated with 

lower levels of GLUT1 on the surface or unpermeabilized cultures (Fig. 8B).

4. Discussion

An intriguing question arising from the dysregulation of glucose in AD is the extent to 

which this disorder’s brain pathology and clinical symptoms arise secondary to peripheral 

events. A key aspect of human AD pathogenesis is a decrease in CMRglc. Similar declines 

are seen in diabetics (both type-1 and type-2) and in animal models of chronic 

hyperglycemia. Other tissues experience a surfeit of glucose under such conditions, but the 

brain does not receive glucose passively; rather, it relies on saturable transporters at the 

BBB. A reactive downregulation of these transporters in response to hyperglycemia appears 

to contribute to the reduced CMRglc seen in diabetic conditions. Accordingly, most evidence 

indicates that the cognitive impairment seen in T2D is attributable to vascular dementia 

rather than AD per se (Hassing et al., 2002; Matioli et al., 2017; Mortel et al., 1993; Pruzin 

et al., 2018; Raffaitin et al., 2009). This study explored the metabolic profile of mice that 

express human Aβ1–42, a highly aggregative form of Aβ implicated in the pathogenesis of 

AD. We chose to avoid models relyingon overexpression and mutation of APP and 

presenilin, as each of these can have confounding effects on glucose metabolism (Botteri et 

al., 2018; Kulas et al., 2019; Lee et al., 2013; Needham et al., 2008; Tu et al., 2012). In 

contrast to those models, the Aβ42-transgenic mice did not present with a generalized 

metabolic syndrome as might be expected if there were functional abnormalities in 

hypothalamic circuitry, peripheral hormones, adiposity, peripheral inflammation, or 

pancreatic insufficiency. They did, however, exhibit a cognitive deficit that was correlated 

with impaired glucose tolerance. Evaluation of cerebral glucose utilization suggested that the 

peripheral glucose phenotype of Aβ42-tg mice—and perhaps their human counterparts—

results from a CMRglc impairment, itself due to an Aβ-induced irregularity in the 

translocation of GLUT1 to the plasma membrane in cells of the cerebral parenchyma. The 

perturbation of cerebral glucose was evident at ages much younger than that required for the 

observation of amyloid plaques in this line, indicating that it was driven by soluble Aβ.

Transgenic models of AD that overexpress APP have been reported to exhibit perturbations 

of general aspects of glucose and energy homeostasis, including impaired glucose tolerance, 

insulin resistance, and attenuated responses to leptin (Lyra E Silva et al., 2019). By contrast, 
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the peripheral phenotype of Aβ42-tg was much more limited. While they had impaired 

glucose tolerance, Aβ42-tg mice were not significantly heavier than WT. In T2D, impaired 

glucose tolerance is explained by a reduction in glucose uptake by peripheral tissues, 

initially as a consequence of insulin resistance in these tissues; this often progresses to a 

state of insufficient insulin production by pancreatic β-cells. Aβ42-tg mice had a response to 

insulin equivalent to that of WT mice, indicating that their aberrant GTT results were not 

due to peripheral insulin resistance; insulin production was intact, as well. Moreover, our 

comprehensive metabolic panel demonstrated elevated glucose in the absence of biomarkers 

for hepatic or renal disorder. By these metabolic indices, Aβ42-tg appear similar to humans 

with AD, who do not show differences from controls in body weight, insulin production, 

insulin sensitivity, or general hypothalamic function. Hepatic gluconeogenesis in response to 

pyruvate administration was similar in Aβ42-tg and wild-type, suggesting that impaired 

GTTs did not arise from hepatic dysfunction. However, a small portion of the glucose 

intolerance was attenuated by adrenalectomy, indicating that elevated hepatic glucose 

production (perhaps by glycogenolysis) may have contributed weakly to the phenotype. AD, 

risk for AD, and cognitive impairment are all associated with elevations in cortisol levels 

(Ouanes and Popp, 2019).

We tested for hypothalamic contributions to the glucose phenotype of Aβ42-tg mice through 

multiple approaches. Metabolic (CLAMS) cages were used to examine food consumption 

and respiratory quotient, the latter of which can detect differences in the degree to which 

energy production depends on carbohydrates versus other nutritional sources of energy. 

Infrared beam crossings in the cages permitted monitoring of physical activity, attributes of 

which were also extrapolated to inferences about sleep/wake behavior. These assessments 

indicated that the glucose tolerance of Aβ42-tg mice was not associated with differences in 

diet, metabolism, activity, or sleep. This conclusion is supported by the failure to detect 

differences in transcriptional expression of melanocortin system neuropeptides that 

influence satiety and feeding.

Our 2-deoxyglucose measurements demonstrated that Aβ42-tg mice phenocopy the decrease 

in CMRglc seen in humans with AD. In the absence of other explanations, this diminished 

utilization by the most glucose-demanding organ is a plausible explanation for the 

exaggerated glucose excursions in Aβ42-tg and the human disorder they model. While the 

human brain is only 2% of body mass, it may account for as much as 60% of our glucose 

utilization at rest (Berg et al., 2002). This percentage is smaller in mice, but rodent brains 

still create an outsized demand on glucose disposition (Sokoloff, 1977). Saturable glucose 

transporters limit access of this carbohydrate to the CNS, and diminutions in endothelial 

GLUT1 are well-documented in conditions of chronic hyperglycemia (Gjedde and Crone, 

1981; McCall et al., 1982; Pardridge et al., 1990). AD and mouse models thereof do not 

universally exhibit hyperglycemia to a degree and consistency sufficient to downregulate 

endothelial GLUT1 expression. Indeed, we find this moiety unaltered. Instead, an isoform of 

GLUT1 specific to parenchymal cells appeared to be significantly lower in its functional 

localization. Astrocytic end-feet make canonical contributions to the neurovascular unit, and 

astroglia serve as a conduit for energy substrates from the vasculature to neurons, evidently 

supplying glucose and its derivatives to neurons (Dienel, 2012). Interruptions in this glucose 

flux are likely to 1) diminish neuronal function and 2) shift the equilibrium for central 
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import of glucose from blood. Together, the lower CMRglc and mislocalization of 

parenchymal GLUT1 that we have detected suggest that elevations in blood glucose in AD 

reflect a central phenomenon, resulting from the effects of Aβ on cerebral parenchyma, 

rather than a generalized disruption of hypothalamic or peripheral endocrinology. Feasibility 

of this explanation is supported by the impaired glucose tolerance exhibited in mice lacking 

GLUT4 in neural tissues (Reno et al., 2017); however, that phenotype also included insulin 

resistance and other attributes suggesting that it involved impaired glucose sensing, likely in 

the hypothalamus.

It is clear that CMRglc is correlated with cognitive performance. Decades of imaging studies 

have demonstrated that CMRglc declines in patients with AD (Friedland et al., 1983; Herholz 

et al., 2007; Laforce et al., 2014; Leuzy et al., 2018). The phenomenon is also observed in 

essentially every syndrome of age-related dementia (Wilson et al., 2019), including 

frontotemporal dementia, dementia with Lewy bodies, and Creutzfeldt-Jakob disease (Kim 

et al., 2012). It is perhaps the universality of the phenomenon to various dementing disorders 

that makes FDG-PET a more accurate predictor of MCI-to-dementia conversion than are 

CSF measurements of Aβ and tau (Caminiti et al., 2018). In fact, the longitudinal decline in 

CMRglc is associated with concurrent cognitive decline so intimately that it exceeds 

psychological examinationss in statistical power for monitoring longitudinal change (Landau 

et al., 2011). CMRglc decline has been characterized as an effect of synaptic pathology, but it 

seems just as likely that restricted glucose delivery would be the cause of diminished mental 

performance, as is clearly demonstrated during acute hypoglycemic bouts (Strachan et al., 

2001) and in higher performing MCI subjects (Ossenkoppele et al., 2014). Some reports 

indicate that CMRglc is elevated before its decline in certain regions (Benzinger et al., 2013), 

but it is speculated that this reflects compensatory activity that is responsible for the higher 

cognitive performance in MCI versus AD (Ashraf et al., 2015; Ossenkoppele et al., 2014). 

This is not exclusive of the possibility that this elevated neurophysiological activity is, in 

fact, driving subsequent Aβ deposition (Cohen et al., 2009). Mice of the BRI-Aβ42 line used 

here have been reported to be free of cognitive impairment (Kim et al., 2013). Compared 

with the present study, the mice used in that report were considerably older (15 months); 

even the WT performed quite poorly, producing a swim-path percentage in the target 

quadrant scarcely better than chance (28.30 ± 2.0). It might also be noted that the mice in 

that study were on a mixed strain background (C57BL/6 × C3H) which may have introduced 

variability.

Diminished CMRglc (Baker et al., 2011; Hwang et al., 2017; Roberts et al., 2014) and 

cognitive impairment (Biessels and Despa, 2018) are also seen in T2D. It is notable that 

neuron loss has not been documented in T2D. While the two conditions share some 

attributes, the evidence linking AD to T2D is weak. The Rush longitudinal cohort study of 

aging found that neither HbA1c nor diabetes was correlated with plaque, tau, or infarct 

pathology (Pruzin et al., 2017); cognitive and synaptic deficits in a model of T2D are 

independent of tau (Trujillo-Estrada et al., 2019). T2D confers no elevation in the 

accumulation of Aβ or neurofibrillary pathology (Beeri et al., 2005; Heitner and Dickson, 

1997; Peila et al., 2002; Roberts et al., 2014). A wealth of data indicates that the greater risk 

for dementia among individuals with T2D can be explained adequately by the incidence of 

vascular dementia (above). Likewise, AD may not make a significant impact on propensity 
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for developing diabetes. Our study finds no convincing perturbation of fundamental 

endocrinology or peripheral glucose physiology in response to Aβ accumulation. This is 

consistent with the fact that the age-related accumulation of senile plaques in the 

hypothalamus does not correlate with an AD diagnosis (van de Nes et al., 1998; van de Nes 

et al., 2006).

Together, our findings indicate that trafficking of GLUT1 to the plasma membrane in 

parenchymal cells of the brain may be responsible for depressed CMRglc in AD. We did not 

detect significant differences in steady-state levels of the total glucose transporter proteins in 

either Aβ42-tg mice or human AD. Diminished overall levels of glucose transporters have 

been reported in other mouse models (Liu et al., 2017; Merlini et al., 2011); some evidence 

indicates this may represent merely a reduction in cerebrovascular mass (Ahn et al., 2018; 

KuznetsovaSchliebs, 2013). Increased expression of GLUT1 and −3 has also been noted in 

an AD model (Chua et al., 2012), potentially as a compensatory reaction to glucose 

starvation. Winkler et al. (2015) reported that global haploinsufficiency of GLUT1 resulted 

in age-related degenerative changes in the BBB, reductions in cerebral blood flow and 

CMRglc, neurodegeneration, and memory deficits. The alterations in BBB were also noted 

after conditional haploinsufficiency was restricted to the vascular epithelium.

In the human brain, regional differences are more readily appreciated and may be discrepant 

with regard to the effects on glucose transporters by a disease process manifest in a 

regionally progressive pattern. Kalaria and Harik (1989) first reported that AD was 

accompanied by lower levels of cytochalasin B-binding sites, interpreted to be hexose 

transporters, in the microvessels of hippocampus; Horwood and Davies (1994) used 

immunohistochemistry to confirm that this likely reflected an impact on GLUT1. Vannucci 

et al. (1997) reported that the 45-kDa form of GLUT1 was specifically lower in AD, albeit 

this was limited to the caudate. Both the 45-kDa and the 55-kDa forms of the protein were 

found to be depleted in unspecified regions of the AD cerebral cortex by Simpson et al. 

(1994). Liu et al. (2008) found lower levels of both GLUT1 and GLUT3 in AD frontal 

cortex. We chose to analyze frontal lobe as well, hoping to avoid a high degree of late-stage 

neuronal loss that would be significant in the hippocampus and the temporal lobe in general. 

Similar to our findings in relatively young mice, human prefrontal cortex showed a reduction 

in plasma membrane distribution without a change in total GLUT1 levels. It is tempting to 

speculate that this may be an early event, occurring before the loss of overall transporter 

levels during the course of AD pathogenesis in a given brain region.

We also noted a reduction in total levels of GLUT2 in Aβ42-tg mice. It is difficult to 

interpret this finding because there is no clear consensus on the role of GLUT2 in the brain, 

where it seems localized primarily to astrocytes. The KM of GLUT2 for glucose is 15–20 

mM, compared with 1–5 mM for GLUT1. Zetterling et al. (2011) reported that the 

concentration of glucose in human brain interstitial fluid is 0.1–5.5 mM and 1.7 ± 0.9 mM in 

frontal lobe. Consistent with its low affinity, GLUT2 is important for export of glucose 

produced by gluconeogenesis and glycogenolysis in hepatocytes. As astrocytes also store 

glycogen, GLUT2 could play a similar role in these cells. The fact that plasma membrane 

levels of GLUT2 were below the limit of detection further obscures interpretation of this 

transporter’s role. GLUT2 may be present only at discrete points on the astrocyte membrane, 
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perhaps releasing glucose from astrocytes at synapses. If this is the case, reductions in its 

overall levels in Aβ42-tg brains may reflect a generalized failure in the ability of astrocytes 

to serve as a glucose conduit between capillaries and neurons.

Discerning the true impact of AD pathogenesis on glucose transporters may depend on a 

mechanistic understanding of the molecular and biochemical chain of events. Our 

experiments with primary cultures of astrocytes indicate that the deficit in GLUT1 

localization may be a direct result of Aβ. However, proinflammatory cytokines replicated 

the effect of Aβ on cultured astrocytes, so it is possible that Aβ exerts an indirect effect 

mediated by microglial activation. Although steps were taken to diminish microglia in our 

primary astrocyte cultures, a few remain. Decreases in FDG-PET signal have been 

interpreted as a correlate of inflammatory gliosis (Schroeter et al., 2009). Intracellular 

trafficking of GLUT1 is not understood as well as it is for GLUT4. In many cell types, 

GLUT1 appears to transit through the secretory pathway in a constitutive and unregulated 

manner. However, there is a clear difference in the structural composition of GLUT1 in 

parenchymal cells, a size difference we exploited to detect differences in parenchymal 

transporter against the backdrop of prominent endothelial expression. It is plausible that this 

difference provides a mechanistic distinction in GLUT1 trafficking. It is also intriguing to 

speculate about the relationships between trafficking in the secretory pathway, ER stress, 

and metabolic syndrome, along with disturbances in autophagy. Trafficking of GLUT1 to the 

plasma membrane can be influenced by mammalian target of rapamycin (mTOR) 

(Makinoshima et al., 2015; Olsen et al., 2014), which is a major node for regulation of 

autophagy. APOE ε4, the most significant genetic factor for sporadic AD, has been 

demonstrated to inhibit autophagy in astrocytes (Simonovitch et al., 2016). Building on this 

phenomenon, we recently demonstrated a mechanistic explanation by which the gene’s 

protein product (ApoE4) binds autophagy-gene promoters at their “CLEAR” enhancer 

sequences, thus competitively inhibiting the key autophagic transcription factor transcription 

factor EB (Parcon et al., 2018). If the resultant tendency toward protein aggregation and 

other forms of proteinopathy interferes with the secretory pathway, this may contribute to 

disturbances in localization of GLUT1 in astrocytes. A correlation between compromised 

CMRglc and generalized astrocytic pathology has been documented in AD (Carter et al., 

2019), and there is an increasing appreciation for glial contributions to such imaging 

modalities (Zimmer et al., 2017).

In conclusion, we found that the perturbation of glucose tolerance in Aβ42-tg mice occurred 

in a manner that was independent of peripheral metabolic syndrome, hepatic glucose 

production, and insulin delivery or responses. This suggested an aberration in an insulin-

independent tissue, such as the brain. Indeed, these mice showed a reduction in CMRglc 

similar to human patients with AD. We further demonstrated inadequate trafficking of 

GLUT1 to the plasma membrane of parenchymal brain cells, likely astrocytes. Together, 

these data suggest that the anomalous glucose intolerance in Aβ42-tg mice—and, potentially, 

humans with AD—reflects cerebrocentric effects that have little to do with endocrinological 

or physiological output of the hypothalamus. These findings further emphasize the growing 

evidence for involvement of astrocyte biology in the pathogenesis of AD. It will be 

important to determine where these events fit in the etiological chain of events that includes 

neurofibrillary pathology, tissue atrophy, and functional dementia.
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Fig. 1. 
Cerebral Aβ accumulation and western diet impaired spatial memory. Aβ42-tg mice (“Aβ-

tg”) and wild-type littermates (“WT”) were maintained on normal diet (ND); additional 

mice of each genotype were also subjected to 6 weeks of DIO. The mice were trained in the 

MWM task and tested in a probe trial on day 6. Values represent the percentage of time 

spent in each quadrant of the pool during the probe trial. WT ND males spent significantly 

more time in the target quadrant than in any other quadrant, indicating retention of training 

(*p ≤ 0.05, **p ≤ 0.01).
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Fig. 2. 
Peripheral glucose tolerance was impaired in Aβ42-tg mice. Glucose tolerance testing (GTT) 

and insulin tolerance testing (ITT) were performed on Aβ42-tg mice (“Aβ-tg”) and WT 

littermates on a ND or western diet (DIO) for 9 weeks. A: On both diets, Aβ42-tg mice had 

significantly higher [Glc]b than WT at 30 and 60 minutes (*p < 0.05, **p < 0.01). DIO 

elevated [Glc]b levels within both genotypes (WT Normal vs. WT DIO: ⧧⧧P < 0.01, ⧧⧧⧧⧧P < 

0.0001; Aβ-tg Normal vs. Aβ-tg DIO: ##p < 0.01, ####p < 0.0001). B: DIO increased total 

area under the curve (tAUC) in the GTT (***p < 0.001). Aβ42-tg mice had greater tAUC 

than WT on the same diet (*p < 0.05). C, D: Fasting and nonfasting basal [Glc]b were higher 

in Aβ-tg DIO than in either WT DIO or Aβ-tg ND (*p < 0.05, ***p < 0.001, ****p < 

0.0001). E: ITT showed that the Aβ-tg DIO group had a significantly greater impairment 
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than WT DIO (*p < 0.05, **p < 0.01, ***p < 0.001), but Aβ-tg ND was not different from 

WT ND. F: AOC in the ITT indicated that the WT DIO group had impaired responses to 

insulin compared with WT ND, and Aβ-tg DIO also showed impairment (*p < 0.05). All 

values are mean ± SEM.
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Fig. 3. 
Progressive changes in DIO paradigm. Aβ42-tg and WT littermates were fed a ND or 

western diet for 12 weeks (reflected in the abscissa label). A: Mice were weighed biweekly 

without fasting (****p < 0.0001 each DIO group vs. its ND counterpart). B: GTT was 

performed on weeks alternating with the body weight measurements. (*p≤0.03 vs. WT 

Normal, ##p < 0.002 Aβ-tg Normal, †††p = 0.0005 vs. WT DIO).
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Fig. 4. 
Aβ42-tg mice show no aberrations in food consumption, body weight, physical activity, or 

respiration. Aβ42-tg mice and WT littermates were acclimated to CLAMS cages and then 

monitored for 48 hours. A: Aβ42-tg mice consumed an equivalent mass of food (a) during 

light and dark hours; they also achieved similar body weights (b). B: Monitoring of activity 

with infrared beams during light and dark hours indicated no difference between genotypes 

in ambulation, as indicated by movement in the x-axis (a), or in jumping/rearing, as 

indicated by movement in the z-axis (b); sleep time (c) was derived from the movement data 

and also showed no differences. C: Consumption of O2 (a, b) and production of CO2 (c, d) 

was monitored, indicating no genotypic differences in these primary measures or in the 

calculations of energy expenditure (e) or respiratory exchange ratio (f).
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Fig. 5. 
Hypothalamic gene expression in 28-week-old WT and Aβ42-overexpressing mice. 

Hypothalamus tissues from fasted mice that were 28 weeks of age were homogenized, and 

mRNA was extracted. A: Using qRT-PCR (see “Methods”); Agrp, Pomc, Crh; and Ptgs2 
gene expression were normalized to the stable transcript Rplp0. B: Insr, Irs1, Socs3, and 

Mc4r expression was normalized using Rplp0 and showed no differences. Comparisons were 

evaluated using Student’s t-test with Welch’s correction. All values are mean ± SEM.
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Fig. 6. 
Aβ42-tg mice retain impaired glucose tolerance after adrenalectomy. GTT was performed on 

mice 19 days after adrenalectomy (ADX), and insulin tolerance testing ITT was performed 

the following week. WT adrenalectomized (WT-ADX) and Aβ42-tg adrenalectomized 

(Aβ42-ADX) mice were compared with WT and Aβ42-tg unoperated littermates. A: After a 

5-h fast, corticosterone was measured in serum. Adrenalectomy decreased corticosterone 

levels in WT animals (***p < 0.001) and Aβ42-tg animals (****p < 0.0001); unoperated 

Aβ42-tg mice had increased corticosterone relative to unoperated WT (*p < 0.05). B: GTT 

indicated that [Glc]b was elevated in Aβ42-tg more than in WT at 30 and 60 minutes (††p < 

0.01, ††††p < 0.0001). Aβ42-ADX had significantly higher [Glc]b than WT-ADX at 30 

minutes (****p < 0.0001). C: Aβ42-tg had higher AUC values than WT in the unoperated 

group (****p < 0.0001) and in the ADX group (*p < 0.05). D: Adrenalectomized mice 

trended toward greater insulin sensitivity (Aβ42 vs. Aβ42-ADX: ##p < 0.01, WT vs. WT-

ADX: ‡‡p < 0.01). All values are mean ± SEM.
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Fig. 7. 
GLUT1 fractional distribution to the plasma membrane was perturbed in Aβ42-tg mice and 

AD cortex. Homogenates from cerebral cortex were fractionated to separate plasma 

membrane (PM) from the other cellular fractions (“remainder”), then samples normalized 

for protein content were resolved by capillary electrophoresis, and GLUT proteins were 

detected by antibody-dependent chemiluminescence. A: Pseudogel depiction of the scans of 

45-kDa and 55-kDa GLUT1 detection in whole cerebrum from WT and Aβ42-tg mice. 

(Small discrepancies in vertical position reflect idiosyncracies among the capillaries and are 

common with this technology.) B: Pseudogel depiction of GLUT2 PM and remainder 
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fractions in whole cerebrum from WT and Aβ42-tg mice. C: Quantification of the PM 

fractional value (“total” = PM + remainder) for the indicated proteins in whole cerebrum 

from WT and Aβ42-tg mice. D: Quantification of total GLUT1 (left ordinate; normalized to 

total protein) and PM fractional value of GLUT1 (right ordinate) from cerebral microvessel 

isolates. D: Quantification of the PM fractional value (“total” = PM + remainder) for the 

indicated proteins from human subjects diagnosed with AD or no neurological disease (age-

matched controls, AMC). All values are mean ± SEM.
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Fig. 8. 
Aβ and cytokines evoke aberrant trafficking of GLUT1 in cultured astrocytes Primary 

cultures of astrocytes were treated 6 hours with aggregated Aβ1–42 (2.5 μM) or 4 hours with 

a combination of IL1β and TNF (10 and 30 ng/mL, respectively). A: PM fractional value of 

45-kDa GLUT1 detected by capillary-gel immunodetection as in Fig. 7. B: 

Immunofluorescence of GLUT1 and GFAP performed on cultures that had been 

permeabilized or not before application of primary antibodies. Absence of GFAP staining in 

unpermeabilized cells validates that GLUT1 staining in those cultures is likely restricted to 

cell-surface protein. Scale bar = 25 μm.
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Table 1

Insulin levels impacted by diet but not genotype

Mouse group [Insulin] (ng/mL)

Genotype Diet (6 wk) T0 T30
a %Δ

WT (littermates) normal 0.474 ±0.043 1.07
±0.179

b 125.8 ±27.94

western 2.66 ±0.547 2.80 ±0.789 22.26 ±31.43

Aβ42-tg normal 0.553 ±0.107 1.10
±0.173

b 147.4 ±53.75

western 5.78 ±2.03 3.74 ±1.42 −17.69 ±24.21

a
30 min after challenge with glucose (2 g/kg body wt.).

b
p ≤ 0.01 versus T0.
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