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Published online: 11 September 2018 Defect engineering is a promising route for controlling the electronic properties of monolayer

transition-metal dichalcogenide (TMD) materials. Here, we demonstrate that the electronic structure
of MoS, depends sensitively on the defect charge, both its sign and magnitude. In particular, we study
shallow bound states induced by charged defects using large-scale tight-binding simulations with
screened defect potentials and observe qualitative changes in the orbital character of the lowest lying
impurity states as function of the impurity charge. To gain further insights, we analyze the competition
of impurity states originating from different valleys of the TMD band structure using effective mass
theory and find that impurity state binding energies are controlled by the effective mass of the
corresponding valley, but with significant deviations from hydrogenic behaviour due to unconventional
screening of the defect potential.

Since the discovery of graphene, there has been significant interest in the development of ultrathin devices based

: on two-dimensional (2D) materials. In contrast to graphene, which is a semimetal when undoped, monolayer
transition-metal dichalcogenides (TMDs) with the chemical formula MX, (M= Mo, W; X=S, Se, Te) are semi-
conductors with a direct band gap’?. Monolayer TMDs have been used as channel materials in field-effect transis-
tors** and microprocessors’, as well as absorbers in solar cells® and as sensors”$, with promising results.

Defects play a critical role in the performance of devices under realistic conditions®!’. Analogously to conven-
tional bulk semiconductors, impurities with shallow donor or acceptor states can be used to control the carrier
concentration in TMDs via defect engineering!>'*. Adsorbed atoms and molecules are a particularly promising
class of impurities in TMDs as they tend to only weakly perturb the atomic structure of the TMD substrate,
thereby limiting any degradation of carrier mobility that may result from impurity scattering or trapping'*'*, and
experimental fabrication of adsorbate-engineered samples is straightforward?®.

A detailed theoretical understanding of the properties of charged adsorbates on TMDs is important to enable
the rational design of new devices. On the one hand, many groups have used ab initio density-functional theory
(DFT) to study the interaction of adsorbed atoms and molecules with TMDs. Such calculations yield impor-
tant material-specific insights about adsorption geometries, adsorbate binding energies and charge transfer'’-2!.
However, ab initio calculations are limited in terms of the size of the systems that can be considered (typically
containing up to several hundred or a few thousand atoms), which are much too small to describe properties of
shallow defect states that can extend up 100 Angstrom (A) or more, as has been observed recently for Coulomb
impurities in graphene using scanning tunnelling spectroscopy (STS)*.

On the other hand, continuum electronic structure methods, such as Dirac theory for graphene or effective
mass theory for bulk semiconductors, can describe the behaviour of extended impurity states, but require param-
eters from experiments or ab initio calculations, such as Fermi velocities, effective masses**~?” and rather impor-
tantly, the defect potential that is typically screened by electrons of the host material.

In this paper, we study properties of shallow impurity states induced by charged adatoms on monolayer MoS,.
Using large-scale tight-binding models and screened defect potentials calculated from ab initio dielectric func-
tions, we reveal a surprising diversity of bound defect states resulting from the unconventional screening present
in reduced-dimensional materials and the interplay between multiple valleys in the TMD band structure. We
present results for impurity wavefunctions and binding energies as function of the impurity charge and also com-
pute the local density of states (LDOS) in the vicinity of the adatom, which can be measured in STS experiments.
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Figure 1. RPA-screened potential of a charged adatom situated d =2 A above the Mo-atom in Mo$S, with
strength Z=1 (blue solid curve) compared to the unscreened Coulomb potential (red dashed curve). We also
compare this to the Keldysh model (green curve) for Z=1, d= 2Aand screening length p, =45 A (Eq.5),

fitted to the RPA-screened potential. The inset shows the Fourier transform of the screened and unscreened
potentials, as well as the potential screened in the Keldysh model, with the solid vertical line indicating |K — K/|,
the separation in reciprocal space between the two valleys of MoS,.

For both donor and acceptor impurities, we find that impurity wavefunctions have similar nodal structure to
2D hydrogenic states, but with radii that lie on the nanoscale. We find that that the orbital character of the most
strongly bound impurity state switches as a function of the impurity charge strength Z due to the different effec-
tive masses associated with different valleys in the monolayer TMD band structure. We compare our results to the
2D hydrogen atom and also to effective mass theory calculations and discuss the limitations of these continuum
models. Whilst an approach based on the effective mass model is able to describe some of the general behav-
iour with reasonable accuracy, we find significant discrepancies from our tight-binding model which arise from
short-range features of the defect potential. Our calculations demonstrate the potential of adsorbate engineering
for ultrathin devices based on TMDs and the importance of first-principles based description of their properties.

Methods

To describe the electronic structure of the MoS, monolayer, we employ the three-band tight-binding (TB) model
by Liu et al.?®. This model uses a basis of transition-metal 4d 2, 4d,, and 4d > orbitals which give the dominant
contribution to the states near the conduction and valence band extrema and includes hoppings up to

third-nearest neighbours as well as spin-orbit interactions. The various parameters were determined by fits to
DFT band structures.

The charged adatom is described as a point charge Q = Ze (with e being the proton charge) located a distance
d above the plane of the transition-metal atoms. The charge gives rise to a screened potential in the TMD sheet.
Within linear response theory, the screened potential is given by

) _ 2 [ —1 —qd
Vips 2,d) = 22" [ dg ex@lap)e . o
where p denotes the in-plane distance from the adatom and ¢, (q) is the inverse 2D dielectric function of a single
TMD monolayer. The 2D dielectric function can be obtained from the inverse dielectric matrix sG_é,(q) of an
infinite system of stacked TMD sheets (simulated in an electronic structure calculation that employs periodic
boundary conditions) via®
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Here, G,and G’, denote reciprocal lattice vectors along the out-of-plane (z) direction, v ., is a slab-truncated
Coulomb interaction® and L, denotes the distance between the stacked sheets. The inverse dielectric matrix is
computed for a MoS, monolayer using the random-phase approximation®! (RPA) with Kohn-Sham wave func-
tions and energies from ab initio DFT (see Supplementary Materials for details). Calculations were carried out
using the Quantum Espresso® and BerkeleyGW software packages®. For small wave vectors, which are relevant
for describing shallow impurity impurity bound states, we find that the right hand side of Eq. (2) depends only on
the magnitude of the wave vector.Figure 1 shows the screened (calculated from Eq. 1) and unscreened potentials
of a charged adatom with Z=1 and d=2 A above the Mo-layer in the MoS, sheet. While there are clear differ-
ences at short distances, the two potentials both converge to the unscreened case at long distances from the ada-
tom which is characteristic of screening in 2D semiconductors. This short-range discrepancy corresponds to
significant differences between the Fourier transforms of these potentials at large wavevectors, shown in the inset
of Fig. 1.
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To study shallow bound states of the screened adatom potential, we construct a 51 x 51 TMD supercell
containing 7803 atoms and diagonalize the resulting TB Hamiltonian with the adatom potential as an on-site
term?>?*. Note that the adatom is placed above a transition-metal site as this is the preferred adsorption geometry
for many adatom species, such as alkali metals'’~%°.

To analyze the results of our atomistic tight-binding simulations, we have also carried out calculations using
effective mass theory. In this approach, which has been used routinely to study shallow bound states of charged
impurities in bulk semiconductors?>***, the impurity states are expressed as U, (r) = f dk ¢, (k)i (r). Here,
1 denotes an unperturbed Bloch state w1th band index # and crystal momentum k of the host material and
¢,,(K) is an envelope function determined by*®

5nk¢nu(k) + fdk, <¢nk‘v‘¢nk’>¢m/(k,) = Eny¢ny(k)’ (3)

where ¢, describes the band structure of the host material and V(r) denotes the screened impurity potential. In
bulk semiconductors, V can be accurately approximated®® by Ze*¢~'(q =0)/r and the resulting equation for the
impurity state envelope function reduces to the Schrodinger equation of a hydrogen atom with a reduced Bohr
radius g, = (m*/my)Zaye~ (q = 0) (with m* and m, denoting the effective and bare mass of the electron, respec-
tively, and g, is the Bohr radius). In this approximation, the impurity state envelope functions take the form of the
2D hydrogenic states*” give by

iy
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where N, is a normalization constant, Lk are the generalized Laguerre polynomials, and ) , ; 2+ . Zm® ; . We com-
n 4me,

pare these solutions to the wavefunctlons extracted from our TB model to identify similarities in nodal’structure.

The screened impurity potential in a 2D semiconductor, such as a TMD monolayer, however, cannot be
accurately approximated by a bare Coulomb interaction divided by a constant dielectric function (see Fig. 1). A
well-known model for the screening of a point charge embedded in a thin dielectric film was derived by Keldysh?®
and is given by

’SKeldysh(q) =1+ poq (5)

where p, 1s the screening length. We calculate the screened potential V() using the Keldysh model by substi-
tuting 5Keld +(q) for the inverse dielectric function in Eq. 1. The value of p,=45 A is obtained by fitting to the
RPA-screened potential of Fig. 1. The Keldysh model has been frequently used to study excitons in TMDs?*340
and we also use it here for comparison to our tight-binding results.

To simplify the integration over k-points in Eq. (3), Bassani et al.*® divided the first Brillouin zone into sub-
zones (), centered on critial points k;, typically associated with band extrema. The impurity states U, (r) are then
constructed as linear combinations of subzone states

\Ijnm(r) ¢nm'(r)1/}nki(r)- (6)

To determine the subzone envelope functions ¢,,,(r), we minimize the expectation value of the Keldysh

N 32
Hamiltonian H = s i
>

+ 6?,) + Weldysh(r) (where m;* denotes the effective mass associated with the relevant
conduction or valence band at k;) using the following ansatz for the most strongly bound impurity state
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where o is a variational parameter, which we use to define the impurity radius a;,,, = a~'. Once the subzone states
are obtained, the full impurity states are found by including interactions between different subzones. As the cou-
pling is usually weak, it can be treated using perturbation theory>°.

Results and Discussion
Acceptor States. Figure 2(a-e) show the wavefunctions (specifically, their squared magnitudes sampled at
the I'-point of the first Brillouin zone) of the five most strongly bound impurity states for an adatom with
Z=—0.3, situated d=2 A above the Mo-site, as calculated from our tight-binding model with an RPA-screened
impurity potential. To label the impurity states, we compare them to the 2D hydrogenic states*”. While the two
most strongly bound impurity states (Fig. 2(a,b)) have 1s character, the states in Fig. 2(c,e and d) resemble the 2p
and 2s states of the 2D hydrogen atom, respectively. We also present the corresponding 2D hydrogenic states in
Fig. 2(f-j) for a nuclear charge Q= —0.3(, where (=~ 0.26 is the ratio of the screened and unscreened potentials at
r=01in Fig. 1. Surprisingly, the more strongly bound 1s states of Fig. 2(a) is significantly more delocalized with an
impurity radius of a;,,=12. 6 A than the less strongly bound 1s state in Fig. 2(b), which has a radius of
Bimp = 5.19 A. We determine aj,, by fitting the impurity state to an exponential decay as in Eq. 7, and extracting
the inverse decay scale a = a,,. The 2p impurity states exhibit an angular modulation caused by the trigonal
warping of the valence states near the band edge*!. Note that the modulation is different for the two 2p states and
we therefore label the second state distinctly as 2p’. In contrast to the 2D hydrogen atom, the 2s, 2p and 2p’ are not
degenerate, as indicated by their binding energies given in the top right corner of Fig. 2(a—e), because the impu-
rity potential is screened and no longer follows a simple 1/r behaviour.
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Figure 2. (a-e) Squared wavefunctions of bound impurity states (TB model with RPA-screened potential), for
an impurity charge Q= —0.3e placed 2 A above the Mo site. States are labelled by their 2D hydrogenic character
and origin in the BZ, found by projection onto the unperturbed states (see Supplementary Material). The
corresponding binding energies E;, with respect to the VBM are given in white. (f-j) 2D hydrogenic states with a
nuclear charge of Q= —0.3( e (with ( being the ratio of the screened and unscreened potentials at =0 in Fig. 1)
for comparison, labelled by the effective mass of the VBM from which the corresponding states in (a—e) originate.

To further analyze the impurity states, we projected their wavefunctions onto unperturbed states of the MoS,
monolayer (see Supplementary Materials for details) and find that the most strongly bound 1s state and also the
2p and 2s states are composed of valence states from the K and K’ points of the MoS, bandstructure, see Fig. 3(b).
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TB: 15 (K/K') 0.641 1.30 126
EMA: 15 (K/K') 0519 1.24 159
TB: 1s(T) 0.907 1.25 5.19
EMA: 15(I) 0.661 115 6.65

Table 1. Coeflicients of acceptor state binding energy fits given by E, = —B+ AZ" from tight-binding (TB) and
effective mass theory (EMA) with the Keldysh model. All energies are referenced to the valence band maximum.
We also show the impurity state radius a;,,,(Z) = a~Y(Z) of the 1s states for Z= —0.3.
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Figure 3. (a) Binding energy E, = E — Eypy, of the 1s(K/K’) (blue) and 1s(I") (green) impurity states as a
function of adatom charge Z for negatively charged adatoms on MoS, from tight-binding calculations (solid
lines) and the effective mass approximation (EMA) (dashed lines). (b) Tight-binding band structure, where
bands with spin-up (spin-down) character are in red (blue).

In contrast, the second 1s state originates from the valence band near the I'-point of the unperturbed band struc-
ture. We label the states in Fig. 2(a—e) by their origin in the Brillouin zone (BZ), in addition to their 2D hydro-
genic orbital character. We have subsequently labelled Fig. 2(f-j) by the effective mass of the valence band maxima
(VBM) from which the corresponding TB states originate.

Figure 3(a) shows the dependence of the impurity state binding energies E, = E — Eyyy; (energy E with refer-
ence to the primary valence band maximum Eyzpy) on the adatom charge Z for negatively charged adatoms. We
have fitted the 1s binding energies to a power law of the form —B+ AZ", see Table 1, where B=0 for 1s(K/K’) and
B=0.071eV for 1s(I"), and find that the 1s(K/K’) and 1s(I") states have exponents of = 1.30 and n=1.25,
respectively. These are 51gn1ﬁcantly smaller than the exponent for a 2D hydrogen atom where the binding energy
is given by E(Z) = —4 22 Ry. Interestingly, the different Z-dependences of the 1s(K/K’) and 1s(I") binding

energies resultin a crossover at Z = —0. 32, where the order of the two states switches. As the character of 1s(K/K’)
is dominated by Mo 4d,,, and 4d,>_ orbitals, while Mo 4d,2 orbitals make up the 1s(T") state!, our calculations
suggest the possibility of controlling the orbital character of low-lying electronic states via defect engineering with
potentially interesting consequences for optical properties.

To further analyze the results of the tight-binding calculations, the bound impurity states were studied with
effective mass theory. Specifically, we determined the impurity states associated with the subzones near I', K and
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K’ using Eq. (7). For the acceptor states, each subzone acts as an independent 2D hydrogen-like system as the dif-
ferent spin states of the degenerate valence band maxima at K and K’ prohibit interactions between the subzones.
The resulting binding energies agree reasonably well with the tight-binding results, see dashed lines in Fig. 3(a)
and Table 1. We see that the discrepancy between these two models increases with Z, as the RPA-screened poten-
tial in Fig. 1 is deeper than the screened potential in the Keldysh model, resulting in more strongly bound states.
In particular, effective mass theory also predicts a crossover of 1s(K/K’) and 1s(I") near Z= —0.45. The binding
energy of 1s(I") increases more quickly with Z because the effective mass near I' is about 5.5 times larger than the
effective mass near K or K'. This also explains the differences in impurity radii, see Fig. 2(a,b).

DonorStates. Next, we study the shallow impurity states induced by positively charged adatoms. Figure 4(a-h)
show the wavefunctions of the eight most strongly bound impurity states for an adatom with Z=0.3 and d=2 A.
The states are labelled based on their similarity to the eigenstates of the 2D hydrogen atom. In contrast to the
acceptor case, we find a pair of states corresponding to each solution of the 2D hydrogen atom, with different
binding energies, indicated at the top right corner of each subfigure in white. The states of each pair are distin-
guished by a “+” or “—” subscript.

Figure 4(i) shows the binding energies E, = Epy — E of the most strongly bound states (with energy E) with
respect to the conduction band minimum (with energy Ecg)) as function of the impurity charge Z. At low values
of Z, the 1s_(K/K’) and 1s_ (K/K') states are almost degenerate, but their binding energy difference increases with
increasing Z. A third impurity state originating from the local conduction band minimum at the 6 Q points of the
Brillouin zone crosses the two 1s (K/K’) states near Z= 0.6 and becomes the most strongly bound state for higher
values of Z. The crossover is again caused by the larger effective mass at Q point compared to the K and K’ points.
We have fitted the binding energies of these states to a power law of the form B+ AZ’, see Table 2, where B=0 for
states from K/K’ and B=0.267 eV for states from the Q-points. As for the acceptor impurity states, the exponents
of the donor states are significantly smaller than the 2D hydrogen value n=2.

Again, we compare the tight-binding results to effective mass theory. We first determine the subzone envelope
functions, Eq. (7), for the regions near the critical points at K and K'. In contrast to the valence bands, there is
no spin-orbit splitting of the conduction band states at K and K'. As a consequence, the conduction band states
at K and K’ with equal spin are degenerate and this gives rise to the observed pairs of impurity states with same
symmetry in Fig. 4. The subzone impurity states can couple and the resulting binding energy splitting is given by

Ao = 2|y xl(r = 0)¢y o(r = 0)V(q = K — K')J. (8)

We evaluate the splitting with the Keldysh approximation for V, using the Fourier transform of the screened
Coulomb potential in the Keldysh model. We find that the splitting is several orders of magnitude smaller than
the splitting found in the tight-binding model. This discrepancy is caused by the inaccurate behaviour of the
Keldysh model at large wave vectors, which is shown in the inset of Fig. 1, where the vertical black line indicates
|K — K’|. We note, however, that for such large wavevectors (corresponding to positions in the immediate vicin-
ity of the impurity) the use of the 2D dielectric function can cause inaccuracies, as Eq. 2 assumes that the dis-
tance from the impurity is significantly larger than the width of the MoS, sheet®. We show the binding energies,
found from effective mass theory using the Keldysh screening model for the splitting (see Fig. 4(i) as blue dashed
an green dot-dashed lines). The fitting parameters of the binding energies to a power law are compared to the
tight-binding results in Table 2.

The 1s impurity state wavefunctions from effective mass theory are given by

1
‘I’lsi(K/K/)(l') = ﬁ(@s,l{(")d)xﬁ') + ¢15,K1(T)¢K(f))’ )

where ¢, (r) denote the Bloch states of the unperturbed MoS, band structure at K and K. Notably, the states
with an s-character (Fig. 4(a,b,d and h)) exhibit an intensity modulation with a period of three unit cells along the
directions connecting nearest neighbours. Projecting the impurity states onto unperturbed Bloch states reveals
that all states originate from both the K and K’ points of the Brillouin zone, where the minimum of the conduc-
tion band occurs, see Fig. 3(b). The corresponding probability densities contain a term with a cos((K—K’) -r)
factor which gives rise to the oscillatory pattern in Fig. 4(a,e,d,h). In contrast to the impurity states with
s-character which derive from unperturbed states directly at K and K, the states with p-character mostly derive
from conduction band states in the vicinity of the band edges. As a consequence, the coupling between K and K’
is weaker for the p-states and the spatial modulation is not observed. We find that this modulation does not occur
when the defect is not placed on the transition-metal site.

Local density of states. Scanning tunnelling spectroscopy (STS) provides spatially-resolved information
about the electronic structure of surfaces and has been used to study the properties of shallow impurity states
induced by charged adatoms experimentally. The dI/dV curves obtained in STS are often assumed to be pro-
portional to the local density of states (LDOS) of the sample. We have calculated the LDOS for values of Z and
d that represent lithium (Li) and carbon (C) atoms adsorbed on a MoS,. For Li, Chang et al. found an impurity
charge of Z;;=0.63 from a Bader charge analysis*? of the DFT charge density'®. Using a similar procedure, Ataca
et al. determined Z,= —0.58 for a C atom adsorbed to Mo$S, above the Mo site!***. We modelled adsorbed atoms
sitting above the Mo site at a height of d;;=3.1 A and d. = 1.58 A'7-1%3, Screening by a SiO, substrate is included
via a substrate dielectric function of 3.7.

Figure 5(a,b) show the tight-binding LDOS for a C adatom on MoS, in the vicinity of valence band maximum
and the conduction band minimum, respectively. A 6 x 6 k-point mesh and a Gaussian broadening of 0.01 eV
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Figure 4. (a-h) Squared wavefunctions of bound impurity states for an impurity charge Q= +0.3¢ placed

2 A above the Mo site, with binding energies E, = Epy — E indicated (white). Hybridised states are separately
labelled with + subscripts. (i) Binding energy E; of hybridized 1s (K/K’) (green and blue) and 1s(Q) (magenta)
impurity states as a function of adatom charge Z for positively charged adatoms on MoS, from TB (solid lines)
and EMA (dashed lines).

were used. Near the VBM, several peaks originating from bound acceptor states can be observed in the band
gap. The peak from 1s(I") disappears more quickly as a function of distance from the adatom than the 1s (K/K)
peak. This is a consequence of the stronger localization of this state, see Fig. 2. At a distance of ~66 A from the
adatom, the LDOS of the perturbed system has converged to the LDOS of the pristine TMD. In the vicinity of the
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TB: 1s_(K) 0.743 1.42 127
EMA: Is_(K) 0513 1.24 154
TB: 15, (K) 0.588 1.29 16.4
EMA: 1s,(K) 0511 1.24 154
TB: 1s_(Q) 1.217 1.30 —

Table 2. Coefficients of donor state binding energy fits given by E, = —B+ AZ" from tight-binding (TB) and
effective mass theory (EMA) with the Keldysh model. All energies are referenced to the valence band maximum.
We also show the impurity state radius a;,,,(Z) = a }(Z) for Z=0.3.
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Figure 5. (a,b) LDOS of a lithium (Li) adatom on MoS, (4-SiO, substrate) near the (a) valence band and (b)
conduction band edge. (c,d) LDOS of a carbon (C) adatom on MoS, (4SiO, substrate) near the (c) valence band
and (d) conduction band edge. Results are shown for several distances from the impurity. In each graph, the
zero of energy is set to the band edge of the unperturbed MoS,.

CBM, no impurity states are present. However, the screened potential created by the adatom leads to a shift of the
unperturbed LDOS.

Figure 5(c,d) show the tight-binding LDOS for a Li adatom on MoS, in the vicinity of valence band maximum
and the conduction band minimum, respectively. The peaks near the CBM in the vicinity of the adatom originate
from bound donor states and can be observed up to a distance of ~25 A from the adatom. Note that the splitting
of the two impurity states from the K and K’ points is too small to be resolved. No impurity state peaks are found
in the vicinity of the VBM, but again the impurity potential causes a shift of the TMD LDOS.

Conclusions

In summary, we have studied the electronic properties of charged defects in transition-metal dichalcogenides.
Using tight-binding simulations with screened impurity potentials on unit cells containing up to 8,000 atoms, we
have calculated the binding energies and wave functions of shallow impurity bound states. Our key finding is that
the orbital character of the lowest lying impurity states depends sensitively on the magnitude of the defect charge.
For acceptor states, i.e., negatively charged defects, a crossover of impurity states with different orbital characters
occurs at a critical defect charge of Q= —0.32 e (with e being the proton charge). For defect charges above this

SCIENTIFICREPORTS| (2018) 8:13611 | DOI:10.1038/s41598-018-31941-1 8



www.nature.com/scientificreports/

value, the lowest impurity state from the I valley of the TMD band structure, which is dominated by contribu-
tions from Mo 4d,> orbitals, is more strongly bound than the degenerate impurity states from the K and K’ valleys
which are dominated by Mo 4d,, and Mo 4d,z_, orbitals. For donor states, i.e., positively charged defects, a
crossover between hybridized impurity states from the K and K’ valleys and impurity states from the Q valleys
occurs at a critical impurity charge of 4-0.6 e. To understand the competition between different impurity states,
we analyze their properties using effective mass theory. We find that the impurity binding energies can be
described by power laws of the defect charge, but with significant deviations from hydrogenic behaviour due to
screening. Importantly, the prefactor of the power law is determined by the effective mass and the significant
differences of the effective masses in the different valleys of the TMD band structure give rise to the observed
crossovers. Our calculations thus establish the defect charge as an important control parameter for tuning the
electronic structure of TMDs via defect engineering.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.

References
1. Liu, G, Xiao, D, Yao, Y., Xu, X. & Yao, W. Electronic structure and theoretical modelling of two-dimensional group-VIB transition
metal dichalcogenides. Chem. Soc. Rev. 44, 2643-2663, https://doi.org/10.1039/C4CS00301B (2015).
2. Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS, monolayer. Solid State Comm. 152, 909-913, https://doi.
org/10.1016/j.ss¢.2012.02.005 (2012).
3. Wang, Q. H,, Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional
transition metal dichalcogenides. Nat. Nano Tech. 7, 699-712, https://doi.org/10.1038/NNANO.2012.193 (2012).
4. Xu, J. et al. A two-dimensional semiconductor transistor with boosted gate control and sensing ability. Sci. Adv. 3, 1-8, https://doi.
org/10.1126/sciadv.1602246 (2017).
5. Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Comms.
8, 1-6, https://doi.org/10.1038/ncomms14948 (2017).
6. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes
in a monolayer dichalcogenide. Nat. Nano. 9, 262-267, https://doi.org/10.1038/nnano.2014.25 (2014).
7. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS,. Nat.
Nano. 8, 497-501, https://doi.org/10.1038/nnano.2013.100 (2013).
8. Kalantar-Zadeh, K. & Ou, J. Z. Biosensors based on two-dimensional MoS,. ACS Sens. 1, https://doi.org/10.1021/acssensors.5b00142
(2016).
9. Lin, Z. et al. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3, https://doi.org/10.1088/2053-
1583/3/2/022002 (2016).
10. Kuc, A., Heine, T. & Kis, A. Electronic properties of transition-metal dichalcogenides. MRS Bull. 40, 577-584, https://doi.
org/10.1557/mrs.2015.143 (2015).
11. Schmidt-Mende, L. & MacManus-Driscoll, J. L. ZnO - nanostructures, defects, and devices. Mater. Today 10, 40-438, https://doi.
org/10.1016/S1369-7021(07)70078-0 (2007).
12. Queisser, H. J. & Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 281, 945-950, https://doi.org/10.1126/
science.281.5379.945 (1998).
13. Janotti, A. & Van de Walle, C. G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, https://doi.org/10.1088/0034-
4885/72/12/126501 (2009).
14. Chin, K. K. Dual roles of doping and trapping of semiconductor defect levels and their ramification to thin film photovoltaics. J.
Appl. Phys. 111, https://doi.org/10.1063/1.4719046 (2012).
15. Leijtens, T. et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide
perovskite solar cells. Energy & Environ. Sci. 9, 3472-3481, https://doi.org/10.1039/c6ee01729k (2016).
16. Komesu, T. et al. Adsorbate doping of MoS, and WSe,: The influence of Na and Co. J. Phys.: Cond. Matt. 29, 0-7, https://doi.
org/10.1088/1361-648X/aa7482 (2017).
17. Rastogi, P., Kumar, S., Bhowmick, S., Agarwal, A. & Chauhan, Y. S. Ab-initio study of doping versus adsorption in monolayer MoS,.
Conf. Emerg. Electron. (ICEE) IEEE 2nd Int. 118, 30309-30314, https://doi.org/10.1109/ICEmElec.2014.7151215 (2014).
18. Chang, J., Larentis, S., Tutus, E., Register, L. F. & Banerjee, S. K. Atomistic simulation of the electronic states of adatoms in
monolayer MoS,. Appl. Phys. Lett. 104, https://doi.org/10.1063/1.4870767 (2014).
19. Ataca, C. & Ciraci, S. Functionalization of single-layer MoS, honeycomb structures. J. Phys. Chem. C 115, 13303-13311, https://doi.
0rg/10.1021/jp2000442 (2011).
20. Fang, H. et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991-1995, https://
doi.org/10.1021/n1400044m (2013).
21. Dolui, K., Rungger, L., Pemmaraju, C. D. & Sanvito, S. Possible doping strategies for MoS, monolayers: An ab initio study. Phys. Rev.
B 88, https://doi.org/10.1103/PhysRevB.88.075420 (2013).
22. Wong, D. et al. Spatially resolving density-dependent screening around a single charged atom in graphene. Phys. Rev. B 95, https://
doi.org/10.1103/PhysRevB.95.205419 (2017).
23. Corsetti, E, Mostofi, A. A. & Lischner, J. First-principles multiscale modelling of charged adsorbates on doped graphene. 2D Mater.
4, https://doi.org/10.1088/2053-1583/aa6811 (2017).
24. Bassani, F, Iadonisi, G. & Preziosi, B. Band structure and impurity states. Phys. Rev. 186, 735-746, https://doi.org/10.1103/
PhysRev.186.735 (1969).
25. Kohn, W. Shallow impurity states in silicon and germanium. Solid State Physics 5, 257-320, https://doi.org/10.1016/S0081-
1947(08)60104-6 (1957).
26. Rak, Z., Mahanti, S. D., Mandal, K. C. & Fernelius, N. C. Electronic structure of substitutional defects and vacancies in GaSe. J. Phys.
and Chem. of Solids 70, 344-355, https://doi.org/10.1016/j.jpcs.2008.10.022 (2009).
27. Shimizu, I. Physics of semiconductors. Phys. Lett. 15 (1965).
28. Liu, G., Shan, W. Y,, Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal
dichalcogenides. Phys. Rev. B 88, 085433, https://doi.org/10.1103/PhysRevB.88.085433 (2013).
29. Qiu, D. Y., daJornada F. H. & Louie, S. G. Screening and many-body effects in two-dimensional crystals: Monolayer MoS,. Phys.
Rev. B 93, https://doi.org/10.1103/PhysRevB.93.235435 (2016).
30. Ismail-Beigi, S. Truncation of periodic image interactions for confined systems. Phys. Rev. B 73, https://doi.org/10.1103/
PhysRevB.73.233103 (2006).
31. Bohm, D. & Pines, D. A collective description of electron interactions: I1. collective vs individual particle aspects of the interactions.
Phys. Rev. 85, https://doi.org/10.1103/PhysRev.85.338 (1952).

SCIENTIFICREPORTS| (2018) 8:13611 | DOI:10.1038/s41598-018-31941-1 9


http://dx.doi.org/10.1039/C4CS00301B
http://dx.doi.org/10.1016/j.ssc.2012.02.005
http://dx.doi.org/10.1016/j.ssc.2012.02.005
http://dx.doi.org/10.1038/NNANO.2012.193
http://dx.doi.org/10.1126/sciadv.1602246
http://dx.doi.org/10.1126/sciadv.1602246
http://dx.doi.org/10.1038/ncomms14948
http://dx.doi.org/10.1038/nnano.2014.25
http://dx.doi.org/10.1038/nnano.2013.100
http://dx.doi.org/10.1021/acssensors.5b00142
http://dx.doi.org/10.1088/2053-1583/3/2/022002
http://dx.doi.org/10.1088/2053-1583/3/2/022002
http://dx.doi.org/10.1557/mrs.2015.143
http://dx.doi.org/10.1557/mrs.2015.143
http://dx.doi.org/10.1016/S1369-7021(07)70078-0
http://dx.doi.org/10.1016/S1369-7021(07)70078-0
http://dx.doi.org/10.1126/science.281.5379.945
http://dx.doi.org/10.1126/science.281.5379.945
http://dx.doi.org/10.1088/0034-4885/72/12/126501
http://dx.doi.org/10.1088/0034-4885/72/12/126501
http://dx.doi.org/10.1063/1.4719046
http://dx.doi.org/10.1039/c6ee01729k
http://dx.doi.org/10.1088/1361-648X/aa7482
http://dx.doi.org/10.1088/1361-648X/aa7482
http://dx.doi.org/10.1109/ICEmElec.2014.7151215
http://dx.doi.org/10.1063/1.4870767
http://dx.doi.org/10.1021/jp2000442
http://dx.doi.org/10.1021/jp2000442
http://dx.doi.org/10.1021/nl400044m
http://dx.doi.org/10.1021/nl400044m
http://dx.doi.org/10.1103/PhysRevB.88.075420
http://dx.doi.org/10.1103/PhysRevB.95.205419
http://dx.doi.org/10.1103/PhysRevB.95.205419
http://dx.doi.org/10.1088/2053-1583/aa6811
http://dx.doi.org/10.1103/PhysRev.186.735
http://dx.doi.org/10.1103/PhysRev.186.735
http://dx.doi.org/10.1016/S0081-1947(08)60104-6
http://dx.doi.org/10.1016/S0081-1947(08)60104-6
http://dx.doi.org/10.1016/j.jpcs.2008.10.022
http://dx.doi.org/10.1103/PhysRevB.88.085433
http://dx.doi.org/10.1103/PhysRevB.93.235435
http://dx.doi.org/10.1103/PhysRevB.73.233103
http://dx.doi.org/10.1103/PhysRevB.73.233103
http://dx.doi.org/10.1103/PhysRev.85.338

www.nature.com/scientificreports/

32. Giannozzi, P. et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.:
Cond. Matt. 21, https://doi.org/10.1088/0953-8984/21/39/395502 (2009).

33. Deslippe, J. et al. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties
of materials and nanostructures. Comp. Phys Comms. 183, 1269-1289, https://doi.org/10.1016/j.cpc.2011.12.006 (2012).

34. Lannoo, M. The theory of impurity states in semiconductors. Physica Scripta T45, 135-139, https://doi.org/10.1088/0031-
8949/1992/T45/028 (1992).

35. Li, S. & Xia, J. Electronic states of a hydrogenic donor impurity in semiconductor nano-structures. Phys. Lett. A 366, 120-123,
https://doi.org/10.1016/j.physleta.2007.02.028 (2007).

36. Bassani, F.,, Iadonisi, G. & Preziosi, B. Electronic impurity levels in semiconductors. Rep. Prog. Phys. 37, https://doi.
org/10.1088/0034-4885/37/9/001 (1974).

37. Yang, X. L., Guo, S. H., Chan, E. T., Wong, K. W. & Ching, W. Y. Analytic solution of a two-dimensional hydrogen atom. I.
Nonrelativistic theory. Phys. Rev. A 43, 1186-1196, https://doi.org/10.1103/PhysRevA.43.1186 (1991).

38. Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 658 (1979).

39. Berkelbach, T., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal
dichalcogenides. Phys. Rev. B 88, https://doi.org/10.1103/PhysRevB.88.045318 (2013).

40. Cudazzo, P., Attaccalite, C., Tokatly, I. V. & Rubio, A. Strong charge-transfer excitonic effects and the Bose-Einstein exciton
condensate in graphane. Phys. Rev. Lett. 104, https://doi.org/10.1103/PhysRevLett.104.226804 (2010).

41. Kormanyos, A. et al. Monolayer MoS,: Trigonal warping, the I'-valley, and spin-orbit coupling effects. Phys. Rev. B 88, 1-8, https://
doi.org/10.1103/PhysRevB.88.045416 (2013).

42. Henkelman, G., Arnaldsson, A. & Jénsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mat.
Sci. 36, 354-360, https://doi.org/10.1016/j.commatsci.2005.04.010 (2006).

43. He, J., Wu, K, Sa, R,, Li, Q. & Wei, Y. Magnetic properties of nonmetal atoms absorbed MoS, monolayers. Appl. Phys. Lett. 96,
082504, https://doi.org/10.1063/1.3318254 (2010).

Acknowledgements

This work was supported through a studentship in the Centre for Doctoral Training on Theory and Simulation
of Materials at Imperial College London funded by the EPSRC (EP/L015579/1). We acknowledge the Thomas
Young Centre under grant number TYC-101. This work used the ARCHER UK National Supercomputing Service
(http://www.archer.ac.uk), and the Imperial College London High-Performance Computing Facility.

Author Contributions
J.L. and A.A.M. proposed the work, M.A. performed the calculations and all authors contributed to analyzing the
results. All authors reviewed and contributed to the writing of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31941-1.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

SCIENTIFICREPORTS| (2018) 8:13611 | DOI:10.1038/s41598-018-31941-1 10


http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1016/j.cpc.2011.12.006
http://dx.doi.org/10.1088/0031-8949/1992/T45/028
http://dx.doi.org/10.1088/0031-8949/1992/T45/028
http://dx.doi.org/10.1016/j.physleta.2007.02.028
http://dx.doi.org/10.1088/0034-4885/37/9/001
http://dx.doi.org/10.1088/0034-4885/37/9/001
http://dx.doi.org/10.1103/PhysRevA.43.1186
http://dx.doi.org/10.1103/PhysRevB.88.045318
http://dx.doi.org/10.1103/PhysRevLett.104.226804
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1016/j.commatsci.2005.04.010
http://dx.doi.org/10.1063/1.3318254
http://www.archer.ac.uk
http://dx.doi.org/10.1038/s41598-018-31941-1
http://creativecommons.org/licenses/by/4.0/

	Tuning electronic properties of transition-metal dichalcogenides via defect charge

	Methods

	Results and Discussion

	Acceptor States. 
	Donor States. 
	Local density of states. 

	Conclusions

	Acknowledgements

	Figure 1 RPA-screened potential of a charged adatom situated d = 2 Å above the Mo-atom in MoS2 with strength Z = 1 (blue solid curve) compared to the unscreened Coulomb potential (red dashed curve).
	Figure 2 (a–e) Squared wavefunctions of bound impurity states (TB model with RPA-screened potential), for an impurity charge Q = −0.
	Figure 3 (a) Binding energy Eb = E − EVBM of the 1s (K/K′) (blue) and 1s (Γ) (green) impurity states as a function of adatom charge Z for negatively charged adatoms on MoS2 from tight-binding calculations (solid lines) and the effective mass approximation
	Figure 4 (a–h) Squared wavefunctions of bound impurity states for an impurity charge Q = +0.
	Figure 5 (a,b) LDOS of a lithium (Li) adatom on MoS2 (+SiO2 substrate) near the (a) valence band and (b) conduction band edge.
	Table 1 Coefficients of acceptor state binding energy fits given by Eb = −B + AZη from tight-binding (TB) and effective mass theory (EMA) with the Keldysh model.
	Table 2 Coefficients of donor state binding energy fits given by Eb = −B + AZη from tight-binding (TB) and effective mass theory (EMA) with the Keldysh model.




