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Abstract

In this review paper, we are interested in the models and algorithms that allow generic simu-

lation and control of a soft robot. First, we start with a quick overview of modeling

approaches for soft robots and available methods for calculating the mechanical compli-

ance, and in particular numerical methods, like real-time Finite Element Method (FEM). We

also show how these models can be updated based on sensor data. Then, we are interested

in the problem of inverse kinematics, under constraints, with generic solutions without

assumption on the robot shape, the type, the placement or the redundancy of the actuators,

the material behavior. . . We are also interested by the use of these models and algorithms

in case of contact with the environment. Moreover, we refer to dynamic control algorithms

based on mechanical models, allowing for robust control of the positioning of the robot. For

each of these aspects, this paper gives a quick overview of the existing methods and a

focus on the use of FEM. Finally, we discuss the implementation and our contribution in the

field for an open soft robotics research.

1 Introduction

Providing modeling and control methods for soft robots has been the topic of many recent

works. This problem, which looked like a challenge a few years ago, now has technical solu-

tions, even if they sometimes remain incomplete. The scope of this document is to provide a

global view on model-based methods for soft robots. These robots being composed of deform-

able material, we are particularly interested in methods which account for a mechanical

modeling of these deformations based on numerical schemes such as Finite Element Methods.

We will recall that solutions exist to obtain real-time computation for these models. Then, we

will examine how—once the bases of modeling posed—inverse modeling and control methods

can be derived.

2 Soft robot modeling

Theoretically, soft robots have an infinite number of degrees of freedom. This makes them dif-

ficult to model analytically without strong assumptions. This section provides a quick review
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of modeling, from simplified analytical models to more generic, physics based, numerical

models.

2.1 Analytical models

The main advantage of analytical models is that they are very fast to compute and can be

derived easily for control law proofs. Their main limitation is their simplifying assumptions,

which will be detailed in the following parts.

2.1.1 Pseudo Rigid Body Model. Rod-like robots can be modeled using the Pseudo-Rigid

Body Model. Using this method, continuous elongated robots, such as steerable catheters used

in surgical robotics, are approximated by a n-link rigid manipulator with a torsional spring in

each link. This model assumes there is only bending and no torsion in the robot [1, 2].

2.1.2 Constant Curvature Model. The Constant Curvature Model is a simplifying

approach to allow closed form kinematics and enable computing the Jacobian of a soft contin-

uum robot. The main assumptions are that there is zero torsion—meaning that the deflection

is always planar—and that the bending section always takes the shape of a circular arc—con-

stant curvature [3].

The main advantage of this type of modeling is that it can be derived into Denavit-Harten-

berg parameters, Frenet-Serret frames, an integral representation or exponential coordinates.

This allows to use control laws adapted from rigid robotics.

Piecewise constant curvature models are used for robots shaped by continuously bending

actuators or tendons, concentric tube robots, and steerable needles. Initially, they were the

most used in the Soft Robotics literature [4]. Examples of applications include a cable-driven

octopus arm [5] and a pneumatic soft gripper [6]. Though this model has been extended to

handle dynamics [7] it still has major shortcomings. Especially this model is not valid if the

robot is subject to external forces which are out of its plane, such as gravity [8].

2.2 Numerical models

Numerical models discretize the geometry into a mesh and use a numerical solver, which

always makes approximations. Numerical models are, in theory, less precise than analytical

models but in the case of continuum mechanics for deformable solids, it’s often the opposite.

As there is no analytical solution for most of the cases, analytical models are only used in con-

tinuum mechanics for very simplified shapes, constitutive laws and boundary conditions, far

from the deformations obtained on soft robots.

2.2.1 Cosserat rod theory. To address some of the shortcomings of the models presented

before, physics based models of deformation were proposed. Cosserat geometrically exact

models for instance, based on Cosserat rod theory, were developed to model these same elon-

gated robots with a much improved accuracy [9] and in a mathematical framework close to

rigid robot models (local coordinates and integration of motions using the Lie group).

Using Cosserat models, deformable objects are represented as a space curve and a coordi-

nate frame of director vectors is associated to each point. These models can handle kinematics

and dynamics of objects undergoing large deformations such as threads in surgical simulations

[10] and of various soft robots, ranging from an octopus arm [11] to underwater bio-inspired

robots [12, 13]. The model is based on the deformation of a center line and sections perpendic-

ular to this line are considered rigid. Therefore, one limitation is that not all deformations are

taken into account. In addition, while the model simplifies the expression of strain forces,

complex numerical approaches are needed to integrate the dynamics. But this approach makes

possible to physically model the deformations, in particular by taking into account the consti-

tutive law of the materials.
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2.2.2 Finite element modeling. As illustrated in previous parts, it is difficult to obtain an

analytical mechanical model for soft robots and some models that keep an analytical descrip-

tion of the geometry, like Cosserat rods, are limited to specific shapes of robots. Moreover,

most of these models, do not yet model contacts precisely.

The Finite Element Method (FEM) is a numerical method for solving Partial Differential

Equations, which can be used to model soft robots [14]. This method can handle generic

shapes and constitutive materials. It can also model contact interactions between the soft robot

and other objects in the environment, soft or rigid [15]. This method is very well known and

widely used in industry, in particular for simulating multiphysics. It is very appealing in the

design process of complex systems (such as soft robots), with a easy loop between CAD and

numerical tests. The Finite Element Method was shown to be the most realistic in simulating

soft robots mechanics as it describes non-linearities better and can model interactions between

different materials within the same robot [16, 17].

The main drawback of using this method is its computation cost. Various methods have

been developed to model and simulate soft deformable objects in real time, for instance using

GPU computation in the context of haptic rendering [18, 19]. Fast implementation of the

Finite Element Method to model soft and deformable objects are abundant in the Computer

Graphics community [20, 21] and in the Surgical Simulation community [18, 22, 23]. Exam-

ples of applying this method to soft robots include [14, 24–31], and to haptic devices [19, 32].

FEM can also be leveraged to optimize the shape and mechanical properties of a soft robot or

its actuation [33–35].

Another promising method for speeding up the simulation is Model Order Reduction

[36, 37]. Using Model Order Reduction, Thieffry has shown the simulation is fast enough to

use it for dynamic control [30, 38, 39] (see also section 3.4). Finally, recent works in surgical

simulation explore using machine learning to learn the deformations of soft organs and tissues

[40, 41].

2.3 Online update of the models

Whatever the model used for the robot, an objective in robotics is to be able to update it

according to the information retrieved from sensors placed on the robot. In rigid robotics, for

example, a sensor is placed on the joints to measure their position and update the kinematic

model. In soft robotics, the difficulty is that the system theoretically has an infinite number of

degrees of freedom and it is therefore theoretically impossible to measure the complete state of

the system.

However, in practice, analytical models described above and Cosserat-type models have a

relatively small state, which for instance allows using visual servoing to update the model [42,

43] or more localized sensing like multi-magnet tracking [44]. Resistive, capacitive, inductive

or optical sensors have been also developed more widely in soft robotics [45] and are usually

coupled with analytical models to couple the physical measure to the deformation, like in [46]

for capacitive sensing. However, it is often difficult to combine information from various types

of sensors with these models.

FEM models allow multi-physics coupling and such a model can be used to integrate or

merge multi-sensor information [47]. However, with these numerical models, the state of the

robot is usually much larger and can not be fully sensed. In [26], a condensation of the FEM

model is used to write a kinematic model of the soft-robot in a reduced space. The full model

is then updated through visual servoing on a reduced number of feature points of the robot,

allowing closed loop control (see also section 3.2.2). This approach is extended in [48] to cap-

ture deformations and deduce external loads applied on a soft structure. An other possible
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strategy for FEM is to use model-order reduction to obtain a good dynamic model with a

reduced size. Then, it is shown in [39] that the information obtained from a magnetic tracking

system can update a state-observer in a context of dynamic control (see also section 3.4).

Despite this work, which shows significant progress, the updating of soft robots models

based on a sensor system remains a very open problem.

3 Soft robot control

3.1 Control methods using Forward Kinematics

3.1.1 Direct control. In the case of direct control, forward kinematic models can be used

to validate a robot’s design, as a proof of concept, to study the robot’s controllability, and to

optimize the placement of sensors. Examples of direct control of soft robots include a pneu-

matic actuated snake-like robot [49] and a caterpillar inspired robot actuated by shape mem-

ory alloy actuators [50]. Both use periodic electrical wave signals inputted to the actuators,

generating different gaits.

3.1.2 Learning based control. As soft robots can be tricky to model, a tempting solution

is to adopt a “model-free” approach and learn the control policy directly [51]. Several Rein-

forcement Learning algorithms have been used for continuum robot control (such as catheter

navigation in medical robotics [52]) and soft robotics control. Applications include manipula-

tion and navigation tasks. A recent survey of these applications to soft robotics can be found in

[53]. A subset of these applications can be found in the following table.

3.2 Control methods using Inverse Kinematics and Inverse Dynamics

3.2.1 Analytical methods. Analytical solutions require a low computational cost and

often reliably offer a global solution. In the case of rigid robotics, robots are often designed to

guarantee there exists a solution to the inverse kinematics problem. For soft robots, obtaining

such guarantees on an analytical inverse kinematics model requires strong assumptions on the

robot’s geometry. As an example, for rod-like robots, the Constant Curvature Model or the

Piecewise Constant Curvature Model provide analytical Inverse Kinematics Solutions [4].

Application examples include steerable concentric tubes [62] and a multi section continuum

trunk [63].

3.2.2 Jacobian based. In the context of rigid robotics, the Jacobian matrix is defined as the

differential relationship between actuator variables and end-effector position. One popular

way to solve the inverse kinematics problem is to invert this matrix. With some specific

assumptions, this Jacobian matrix can be extended to soft robotics.

In the example of a conical manipulator driven by cables [43], the Jacobian matrix can be

defined as the relationship between the 2D position of the robot’s tip and the cable tensions.

Application Algorithm used

Navigation of an autonomous

robot

Reach destination based on first person view and target image

[54]

A3C

Navigating on a path while avoiding pedestrians [55] PPO

Simultaneous Localisation and Mapping [56] Neural SLAM

Cognitive Mapping and Planning [57] DAGGer

Soft robotics manipulation Door opening [58] Modified NAF

Screwing a bottle, inserting a block in a hole [59] Extended GPS

Predicting optimal control [60, 61] MPC + GPS
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Authors then propose a control method based on the Jacobian inverse to solve the Inverse

Kinematics problem.

Assuming that the robot’s workspace has no singular configuration, that the actuators are

not constrained and that they can build a FEM-based simulation which is an observer of the

robot, Zhang and coauthors define a FEM-based Jacobian matrix and design a closed-loop

controller for a parallel soft robot using Jacobian pseudo-inverse [26, 64].

To control a deformable needle inside soft tissues, the Finite Element method is also used

to compute a Jacobian matrix of the coupled system and the Jacobian pseudo-inverse [65, 66].

3.2.3 Optimization based methods. 3.2.3.1 Problem formulation. The Inverse Kinematics

problem can be formulated as a constrained optimization problem. This formulation can han-

dle a large number of degrees of freedom, and singularities can be handled by adding con-

straints. This framework also handles actuator constraints and many design variables can be

included. This formulation is widely used in rigid robotics and computer graphics [67].

Numerous ways of solving such constrained optimization problems have been developed.

3.2.3.2 Non linear programming. A constrained optimization problem is non linear if either

the objective function or at least one constraint is a non linear function. In the computer

graphics community, constrained optimization has been used to compute muscle actuation to

animate a face [68], or optimize actuator placement and the material configuration of deform-

able objects [20] and plush toys [21], as well as the actuation to obtain given deformations.

3.2.3.3 Quadratic programming. If the objective function has a quadratic form and the con-

straints are linear, then the constrained optimization problem is a Quadratic Program.

In the Computer Graphics community, such a formulation has been used for instance to

model and animate tendons and muscles in human hands. Given the motion of the bones,

they use Quadratic Programming to compute the corresponding muscle activation and the

force transmission via the tendons [69].

In the context of surgical simulation, a Quadratic Program is used to register the move-

ments and deformations of deformable glands due to weight loss during radiotherapy [23].

Finally, Quadratic Programming is applied to the control of soft robots using cable and

pneumatic actuation in [70] and the results are validated using simulated and real robots. The

same control algorithms have also been used to create haptic interfaces [32] and have been

extended to use hydraulic actuators [71]. Finally, using two simulations running in parallel, a

closed loop controller can be designed. The first simulation is computing the Inverse Kinemat-

ics and is used to calculate the actuation. The second simulation, also based on a quadratic pro-

gram, uses the information of sensors, computes the Forward Kinematics and is used as a state

estimator [27].

3.2.4 Learning based methods. Recently, Machine Learning techniques have shown great

success in regression problems, essentially learning a mapping between input features and out-

put features. It is possible to create a dataset of robot configurations and postures. If one has

access to accurate simulations, this process can be sped up by running several simulations in

parallel to generate the data. A Machine Learning algorithm is then trained to learn the Inverse

Kinematics of the robot, meaning the mapping between the actuator variables and the robot

pose. The main advantage of these methods is that they are very fast to provide a solution to

the IK problem, and thus enable real time control. This method has been extensively studied

for computer graphics [67] and rigid robotics [72].

3.2.4.1 Feed forward neural network. Several works have used feed-forward neural networks

to learn the mapping between the end-effector pose and the actuator variables. This method

has been applied to controlling a soft robot based on Inverse Dynamics [73]. It has also been

applied to the control of a soft arm [74, 75] and soft manipulators [76, 77].
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3.2.4.2 Gaussian Process Regression. Another way to learn the IK or ID mapping is to rely

on statistical methods such as Gaussian Process Regression. The computer graphics commu-

nity have used these methods to generate natural looking poses of humanoid figures [78, 79].

Gaussian Process Regression has also been applied to rigid robotics [72] and most recently to

soft robots to learn the modeling error [80] or the Inverse Kinematics used for control [81].

3.3 Inverse Kinematics with contacts handling

One of the main advantages of soft robots over rigid ones is their intrinsic safety when interact-

ing with the environment. Thus most use cases of deformable robots involve contacts between

the robot and its surroundings. Control strategies should therefore account for contacts.

3.3.1 Jacobian based. A model-less approach can be used for controlling a continuum

manipulator’s end effector position [82]. The robot’s Jacobian is first estimated offline by mov-

ing each actuator in increments and observing the resulting end effector displacement. The

Jacobian is then updated online using measurements of actuators and end effector positions

and solving a constrained optimization problem. This control algorithm can handle environ-

ments with unknown obstacles.This work was extended to also handle force control [83].

3.3.2 Optimization based. Optimizing trajectories of rigid systems with a large number

of links and actuators can be done using Quadratic Programming. One of the key aspects is

including the contacts in a way that doesn’t render the search space discontinuous or too local

minima prone. [84] proposes to include the contact forces as decision variables in the optimi-

zation and use a complementarity formulation. [85] models contacts as continuous variables.

Using these strategies they are able to generate complex motions of several simulated rigid link

mechanisms.

In Computer Graphics, a common problem is that of moving a deformable object in a real-

istic manner. Automating part of this animation process requires modeling the physics of the

objects and the contacts with the environment. Several works use penalty-based contact mod-

els and solve a Quadratic Program to optimize the shape of the deformable characters and gen-

erate plausible motions [86, 87].

In the case of soft robots, external contacts will create deformations that will potentially

modify the robot kinematic relationship between inputs and outputs. There is therefore a total

coupling of the contacts with the inverse model of the robot. In this case, Signorini’s law can

be used to model contacts and a Quadratic Program with Complementarity Constraints can

be built. This method has been demonstrated on several robots, both simulated and real, for

navigation, locomotion and manipulation tasks. This framework also computes the IK at inter-

active rates [24, 88].

3.4 Dynamic control

Kinematic controllers are sometimes not sufficient to perform high speed tasks, or to

compensate for vibrations for instance. To tackle these issues dynamic controllers have been

designed.

3.4.1 Existing approaches and state of the art. To manage the dynamics, Quadratic Pro-

gramming can still be used by using a dynamic model of the soft robot. This makes it possible,

offline, to plan its trajectory. An open-loop approach is presented in [29]. In [89], a Sequential

Quadratic Program is used to solve the inverse dynamics of a fluid powered soft manipulator

and iterative learning control is leveraged to perform trajectory optimization.

In order to perform closed loop control, real time performance has to be obtained. Several

closed loop controllers based on the constant curvature or piecewise constant curvature mod-

els extended to dynamics have been proposed. Authors of [90] use the PCC hypothesis to
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describe their soft robot with Denavit-Hartenberg parameters and then use a dynamic control-

ler designed for rigid robotics to control their system. This work has been continued using syn-

ergistic control and an extended controller from rigid robotics [91].

In [92], authors use the Koopman operator to construct a linear model of a soft arm actu-

ated by pressure. Using this linear model they can perform Model Predictive Control by itera-

tively solving a quadratic program.

Based on a Cosserat model for statics and a Lagrangian model for dynamics [93], use Ritz

and Ritz-Galerkin approaches to design a dynamic controller for a continuum manipulator

and compares the results with several other models.

As stated before these models make the hypothesis of no deformation of the robot section,

only the centerline of the robot deforms. This makes it possible to have models that are very

quick to calculate.

In a more general design case, the use in real time of a FEM type numerical model, even if

calculated in real time, is not fast enough for a real time control of the dynamics (the calcula-

tion must be faster than the eigenfrequencies of the robot). However, by applying Model

Order Reduction techniques on FEM models, classical tools of control theory can be used to

control the dynamical behavior of soft robots in simulation [30], and on real robots actuated

by cables [39, 94] or pneumatics [95]. Stability can also be guaranteed using Lyapunov theory

[38] with a proof of robustness to modeling errors generated by the reduction. This work was

extended to use a reduced non linear model of the robot by leveraging a Linear Parameter

Varying model [31].

3.4.2 Current limitations and challenges. Dynamic models can be used offline for trajec-

tory calculation. By using dynamic models with few state variables (whether simplified or

reduced), it is possible to build low-level controllers for robots with guaranteed robustness.

Recent progresses in this challenge of dynamic control of soft robots are really impressive.

However, for performance reasons, these approaches do not yet integrate a correct manage-

ment of contacts and interactions with the environment, which is essential for robot

dynamics.

Moreover, the challenge ahead is undoubtedly to increase the performances of soft robots

that are still poor. It can be done by combining mechanical design and control strategies.

These two being generally separated.

4 Implementation

This paper presents several existing methods to model and control soft robots but emphasizes

the use of real-time FEM. This section focus on existing implementation of this approach.

4.1 SOFA

To model and simulate robots using the Finite Element Method, we use the free and open

source software SOFA [96]. SOFA uses the theory of continuum mechanics for the material

modeling, constraints are solved using Lagrange multipliers and contact interactions are han-

dled using Signorini’s law [24]. Internal forces are computed based on a user chosen deforma-

tion law. Several deformation laws are available: linear options such as Hook’s law, as well as

non linear strain-stress relationships or plastic deformations for instance. Several plugins are

also available to extend SOFA’s functionalities for multiple applications, ranging from medical

simulation to haptics. Some of these plugins are useful to soft robotics and will be described

further.
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4.2 SoftRobots and SoftRobots.Inverse plugins

SOFA was first intended for medical simulation. The SoftRobots plugin was introduced in

2017 to model and simulate deformable robots and their environment in SOFA [25]. The

plugin takes advantage of the model of continuum mechanics and the Finite Element Method

implemented in SOFA to apply them to simulating deformable robots. It also combines previ-

ous works on inverse FEM simulation [22, 32], soft robot control [14, 97] and real time simula-

tion [18]. The SoftRobots.Inverse plugin allows for optimization-based inverse model control

of soft robots based on Quadratic Programming, and can handle contacts [24].

4.3 Model Order Reduction

As expressed before, one of the main issues with the Finite Element Method is the computa-

tion cost. When using this method, the user must compromise some accuracy to be able to

achieve real time simulation. This can take the form of using a coarser mesh, or a larger simu-

lation timestep.

To address this issue, several approaches have been proposed to reduce the model. The

objective here is to find a model with fewer variables which faithfully describes the behavior of

the full order model according to some measure. Note that different measures may lead to dif-

ferent reduced models.

A plugin for Model Order Reduction is available in SOFA [36]. Using this plugin, the simu-

lation can be made fast enough for dynamic control [30, 31, 38, 39, 94]

4.4 Hardware platforms

In order to test the algorithms, several hardware platforms have been designed. These plat-

forms aim to test a broad variety of actuators and to represent a diversity of use cases. Most of

these robots are presented in [70] and [24].

The most recent results include holding and manipulating a deformable cup with a silicone

elephant trunk using Quadratic Programming [88] and a dynamic closed loop controller

based on a reduced model of this same robot was proposed in [39, 94] to cancel the vibrations.

Authors also compare open loop and closed loop control. A view of this robot holding a cup

can be found in Fig 1.

Authors of [28] show the full pipeline starting from the design of a soft manipulator called

Echelon 3, then modeling and simulating it using FEM. This allows to derive forward and

inverse models, used to design open loop and closed loop controllers. These controllers are

then experimentally validated and compared on the physical prototype and a haptic feedback

loop is created. A picture of the physical prototype can be found in Fig 2.

Fig 1. Soft gripper based on an elephant trunk holding a deformable cup.

https://doi.org/10.1371/journal.pone.0251059.g001
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5 Conclusion

The last decade has seen huge progress on low level control of soft robots, to the point that it is

now no longer a question of whether we can control a specific soft robot, but to what degree of

precision.

Performance of soft robots are not yet to the level of rigid robots though, and some work

still remains to be done on design optimization, design of controllers especially dynamic ones

and sensors.

Thanks to the use of models of soft robots for low level control, the higher level control and

decision making policies are very close to those already implemented for rigid robotics or

other fields such as autonomous driving. Indeed we can now use trajectory optimization or

Model Predictive Control on soft robots.

In this context, the usefulness of FEM and more generally of physics-based numerical mod-

els computed in real time, has been demonstrated: it unifies the modelling from design to con-

trol and allows interactions with the environment to be taken into account. In the future, these

methods will probably be coupled with learning approaches to correct modeling errors, to

complete the control with higher-level decisions and to obtain more automatically the numeri-

cal model of the robot in its environment.

Acknowledgments

Disclaimer: This paper conveys the authors’ views, which are that Finite Element Methods

should be more widespread in the soft robotics community. Indeed it is the authors’ belief that

those methods allow to bridge the gap between rigid and soft robots, thus allowing to use com-

mon robotic tools, such as inverse models, kinematic and dynamic control. The computation

time of these models has been greatly reduced by improvements in algorithms and increase in

computation power, which supports their use in robotics.

References
1. Greigarn T, Cavusoglu MC. Task-space motion planning of MRI-actuated catheters for catheter abla-

tion of atrial fibrillation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Chicago, IL, USA: IEEE; 2014. p. 3476–3482. Available from: http://ieeexplore.ieee.org/document/

6943047/.

Fig 2. The Echelon 3 soft manipulator.

https://doi.org/10.1371/journal.pone.0251059.g002

PLOS ONE Review on generic methods for mechanical modeling, simulation and control of soft robots

PLOS ONE | https://doi.org/10.1371/journal.pone.0251059 January 14, 2022 9 / 14

http://ieeexplore.ieee.org/document/6943047/
http://ieeexplore.ieee.org/document/6943047/
https://doi.org/10.1371/journal.pone.0251059.g002
https://doi.org/10.1371/journal.pone.0251059


2. Khoshnam M, Patel RV. A pseudo-rigid-body 3R model for a steerable ablation catheter. In: 2013 IEEE

International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE; 2013. p. 4427–

4432. Available from: http://ieeexplore.ieee.org/document/6631205/.

3. Ganji Y, Janabi-Sharifi F, Cheema AN. Robot-assisted catheter manipulation for intracardiac naviga-

tion. International Journal of Computer Assisted Radiology and Surgery. 2009; 4(4):307–315. https://

doi.org/10.1007/s11548-009-0296-z

4. Webster RJ, Jones BA. Design and Kinematic Modeling of Constant Curvature Continuum Robots: A

Review. The International Journal of Robotics Research. 2010; 29(13):1661–1683. https://doi.org/10.

1177/0278364910368147

5. Hesheng Wang, Weidong Chen, Xiaojin Yu, Tao Deng, Xiaozhou Wang, Pfeifer R. Visual servo control

of cable-driven soft robotic manipulator. In: 2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems. Tokyo: IEEE; 2013. p. 57–62. Available from: http://ieeexplore.ieee.org/

document/6696332/.

6. Marchese AD, Komorowski K, Onal CD, Rus D. Design and control of a soft and continuously deform-

able 2D robotic manipulation system. In: 2014 IEEE International Conference on Robotics and Automa-

tion (ICRA). Hong Kong, China: IEEE; 2014. p. 2189–2196. Available from: http://ieeexplore.ieee.org/

document/6907161/.

7. Falkenhahn V, Hildebrandt A, Neumann R, Sawodny O. Model-based feedforward position control of

constant curvature continuum robots using feedback linearization. In: 2015 IEEE International Confer-

ence on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE; 2015. p. 762–767. Available from:

http://ieeexplore.ieee.org/document/7139264/.

8. Renda F, Boyer F, Dias J, Seneviratne L. Discrete Cosserat Approach for Multisection Soft Manipulator

Dynamics. IEEE Transactions on Robotics. 2018; 34(6):1518–1533. https://doi.org/10.1109/TRO.2018.

2868815

9. Trivedi D, Lotfi A, Rahn CD. Geometrically Exact Models for Soft Robotic Manipulators. IEEE Transac-

tions on Robotics. 2008; 24(4):773–780. https://doi.org/10.1109/TRO.2008.924923

10. Pai DK. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics

Forum. 2002; 21(3):347–352. https://doi.org/10.1111/1467-8659.00594

11. Renda F, Giorelli M, Calisti M, Cianchetti M, Laschi C. Dynamic Model of a Multibending Soft Robot

Arm Driven by Cables. IEEE Transactions on Robotics. 2014; 30(5):1109–1122. https://doi.org/10.

1109/TRO.2014.2325992

12. Renda F, Giorgio-Serchi F, Boyer F, Laschi C. Modelling cephalopod-inspired pulsed-jet locomotion for

underwater soft robots. Bioinspiration & Biomimetics. 2015; 10(5):055005. https://doi.org/10.1088/

1748-3190/10/5/055005

13. Renda F, Giorgio-Serchi F, Boyer F, Laschi C, Dias J, Seneviratne L. A unified multi-soft-body dynamic

model for underwater soft robots. The International Journal of Robotics Research. 2018; 37(6):648–

666. https://doi.org/10.1177/0278364918769992

14. Duriez C. Control of elastic soft robots based on real-time finite element method. In: 2013 IEEE Interna-

tional Conference on Robotics and Automation. Karlsruhe, Germany: IEEE; 2013. p. 3982–3987. Avail-

able from: http://ieeexplore.ieee.org/document/6631138/.

15. Duriez C, Cotin S, Lenoir J, Neumann P. New approaches to catheter navigation for interventional radi-

ology simulation. Computer Aided Surgery. 2006; 11(6):300–308. https://doi.org/10.3109/

10929080601090623

16. Bartlett NW, Tolley MT, Overvelde JTB, Weaver JC, Mosadegh B, Bertoldi K, et al. A 3D-printed, func-

tionally graded soft robot powered by combustion. Science. 2015; 349(6244):161–165. https://doi.org/

10.1126/science.aab0129 PMID: 26160940

17. Polygerinos P, Wang Z, Overvelde JTB, Galloway KC, Wood RJ, Bertoldi K, et al. Modeling of Soft

Fiber-Reinforced Bending Actuators. IEEE Transactions on Robotics. 2015; 31(3):778–789. https://doi.

org/10.1109/TRO.2015.2428504

18. Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S, Duriez C. Real-time simulation of contact

and cutting of heterogeneous soft-tissues. Medical Image Analysis. 2014; 18(2):394–410. https://doi.

org/10.1016/j.media.2013.11.001

19. Courtecuisse H, Adagolodjo Y, Delingette H, Duriez C. Haptic rendering of hyperelastic models with fric-

tion. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg,

Germany: IEEE; 2015. p. 591–596. Available from: http://ieeexplore.ieee.org/document/7353432/.

20. Skouras M, Thomaszewski B, Coros S, Bickel B, Gross M. Computational design of actuated deform-

able characters. ACM Transactions on Graphics. 2013; 32(4):1. https://doi.org/10.1145/2461912.

2461979

PLOS ONE Review on generic methods for mechanical modeling, simulation and control of soft robots

PLOS ONE | https://doi.org/10.1371/journal.pone.0251059 January 14, 2022 10 / 14

http://ieeexplore.ieee.org/document/6631205/
https://doi.org/10.1007/s11548-009-0296-z
https://doi.org/10.1007/s11548-009-0296-z
https://doi.org/10.1177/0278364910368147
https://doi.org/10.1177/0278364910368147
http://ieeexplore.ieee.org/document/6696332/
http://ieeexplore.ieee.org/document/6696332/
http://ieeexplore.ieee.org/document/6907161/
http://ieeexplore.ieee.org/document/6907161/
http://ieeexplore.ieee.org/document/7139264/
https://doi.org/10.1109/TRO.2018.2868815
https://doi.org/10.1109/TRO.2018.2868815
https://doi.org/10.1109/TRO.2008.924923
https://doi.org/10.1111/1467-8659.00594
https://doi.org/10.1109/TRO.2014.2325992
https://doi.org/10.1109/TRO.2014.2325992
https://doi.org/10.1088/1748-3190/10/5/055005
https://doi.org/10.1088/1748-3190/10/5/055005
https://doi.org/10.1177/0278364918769992
http://ieeexplore.ieee.org/document/6631138/
https://doi.org/10.3109/10929080601090623
https://doi.org/10.3109/10929080601090623
https://doi.org/10.1126/science.aab0129
https://doi.org/10.1126/science.aab0129
http://www.ncbi.nlm.nih.gov/pubmed/26160940
https://doi.org/10.1109/TRO.2015.2428504
https://doi.org/10.1109/TRO.2015.2428504
https://doi.org/10.1016/j.media.2013.11.001
https://doi.org/10.1016/j.media.2013.11.001
http://ieeexplore.ieee.org/document/7353432/
https://doi.org/10.1145/2461912.2461979
https://doi.org/10.1145/2461912.2461979
https://doi.org/10.1371/journal.pone.0251059


21. Bern JM, Chang KH, Coros S. Interactive design of animated plushies. ACM Transactions on Graphics.

2017; 36(4):1–11. https://doi.org/10.1145/3072959.3073700

22. Coevoet E, Reynaert N, Lartigau E, Schiappacasse L, Dequidt J, Duriez C. Introducing Interactive

Inverse FEM Simulation and Its Application for Adaptive Radiotherapy. In: Golland P, Hata N, Barillot C,

Hornegger J, Howe R, editors. Medical Image Computing and Computer-Assisted Intervention – MIC-

CAI 2014. vol. 8674. Cham: Springer International Publishing; 2014. p. 81–88. Available from: http://

link.springer.com/10.1007/978-3-319-10470-6_11.

23. Coevoet E, Reynaert N, Lartigau E, Schiappacasse L, Dequidt J, Duriez C. Registration by interactive

inverse simulation: application for adaptive radiotherapy. International Journal of Computer Assisted

Radiology and Surgery. 2015; 10(8):1193–1200. https://doi.org/10.1007/s11548-015-1175-4

24. Coevoet E, Escande A, Duriez C. Optimization-Based Inverse Model of Soft Robots With Contact Han-

dling. IEEE Robotics and Automation Letters. 2017; 2(3):1413–1419. https://doi.org/10.1109/LRA.

2017.2669367

25. Coevoet E, Morales-Bieze T, Largilliere F, Zhang Z, Thieffry M, Sanz-Lopez M, et al. Software toolkit for

modeling, simulation, and control of soft robots. Advanced Robotics. 2017; 31(22):1208–1224. https://

doi.org/10.1080/01691864.2017.1395362

26. Zhang Z, Dequidt J, Kruszewski A, Largilliere F, Duriez C. Kinematic modeling and observer based con-

trol of soft robot using real-time Finite Element Method. In: 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). Daejeon, South Korea: IEEE; 2016. p. 5509–5514. Available

from: http://ieeexplore.ieee.org/document/7759810/.

27. Bieze TM, Largilliere F, Kruszewski A, Zhang Z, Merzouki R, Duriez C. Finite Element Method-Based

Kinematics and Closed-Loop Control of Soft, Continuum Manipulators. Soft Robotics. 2018; 5(3):348–

364. https://doi.org/10.1089/soro.2017.0079

28. Morales Bieze T, Kruszewski A, Carrez B, Duriez C. Design, implementation, and control of a deform-

able manipulator robot based on a compliant spine. The International Journal of Robotics Research.

2020; p. 027836492091048. https://doi.org/10.1177/0278364920910487
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