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We aim to extend the use of image quality metrics (IQMs) from static magnetic resonance imaging (MRI)
applications to dynamic MRI studies. We assessed the use of 2 IQMs, the root mean square error and struc-
tural similarity index, in evaluating the reconstruction of quantitative dynamic contrast-enhanced (DCE) MRI
data acquired using golden-angle sampling and compressed sensing (CS). To address the difficulty of obtain-
ing ground-truth knowledge of parameters describing dynamics in real patient data, we developed a Matlab
simulation framework to assess quantitative CS-DCE-MRI. We began by validating the response of each IQM
to the CS-MRI reconstruction process using static data and the performance of our simulation framework with
simple dynamic data. We then extended the simulations to the more realistic extended Tofts model. When
assessing the Tofts model, we tested 4 different methods of selecting a reference image for the IQMs. Results
from the retrospective static CS-MRI reconstructions showed that each IQM is responsive to the CS-MRI recon-
struction process. Simulations of a simple contrast evolution model validated the performance of our frame-
work. Despite the complexity of the Tofts model, both IQM scores correlated well with the recovery accuracy
of a central model parameter for all reference cases studied. This finding may form the basis of algorithms
for automated selection of image reconstruction aspects, such as temporal resolution, in golden-angle-
sampled CS-DCE-MRI. These further suggest that objective measures of image quality may find use in general
dynamic MRI applications.

INTRODUCTION
Motivation for ThisWork
Magnetic resonance imaging (MRI) can not only provide static ana-
tomical information but also capture dynamic processes such as the
uptake of an intravenously injected contrast agent with dynamic
contrast-enhanced MRI (DCE-MRI). Rather than using a fixed tem-
poral resolution for such dynamic scans, emerging methods based
on golden-angle sampling such as XD-GRASP (1) or CIRCUS (2)
allow retrospective temporal resampling at the time of image recon-
struction. This framework allows retrospective control of the tempo-
ral “footprint” by varying the number of k-space rays or spokes per
undersampled image, without necessarily requiring the use of view
sharing, which can introduce temporal blurring of fast dynamics (2,

3). Doing so allows one to flexibly optimize the trade-off between
better spatial quality (ie, low undersampling factor) and better tem-
poral quality (ie, high undersampling factor).

With additional reconstruction flexibility, however, comes
the need to optimize image reconstruction of that specific data
set and its associated spatiotemporal features. This is particularly
true when one considers the large and intertwined joint optimi-
zation space associated with these reconstructions, in which the
undersampling factor (ie, temporal footprint), the form of regula-
rization enforced, and the degree of regularization must all be
simultaneously examined.

Recently, it has become common to use objective image
quality metrics (IQMs) (4, 5) as an outcome measure or within
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the cost function of compressed sensing (CS) or with deep
learning–based image reconstruction (6–11). A recent study
by our group examined a broad range of IQMs to determine
the varying ability of these metrics to correlate with expert
radiologists’ rating of diagnostic image quality (12). Although
such an approach is sufficient in the reconstruction of a sin-
gle image data set with fixed undersampling factor, in a
data set with golden-angle sampling that allows multiple
potential reconstructions, most IQMs will be maximal for
the lowest undersampling factor possible, that is, with no
ability to resolve temporal dynamics. Therefore, additional
research is required to make use of IQMs in such a scenario,
and the approach using expert radiologist opinion may be
impractical.

Furthermore, the k-space sampling and image reconstruc-
tion factors that maximize the quality of diagnostic images from
a dynamic data set may not be the same ones that minimize the
parametric error when a model is subsequently fit to the data set
in a quantitative dynamic application, such as the Tofts pharma-
cokinetic model in the case of quantitative DCE-MRI (13, 14). For
example, while a radiologist may visually prefer a diagnostic
image with less noise, a reconstruction with increased image
noise but improved temporal frame rate may potentially
result in more accurate parameter fits. It is also not feasible
to present radiologists with thousands of images resulting
from the numerous permutations of k-space sampling and
reconstruction choices. The ability to automate the joint tun-
ing of golden-angle-sampled dynamic data reconstruction,
for example, through the use of an IQM-based approach,
would, therefore, potentially improve the accuracy of recov-
ered parameters in quantitative dynamic applications.

Goals of This Study
We determined the relationship between 2 well-established IQMs—
root mean square error (RMSE) and structural similarity index
(SSIM) (5)—and the subsequent fidelity of recovered dynamic
model parameters when applied to DCE-MRI with CS reconstruc-
tion of golden-angle-sampled data.

We began by assessing the properties of RMSE and SSIM in
static CS-MRI reconstructions using retrospectively under-
sampled data from pelvic scans as well as a numerical phantom.
This verified that each IQM was sensitive to the CS reconstruction
parameters on a patient-by-patient basis.

With verification of IQM response in basic CS-MRI applica-
tion, we then evaluated their ability to predict the quality of
golden-angle-sampled dynamic MRI data reconstructed with CS.
To this end, we developed a simplified simulation framework for
a dynamically evolving numerical phantom as a surrogate for
the assessment of CS-MRI in dynamic MRI procedures. The use
of a numerical phantom allowed for ground-truth knowledge of
the instantaneous temporal evolution. To validate our simulation
framework, we first analyzed cylindrical features that evolved
according to a monoexponential decay within a digital phantom.
Once validated on a simple closed-form signal evolution model,
we analyzed the more physiologically relevant extended Tofts
model of pharmacokinetics, which models the uptake of a con-
trast media in tissue.

METHODOLOGY
Modified CIRCUS k-Space Acquisition
Golden-angle sampling of k-space was simulated using a
modified CIRCUS acquisition (15), with a repetition time of
3.7milliseconds. Although multiple golden-angle sampling
techniques are possible, we chose CIRCUS because it is a
Cartesian trajectory, making for easy implementation and
analysis. CIRCUS subdivides k-space into nested squares on a
Cartesian grid, with rudimentary sampling patterns formed by
selecting one point from each square according to a golden-
angle rotation (2). We refer to these rudimentary sampling
patterns as “quanta.” The 2D CIRCUS patterns are extended for
use in 3D imaging by extending the sampling mask along the
third dimension (ie, the frequency encoded dimension). The
shapes of each quanta are controlled by parameters b and c,
which apply linear and nonlinear shifts to the position of suc-
cessive samples and may loosely be thought of as contributing
to the “shear” and “twist” of the quanta. The value of b must
be positive, and c should be between 1 and 2; using b ¼ 0 and
c ¼ 1 yields quanta that are straight lines, whereas b � 1 and
c ¼ 2 maximizes randomness. For this work, we set b ¼ 40
and c ¼ 1:5, which are consistent with the values recom-
mended by the authors of CIRCUS.

Individual quanta are too highly undersampled to yield use-
ful images, so they were combined into groups of 10 to form
“packets.” Quantities of packets ranging from 3 to 21 in steps of
2 were then interleaved in various numbers when forming image
reconstructions. The number of packets interleaved then dictated
the temporal resolution of the resulting reconstructions, where
more packets meant a larger temporal footprint.

The k-space data were sampled by taking the Fourier trans-
form of the image and selecting the coefficients indicated by the
CIRCUS packets. In addition, we opted to perform the studies pre-
sented herein without the addition of simulated noise to the sig-
nal. We acknowledge this to be a simplification of the underlying
signal acquisition physics; however, it allows a preliminary
investigation of the application of IQMs to the analysis of
dynamically evolving data and to determine their fundamental
response to such data in the absence of external factors, which is
the goal of the present work.

Retrospective Static Pelvic CS-MRI
To show the performance of IQMs in static MRI data as a function
of reconstruction parameters, 15 static pelvic images were retro-
spectively undersampled. The acquisition of patient data for this
research was approved by the Nova Scotia Health Authority
Research Ethics Board and complied with all ethical obligations.
Data were acquired on a GE MR750 3 T system using a 32-chan-
nel abdominal radiofrequency coil array and a 3D spoiled gradi-
ent echo sequence (DISCO) (16) with fat separation. Data were
acquired with auto-calibrated parallel imaging (acceleration
factor 2) in the phase-encoding direction, with all omitted
lines reconstructed before retrospective undersampling.

Retrospective undersampling of the static pelvic images was
performed using the modified CIRCUS acquisition described pre-
viously. Combinations of packets were chosen resulting in under-
sampling factors ranging from 1 to 12 in steps of 0.5. CS
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reconstructions used the Berkeley Advanced Reconstruction
Toolbox (17) to solve the following system:

argmin
r

kF r½ � � kk22 þ l kWrk1
� �

(1)

where F is the Fourier transform operator, r is the estimated
image reconstruction, k are the measured k-space data, and l is
the regularization weight given to enforcing sparsity in the trans-
form domain W at the expense of data consistency. The trans-
form domain W should be a basis within which the image can be
represented by relatively few elements; said another way, the
image must be compressible within W (18). A limiting factor in
the choice ofW is the ability of the basis to represent the image in
this way. A regularization weight l of 0 represents no enforce-
ment of sparsity in the domainW, and increasing values of l rep-
resent a compromise wherein data consistency requirements are
relaxed to allow for a solution to be found that is sparse in W.
Choosing l ¼ 0, therefore, results in no application of CS, and
very large values of l will result in reconstructions that are of
poor quality owing to a lack of consistency with the acquired
data. An appropriate choice of l is typically relatively small, and
the final value of l to use in a CS reconstruction has frequently
been an empirical choice.

For this reconstruction, we chose a wavelet basis for W and
used values of l ranging from 0 to 0.08 in steps of 0.002. The
quality of the resulting image reconstructions was assessed by
RMSE and SSIM.

Dynamic CS-MRI Simulations
Simulations were written in Matlab 2016b (The MathWorks,
Natick, MA). A digital phantom of size 200 � 200 � 32 voxels
was designed to contain features that evolve over time. The
embedded features of the phantom are shown in Figure 1. The
plane of the embedded cylindrical features at the very center
of the phantom was chosen for assessment in this work, with
the remaining features in the phantom intended to provide
flexibility for future work. Within the plane of the embedded
cylindrical features used, we placed regions of interest (ROIs)
inside the inner cylindrical features of a row of cylinders,
shown in yellow in Figure 1, for quantitative parameter recon-
structions. The ROIs for each embedded cylindrical feature
were combined and averaged for analysis. In total, 596 voxels
were used in the combined ROIs.

For this work, we simulated 2 scenarios. To begin, a simple
monoexponential decay model was simulated. This model con-
sisted of 2 free parameters—the initial amplitude and the decay
rate of the signal amplitude. In total, 200 packets were acquired
during the simulated evolution of the phantom, with individual k-
space samples acquired at a simulated interval of 3.7milliseconds.
This result corresponded to 2minutes and 32 seconds of simulated
data acquisition. From these simulations, we fit the model to the
reconstructed time-courses extracted from each voxel to recover
both the initial magnitude and decay rate parameters. The use of a
simple model such as this one validated that the simulations were
providing rational results before extending it to a more realistic
and complex one such as the extended Tofts model. For validation,
we expected the following:

1. A trade-off between temporal resolution and image quality
would be evident.

2. The temporal footprint (ie, the undersampling factor) used
would have a larger effect than the degree of regularization
applied.

Following the simple simulations described previously, fea-
tures in an extended Tofts model were then simulated to evolve
according to equation [2]:

Ct tð Þ ¼ vpCp tð Þ þ Ktrans

ðt
0

Cp tð Þe�Ktrans
ve t�tð Þdt : (2)

The concentrations of contrast agent in the tissue and in the
blood plasma are represented in equation [2] by Ct tð Þ and Cp tð Þ,
respectively. The terms ve and vp represent the volume fraction in
tissue of the extravascular extracellular space and blood plasma,
respectively. The term Ktrans in equation [2] is a transfer constant,
which is indicative of the permeability of the vasculature. From
these simulations, we fit equation [2] to the reconstructed time-
courses extracted from each voxel to recover Ktrans. To imple-
ment equation [2], we used a population-averaged arterial input

Figure 1. Internal features of the digital phan-
tom embedded in a homogeneous static back-
ground.Within each plane of pin-grids (shown
in brown), all grids can be made to evolve to-
gether according to a user-designed function.
Within each plane of embedded cylinders, the
outer cylinders (shown in orange) can be made
to evolve together according to a user-designed
function, and the inner cylinders (shown in yel-
low) can be made to evolve independently
along each row. The interior cylinders in one
plane of embedded cylindrical features, indi-
cated by a red arrow, were used for this work; a
2D view of this slice is given in Figure 2F.
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function (AIF) to define Cp tð Þ at each point in time (19). The
Tofts model–defined time-courses evolved for 2minutes and 30
seconds, with the contrast agent introduced after 30 seconds.
This allowed for the collection of 197 packets.

We interleaved differing numbers of packets before CS-
MRI image reconstruction when making reconstructions of
both the monoexponential decay and the Tofts model sce-
narios. Combinations of 3–21 packets, in steps of 2 packets,
were supplied to Berkeley Advanced Reconstruction Toolbox’s
pics command, which performs an eSPIRiT-based parallel imag-
ing and CS image reconstruction (20), enforcing a wavelet spar-
sity constraint with regularization weights of 0–0.05 in steps of
0.005. This corresponded to undersampling factors ranging from
12.5 to 2, where the undersampling factor is defined as the recip-
rocal of the fraction of the k-space matrix that is sampled, for
example, sampling 50% of the k-space coefficients results in an
undersampling factor of 2. We chose to present the results of this
portion of the study as a function of the number of packets, rather
than of the undersampling factor, because it is the number of pack-
ets that the user has control over. These packet combinations corre-
sponded to simulated temporal windows of�2–13 seconds.

For the simple dynamic simulations consisting of a monoex-
ponential decay, the reference image was taken to be the instanta-
neous value of the numerical phantom at the average time of all
constituent packets; this is referred to as the instantaneous refer-
ence image. For the dynamic simulations using the Tofts model of
signal evolution in equation [2], 3 additional reference images
were generated from the simulated data. In practice, an instanta-
neous reference image would not be available, so this step allowed
us to test the feasibility of using a data-generated reference image.
The following were the 3 data-generated references:

1. A precontrast reference image made by acquiring an extra
30 seconds of data before contrast enhancement and com-
bining all packets up until 5 seconds before contrast
enhancement.

2. A peak-AIF reference image, made by combining all pack-
ets in a 20-second window starting at the peak of the AIF
used to get Cp tð Þ in equation [2].

3. A late-contrast reference image, made by combining all
packets in the last 20 seconds of data acquisition where the
contrast dynamics are relatively slow.

In testing these 3 additional data-generated references,
reconstructions were made using 3–21 packets as described pre-
viously, but only a single regularization weight of 0.05 was used.

ImageQuality Assessment
RMSE and SSIM were implemented as 3D IQMs. RMSE was
implemented by calculating the voxelwise errors between the
reconstructed image ID and the reference image IR, which is
given by equation [3]:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NxNyNzo
Nx

i¼1
o
Ny

j¼1
o
Nz

k¼1

IR i; j; kð Þ � ID i; j; kð Þ½ �2
vuuut :

(3)

The terms Nx , Ny, and Nz in equation [3] represent the num-
ber of voxels in the images along each dimension. We then

normalized the value given by equation [3] by dividing by the
average intensity of the reference image. A perfect RMSE score
is 0, indicating no difference at all between the voxel contents in
ID and IR.

The image processing toolbox in Matlab includes a 3D
implementation of SSIM (21), which we used for this work. SSIM
was calculated by equation [4]:

SSIM ¼ 2mRmD þ C1ð Þ 2sRD þ C2ð Þ
m2
R þm2

D þ C1
� �

s2
R þ s2

D þ C2
� � (4)

where mR and mD represent the average of the reference image
and the reconstructed image in an 11� 11 � 11 voxel window, ,
respectively; sR and sD represent the standard deviations of
voxel values within the window in each image; and sRD repre-
sents the cross-covariance for the images in the window. The
constants were chosen as C1 ¼ 0:01L and C2 ¼ 0:03L, where L is
the maximum value of the image. The window size and the pa-
rameters specified were chosen for calculating SSIM because
they represented the default values suggested by Wang (5) and
implemented within Matlab (21). SSIM ranges between �1 and
1, with the score of 1 indicating optimal structural similarity
between the ID and IR.

For IQM calculations during the retrospective static pelvic
MRI investigation, IQM scores were calculated by comparing the
CS-MRI reconstruction with the original reference image.

For IQM calculations during the dynamic simulations, RMSE
and SSIM were calculated for each reconstructed image by com-
paring the reconstruction with the references outlined previously.
This resulted in many IQM scores over time for a single simula-
tion, which were then averaged to output a single IQM score that
was representative of the entire simulation. Time-courses were
extracted voxel by voxel from the expected feature locations in
the reconstructed images. The exponential model parameters
were recovered using the lsqcurvefit function in the Matlab opti-
mization toolbox (22). The Tofts model parameters were recov-
ered using a modified version of the ROCKETSHIP toolbox (23).
The accuracy of recovered model parameters was compared with
the known input parameters to assess the quantitative accuracy
of the reconstructed temporal data.

RESULTS
Retrospective Static Pelvic CS-MRI
Figure 2 shows the effect of varying the regularization weight for
a wavelet sparsity constraint and the undersampling factor for
static CS-MRI reconstructions of retrospectively undersampled
data, from a representative patient and from static numerical
phantom data. In general, higher SSIM score corresponded to
lower RMSE score. The regularization weight resulting in prefer-
ential IQM score (defined as the maximal SSIM or the minimal
RMSE) tended to differ between the IQMs at each undersampling
factor. This is shown in Figure 3, which displays the regulariza-
tion weight resulting in preferential IQM score for static CS-MRI
reconstructions at each undersampling factor for all 15 patients
in the study and our numerical phantom. It was additionally
observed that the preferential regularization weight varied
among patients in the study. The preferential regularization
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weight increased monotonically with an increase in the under-
sampling of k-space for most patients, but not for all.

Simulations of Dynamic Digital PhantomWith
Monoexponential Signal Evolution
Figure 4 shows the effect of changing the regularization weight
and the number of packets used in a simple CS-DCE-MRI sce-
nario, where features evolve in intensity according to a monoex-
ponential decay. While choosing a regularization weight of 0
consistently resulted in poorer performance, nonzero regulariza-
tion weights were observed to improve the time-course fidelity.
Using too few packets resulted in poor time-course fidelity owing
to image degradation, and it was generally observed that proper
choice of the number of packets included in a reconstruction had
a larger effect than tuning of nonzero regularization weights.

Figure 5 shows the relationship between the recovery accu-
racy of quantitative parameters describing a monoexponentially

decaying feature and the image quality as assessed via RMSE
and SSIM. Within Figure 5, reconstructions made using different
numbers of packets have been color coded, and each color-coded
group contains reconstructions made with regularization weights
ranging from 0 to 0.05. Within each color-coded group, an out-
lier data point may be observed at a worse IQM score. These out-
liers corresponded to reconstructions made with a regularization
weight of 0. Increasing the number of packets used in image
reconstruction was only beneficial to a point, beyond which the
error in each parameter again grew in magnitude. This outcome
shows the expected trade-off between temporal resolution and
image quality.

For both the amplitude and the decay parameter, a correla-
tion between the error of the parameter recovery and each IQM
score was observed. These correlations were quantified using the
Pearson linear correlation coefficient (PLCC), which measures
linear correlations, and the Spearman rank correlation coefficient

Figure 2. Examples of the effect of under-sampling factor and regularization weight on the root mean square error
(RMSE) and structural similarity index (SSIM) scores for static compressed sensing–magnetic resonance imaging recon-
structions. RMSE and SSIM scores for representative retrospectively undersampled patient data are shown in (A) and (C),
respectively, whereas RMSE and SSIM scores for numerical phantom data are shown in (B) and (D), respectively.
Unprocessed images of the patient and of the numerical phantom are shown in (E) and (F), respectively.
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(SRCC), which measures the extent of a more general monotonic
relationship. The values of the PLCC and SRCC for the data in
Figure 5 are shown in Table 1.

Simulations of Dynamic Digital PhantomWith Tofts
Model Signal Evolution
Figure 6 shows the effect of changing the regularization weight
and number of packets in a CS-MRI reconstruction on the recov-
ered time-course fidelity of features whose intensity evolves
according to equation [2]. The same observations seen in the
monoexponentially evolving phantom simulation were observed

in this case. In addition, the choice of temporal resolution, made
through the choice of the number of packets to include in an
image reconstruction, most affected the ability to resolve the pe-
riod of rapid contrast enhancement.

Figure 7 shows the relationship between the recovery ac-
curacy of Ktrans and the image quality as assessed via RMSE
and SSIM. Color coding follows the same convention as
described for Figure 5. Both RMSE and SSIM show the abil-
ity to define a range of IQM scores within which Ktrans error
is minimized, similar to the results for the simple simulation
with a monoexponentially evolving phantom. The correlations

Figure 3. Preferential regularization weights with increasing undersampling factor are shown for the RMSE and the
SSIM in (A) and (B), respectively. The preferential score was defined as the maximal SSIM or the minimal RMSE at each
undersampling factor.

Figure 4. Examples of the fidelity of the average reconstructed time course for an exponentially decaying feature. There
were 11 packets used in (A) as the regularization weight was varied, whereas (B) used a regularization weight of 0.01
and varied the number of packets included in image reconstruction.
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between the recovery accuracy of K trans and RMSE and SSIM
scores are shown in Table 2.

Figure 8 shows the relationship between IQM scores and the
recovery accuracy of Ktrans for the 4 different reference image
scenarios described earlier, reconstructed with a regularization
weight of 0.05. The choice of reference image was found to
change the absolute values of the IQM score corresponding to a
given parameter recovery accuracy and, in particular, the score
corresponding to minimum parameter error. However, a clear
relationship between IQM score and parameter accuracy was
observed for all choices, and the observed correlations are shown
in Table 3.

DISCUSSION
Retrospective Static Pelvic CS-MRI
We assessed the response of RMSE and SSIM to wavelet regulari-
zation weight and k-space undersampling factor. Both IQMs show
that there is a general decline in image quality as the undersam-
pling factor is increased. Furthermore, at each undersampling fac-
tor, the effects of under or overregularizing the image are
captured by the IQMs as a variation in their reported scores. There
was also a tendency for the preferential regularization weight at
each undersampling factor to differ slightly between patients and
to not always change monotonically. This was true for both RMSE
and SSIM, showing their sensitivity to CS-MRI reconstruction pro-
cess for individual patients. The patient results potentially suggest
the presence of 2 subpopulations of preferred CS regularization
weights, evident in Figure 3; future research can be conducted to
assess which image properties caused differences between the
responses of the IQMs to each patient on an individual basis that
may lead to such subpopulations in CS-MRI reconstruction pa-
rameters. The present results serve to confirm that each IQM is
sensitive to the CS-MRI reconstruction process on a patient-by-
patient basis when reconstructing golden-angle-sampled data.

These IQMs could thus be used on a patient-by-patient basis
to guide the selection of image reconstruction parameters. These
results motivate the assessment of IQMs in selecting image acqui-
sition parameters for CS-DCE-MRI, where the appropriate choice
of temporal resolution (ie, undersampling factor) and CS regula-
rization weight is essential.

Figure 5. Relationship between RMSE scores with the recovery accuracy of quantitative parameters in simulated data
of a monoexponentially decaying feature are shown in (A) and (C), whereas the relationship with the SSIM are shown in
(B) and (D).

Table 1. Correlations between IQM Scores
and Error in the Recovered Monoexponential
Decay Parameters for the Data in Figure 5

RMSE SSIM

Initial Amplitude
PLCC �0.973 0.982

SRCC �0.986 0.949

Decay Rate
PLCC 0.959 �0.963

SRCC 0.937 �0.882

Abbreviations: PLCC, Pearson linear correlation coefficient; SRCC,
Spearman rank correlation coefficient; RMSE, root mean squared
error; SSIM, structural similarity index
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We note that the magnitude of each IQM, as well as the
preferential regularization weight at each undersampling
factor, tended to differ in magnitude between the synthetic
phantom and the patient data. This is in part owing to the
highly nonanthropomorphic nature of our simple synthetic
phantom. Although our present work has established a basic
understanding of the expected trends in RMSE and SSIM
scores as a function of CS regularization weight and under-
sampling factor, we stress that our current work does not offer a
quantitative rule to select these parameters. Future work may use a

more anthropomorphically correct phantom that is expected to
more closely mirror the reconstruction parameters desirable for
real patient data.

We acknowledge that in practice, RMSE and SSIM may not
be suitable for the assessment of prospectively accelerated static
images. This is owing to the lack of a suitable reference image
and the redundancy in generating one. However, the response of
RMSE and SSIM IQMs in our simulated study indicates that alter-
native reference-free IQMs might be a worthwhile area of investi-
gation for this purpose.

Figure 6. Examples of the fidelity of the average reconstructed time course for a voxel evolving according to the Tofts
model described by equation [2], where the number of packets was held constant in (A) and the regularization weight
was held constant in (B).

Figure 7. Relationship between RMSE scores with the recovery error in quantitative parameters in simulated data of a
feature evolving according to the Tofts model described by equation [2] are shown in (A), whereas the relationship with
the SSIM is shown in (B).
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Simulations of Dynamic Digital PhantomWith
Monoexponential Signal Evolution
To validate our simulation framework in the context of CS-DCE-
MRI, we first simulated a phantom containing features that
evolved according to a simple monoexponential function. This
simple model allowed us to determine the effects of CS-DCE-MRI
reconstructions on the accuracy of recovery of parameters
describing contrast enhancement.

Image reconstruction parameters affected the recovered
time-courses as we expected they should have. The reconstructed
time-courses were most affected by the number of packets
included in the reconstruction. While the choice of regularization
weight was also found to influence the accuracy of the recon-
structed time-course, in practice, any reasonable nonzero regula-
rization weight was found to be beneficial.

Choosing too high of a temporal resolution (ie, a lower number
of packets per reconstruction) degraded the image quality owing to
the increased presence of incoherent aliasing artifacts, whereas
choosing too low of a temporal resolution (ie, a larger number of
packets per reconstruction) reduced the ability to capture the

dynamic signal evolution. This outcome shows the expected com-
promise between temporal resolution and image quality.

We observed that the scale-related (ie, amplitude) and rate-
related (ie, decay constant) parameters in our monoexponential
model responded differently to the adjustment of CS regulariza-
tion weight. In general, the use of a nonzero regularization
weight was found to improve the IQM scores without affecting
the recovery accuracy of the rate parameter. When recovering
the scale parameter with a nonzero regularization weight, the re-
covery accuracy was found to have a positive offset compared
with recovery with a regularization weight of 0. This shows the
sensitivity of various model parameters to aspects of the image
reconstruction process. For example, the scale parameter should
be sensitive to losses in overall image intensity, whereas the rate
parameter should be relatively robust to such an effect.

We also note that in the limit of a perfect IQM score (SSIM =
1 or RMSE = 0), the results would not yield perfect recovery accu-
racy of quantitative parameters. To achieve a perfect IQM score,
assuming a noiseless simulated acquisition, a complete sampling
of k-space would be required for a given image reconstruction.
The temporal span of all the interleaved data for each image
reconstruction would then span a period long enough to intro-
duce blurring of the signal evolution. This trade-off in image
reconstruction quality for the appropriate temporal resolution is
captured by each IQM in our results, where continuously increas-
ing the number of packets included in each image reconstruction
was found to improve the IQM scores while degrading parameter
recovery accuracy past a certain point.

The results from the monoexponentially evolving features
thus agree with predictable outcomes, verifying the utility of our
simulation framework for CS-DCE-MRI investigations. In partic-
ular, these results allow us to confidently determine a more com-
plex contrast-enhancement model.

Table 2. Correlations between IQM Scores
and the Error in the Recovered Tofts Model
Parameter for the Data in Figure 7

RMSE SSIM

Ktrans
PLCC �0.986 0.968

SRCC �0.975 0.929

Abbreviations: PLCC, Pearson linear correlation coefficient; SRCC,
Spearman rank correlation coefficient; RMSE, root mean squared
error; SSIM, structural similarity index

Figure 8. Effect of choosing each of the different reference images, and the relationship that results between each
image quality metric and the recovery accuracy of Ktrans. Results for the RMSE are shown in (A), whereas results for the
SSIM are shown in (B). Images were reconstructed with a regularization weight of 0.05.
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Simulations of Dynamic Digital Phantomwith Tofts Model
Signal Evolution
The Tofts model exhibits an underlying signal evolution with more
complex and physiologically relevant features. This increased tem-
poral signal complexity further motivates the requirement to prop-
erly select the image reconstruction parameters in a physiologically
realistic CS-DCE-MRI application.

Similar to the monoexponentially evolving signal model,
the reconstructed time-course for the Tofts model was most sen-
sitive to the number of packets included in the reconstruction.
The effect of choosing too low or too high of a temporal resolu-
tion was especially pronounced on the recovered time-courses
owing to their more complex structure; the period of rapid signal
enhancement between 0 and 10 seconds was especially prone to
losing its structure.

If RMSE or SSIM were to be implemented in a clinical setting,
there would be no “instantaneous reference image,” unlike in our
simulated data, and some appropriate choice of a reference image
would need to be made. In addition to IQM scores calculated by
using the instantaneous reference image, we determined the possi-
ble use of 3 realistic methods of obtaining a data-generated refer-
ence image. Despite the more complex model for signal evolution
under the Tofts model, the recovery accuracy of Ktrans was found
to correlate very well with both IQMs for all 4 reference images
tested. This suggests that RMSE and SSIM may be used to select
the appropriate reconstruction parameters in CS-DCE-MRI to
reach a minimum tolerance of parameter recovery accuracy. These
results motivate further assessment of the use of these IQMs to
guide CS-DCE-MRI reconstructions for patients in clinical settings.
For example, algorithms incorporating RMSE or SSIM could be
developed for the automated selection of image reconstruction pa-
rameters in golden-angle-sampled CS-DCE-MRI.

We note that we have made direct use of a population-
averaged AIF in our present study. Patient-specific measure-
ment of pharmacokinetic parameters should ideally make use
of a patient-specific AIF, which affects the Cp tð Þ term in
equation [2] through measurement uncertainties introduced
by inadequate temporal resolution. Our direct use of a

population-averaged AIF ignores the extra error that would
be introduced into parameter reconstructions from a patient-
specific AIF measurement; however, the goal of our present
study was to establish a baseline from which such factors
could be studied. Future work may begin to determine the
effect of simulated “in vivo” measurements of AIF on the ac-
curacy of the reconstructed parameters and the resulting cor-
relations with IQMs such as RMSE or SSIM.

Although the extended Tofts model (equation [2]) is parame-
trized by 3 parameters, namely, ve, vp, and Ktrans, we chose to
determine the relationship between RMSE and SSIM scores and
the accuracy of recovery of Ktrans only. We chose to focus exclu-
sively on Ktrans because previous work has found it to be of pri-
mary clinical performance. In the diagnosis of prostate cancer,
for example, it was found that the inclusion of pharmacokinetic
parameters aside from Ktrans does not improve performance of
data-driven cancer detection using DCE-MRI techniques (24),
and several successful computer-aided diagnosis tools exist that
make use of only Ktrans (25, 26). A subject for future assessment
would be the characterization of the relationship of different
pharmacokinetic parameters to objective measures of image
quality, such as RMSE or SSIM.

In general, our current work has shown preliminary results
showing that objective measures of image quality can serve as
predictors of dynamic MRI data quality, which opens new
research avenues. Future work may determine the use of other
IQMs in CS-DCE-MRI applications or in alternative dynamic MRI
applications. This includes both IQMs requiring reference images
and those that do not require a reference image, such as the per-
ception-based image quality evaluator IQM (27) or the blind/
referenceless image spatial quality evaluator IQM (28).

CONCLUSION
We have determined the relationship between 2 IQMs, RMSE
and SSIM, and their correlation with the recovery accuracy
of K trans in CS-DCE-MRI. To accomplish this, we began with
a study of the properties of each IQM in retrospectively
undersampled static pelvic CS-MR images. Each IQM was
found to be sensitive to changes in the CS-MRI reconstruc-
tion process on a patient-by-patient basis.

We then studied RMSE and SSIM in CS-DCE-MRI by design-
ing a simulation framework in Matlab. To validate our simulation
framework, we assessed a numerical phantom containing fea-
tures that evolved according to a simple monoexponential decay.
The simulation results agreed with expected outcomes, validating
the use of our framework for more complex contrast evolution
models such as the extended Tofts model.

Using our simulation framework, we determined the ability
of RMSE and of SSIM to predict the recovery accuracy of Ktrans.
Both IQMs require the use of a defined reference image. For 4 dif-
ferent methods of selecting a reference image (one based on the
instantaneous image of the simulated phantom, one based on
precontrast imaging, one based on late-contrast imaging, and
one based on the peak of the AIF used in the Tofts model), we
found that both RMSE and SSIM consistently correlate well with
the recovery accuracy of Ktrans. This motivates further assessment
into the use of IQMs to guide CS-DCE-MRI in clinical settings,

Table 3. Correlations between IQM Scores
and Error in the Recovered Ktrans for the Data
Shown in Figure 8

RMSE SSIM

Instantaneous Truth
PLCC �0.997 0.998

SRCC �1.000 1.000

Precontrast
PLCC �0.976 0.988

SRCC �1.000 1.000

Peak AIF
PLCC �1.000 0.999

SRCC �1.000 1.000

Late-contrast
PLCC �0.995 0.998

SRCC �1.000 1.000

Abbreviations: PLCC, Pearson linear correlation coefficient; SRCC,
Spearman rank correlation coefficient; RMSE, root mean squared
error; SSIM, structural similarity index
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such as in the design of automated algorithms for tuning the
reconstruction parameters of CS-DCE-MRI acquisitions. More

generally, these results suggest that objective measures of image
quality have utility in the guidance of dynamic MRI techniques.
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