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Abstract: Global warming is a leading world issue driving the common social objective of reducing
carbon emissions. People have witnessed the melting of ice and abrupt changes in climate. Reducing
electricity usage is one possible method of slowing these changes. In recent decades, there have
been massive worldwide rollouts of smart meters that automatically capture the total electricity
usage of houses and buildings. Electricity load disaggregation (ELD) helps to break down total
electricity usage into that of individual appliances. Studies have implemented ELD models based on
various artificial intelligence techniques using a single ELD dataset. In this paper, a powerline noise
transformation approach based on optimized complete ensemble empirical model decomposition
and wavelet packet transform (OCEEMD–WPT) is proposed to merge the ELD datasets. The practical
implications are that the method increases the size of training datasets and provides mutual benefits
when utilizing datasets collected from other sources (especially from different countries). To reveal
the effectiveness of the proposed method, it was compared with CEEMD–WPT (fixed controlled
coefficients), standalone CEEMD, standalone WPT, and other existing works. The results show that
the proposed approach improves the signal-to-noise ratio (SNR) significantly.

Keywords: complete ensemble empirical mode decomposition; data heterogeneity; electricity load
disaggregation; nonintrusive load monitoring; smart grid; smart meter; wavelet packet transform

1. Introduction

Reducing carbon emissions stemming from electricity consumption has been the
leading global vision to tackle global warming, which can wreak havoc on human lives.
Environmental experts have emphasized that global warming leads to severe ice and per-
mafrost melting, which releases large amounts of methane, which has a greenhouse effect
that is about 30 time more powerful than that for carbon dioxide [1]. This situation may
lead to irreversible positive feedback for glacial melting if increased sea-level temperatures
reach a certain threshold. This drives the vision for smart, green buildings to reduce the
global carbon footprint [2].

In many countries, traditional electric grids have been changed to smart grids to
address this challenge. Smart grids contribute to modernization by improving the trans-
mission of electricity, the distribution system, and the electricity infrastructure. Various
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research topics have emerged, including battery energy storage [3], electrical–gas–hydrogen
interconnected networks [4], and advanced metering infrastructure (AMI) [5]. Particularly
in AMI, the deployment of smart meters, which support the continuous collection of elec-
tricity data in apartments and buildings, has played a crucial role in developing smart
grids. Recent works estimated that the number of smart meters has reached 200 million
in Europe, 96 million in China, 70 million in the USA, and 2.9 million in the UK, with a
market penetration of over 50% [6,7]. This has built a solid foundation for further anal-
ysis of massive amounts of electricity data. In light of the introduction of the electricity
load disaggregation (ELD) algorithm (also called nonintrusive load monitoring (NILM)),
electricity data are disaggregated into electricity consumption of individual appliances,
which brings valuable insight to the public, electric companies, and governments [8]. Users
may benefit from three insights in particular: The first is determining which appliance
is the most power-hungry so that follow-up actions can be taken to reduce electricity
consumption in these appliances, and as a result, lower the electricity bill. Another insight
is to verify whether there are appliances being turned on during the night or outside of
office hours, resulting in electricity wastage. The third insight requires analysis between
the past and current energy profiles of an appliance to evaluate whether the appliance
has been degraded significantly. It could be more worthy to replace an appliance rather
than continue to use it if it has been degraded. In terms of electricity users without smart
meters, the demonstrated benefits in terms of electricity reduction among smart meter
users provides a strong reason for electric companies to migrate from the traditional electric
meter to the smart meter.

Various techniques, including signal processing, data mining, shallow learning, and
deep learning, have been proposed for ELD in the literature. Readers who are interested in
the details may refer to the latest state-of-the-art articles [9–12]. Researchers have devoted
efforts to enhancing the ELD model from an algorithmic perspective, particularly toward
deep learning approaches [13–15]. The advantages of deep learning compared to shallow
learning have been demonstrated in large-scale datasets.

A critical review summarized 42 ELD datasets developed by the scientific commu-
nity [16]. These datasets are heterogeneous in nature with varying factors such as location,
type of space (e.g., residential, commercial, and industrial), electric appliance, powerline
cable, AC power source, and smart meter.

The research focus of this paper is to merge heterogeneous datasets, which can provide
two major advantages. It increases the amount of training data, especially when data
collection is sometimes challenging for some appliances (suffering from small sample size).
In addition, countries that have had more experience in the deployment of smart meters
could support the quick rollout for those that have newly joined the smart meter initiative.

Section 1.1 presents a literature review of the techniques used to merge heterogeneous
datasets. This is followed by the limitations of related works and the rationales of our work
in Section 1.2. The research contributions of this paper are summarized in Section 1.3.

1.1. Literature Review

One review article [12] addressed the unsolved issue of data heterogeneity. It creates
difficulty in fair performance evaluation and comparisons between heterogeneous datasets,
yet about 40 performance metrics have been utilized in ELD research. Additionally, other
heterogeneous features of public datasets include folder structure and file format [17].
Various approaches, such as those of Brick [18] and Blond [19], were employed to structure
electricity data as a metadata schema in order to produce a summary of the characteristics
of the ELD database. The discussions and investigations of data heterogeneity algorithms
for ELD are limited. Algorithms in the literature were evaluated based on individual
benchmark datasets instead of groups of benchmark datasets. Furthermore, discussions of
folder structure, file format, and metadata schema [17–19] addressed how the attributes
between datasets become consistent. This is not related to how heterogeneous datasets can
be merged.
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To the best of our knowledge, our research idea of merging heterogeneous ELD
datasets is the first of its kind. We made the following query using the advanced search
function in Web of Science: TS = ((nonintrusive load monitoring OR NILM OR load
monitoring OR energy disaggregation OR electricity disaggregation OR electricity load
disaggregation OR load disaggregation) AND (heterogeneity OR heterogeneous data OR
heterogeneous OR heterogeneous datasets)). The same query was made using Scopus with
the function TITLE-ABS-KEY. We read titles, abstracts, keywords, and introductions to
confirm that there was no relevant work on the research topic.

It is worth noting that extra data generation from the source dataset [20,21] and data
simulation [22] are not related to the topic of this research.

1.2. Limitations of Existing Works

The limitations of the existing works are as follows:

• No previous work has conducted research on merging heterogeneous ELD datasets.
• It is difficult to ensure fair performance evaluation and comparison between heteroge-

neous ELD datasets given that about 40 performance metrics were used.
• There is limited investigation of the powerline noise transformation between hetero-

geneous ELD datasets.

1.3. Major Research Contributions

The major research contributions of this research work are summarized as follows:

• It is the first of its kind to merge heterogeneous ELD datasets.
• It unifies the performance comparison of ELD models with merged heterogeneous datasets.
• An optimized complete ensemble empirical model decomposition and wavelet packet

transform (OCEEMD–WPT) is proposed, which provides in-depth decomposition of
electricity data and enhances the performance of powerline noise transformation.

• A feasibility study is carried out to confirm the enhancement of the deep learning
model given the increased size of training data (after combining heterogeneous datasets).

2. Datasets and Methodology

In this section, 5 benchmark ELD datasets were selected to analyze the merger of
heterogeneous datasets. This is followed by an illustration of the powerline noise transfor-
mation approach.

2.1. Benchmark Electricity Load Disaggregation Datasets

As mentioned above, one review article summarized 42 benchmark ELD datasets [16].
Five of these datasets were selected to exemplify the performance of the proposed powerline
noise transformation approach. The selection criteria were based on country (the ELD
datasets collected from different countries were highly heterogeneous) and sampling
rate (high-frequency data, i.e., more than 10 kHz, were chosen, which led to complete
information about the electricity data). In contract, low-frequency electricity data (e.g.,
1 Hz) were aggregated; therefore, some essential characteristics may have been lost, thus
lowering the performance of the ELD model.

The selected benchmark datasets were as follows: (i) reference energy disaggre-
gation dataset (REDD) [23], (ii) United Kingdom domestic appliance-level electricity
dataset (UK-DALE) [24], (iii) worldwide household and industry transient energy dataset
(WHITED) [25], (iv) controlled on/off loads library dataset (COOLL) [26], and (v) lab-
oratory for innovation and technology in embedded systems dataset (LIT) [27]. Table 1
summarizes the characteristics of the datasets, including country, number of classes, data
duration, and sampling rate. WHITED [25] can be further categorized into 3 groups:
Germany, Austria, and Indonesia. There were 7 datasets (one for each country) in total.
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Table 1. Summary of selected benchmark datasets: REDD, reference energy disaggregation dataset; UK-DALE, United
Kingdom domestic appliance-level electricity dataset; WHITED, worldwide household and industry transient energy
dataset; COOLL, controlled on/off loads library dataset; LIT, laboratory for innovation and technology in embedded
systems dataset.

Dataset Country Number of Classes Data Duration Sampling Rate (kHz)

REDD [23] USA 20 Several months 16.5
UK-DALE [24] UK 40 Up to 2 years 16
WHITED [25] Germany, Austria, and Indonesia 47 5 s 44.1
COOLL [26] France 12 6 s 100

LIT [27] Brazil 14 30 s to several hours 15

2.2. Overview of the Proposed Powerline Noise Transformation Approach

The conceptual flow of the proposed powerline transformation approach is shown in
Figure 1. We assume that there are M + 1 datasets, with the total number of originating
datasets M = 6. The originating dataset Xi = [X1, . . . , XM] performs powerline noise
transformation using OCEEMD–WPT (Section 2.3), including powerline noise removal
from the source and powerline noise inclusion of the destination dataset Xd. The originating
datasets mimicked the powerline noise of the destination dataset. The amplitude and
sampling rate of Xi are normalized to match Xd for data homogeneity. In other words,
6 originating datasets are merged with 1 destination dataset.

Figure 1. Conceptual flow of the powerline noise transformation approach via optimized complete ensemble empirical
model decomposition and wavelet packet transform (OCEEMD–WPT).

2.3. Optimized Complete Ensemble Empirical Model Decomposition and Wavelet Packet Transform

Empirical mode decomposition (EMD) and its variants have demonstrated effective-
ness in handling nonstationary and nonlinear time-series signals. They have received
increasing attention based on the number of publications since 2007. Ensemble empirical
mode decomposition (EEMD) was proposed in [28], which introduced Gaussian white
noise (GWN) to address 2 major issues of EMD: mode mixing, which affects the further
decomposition of other modes, and amplitude variation in a mode. However, EEMD has in-
adequacies in terms of computational cost, spectral separation of modes, and reconstruction
errors. This inspired the proposal of complete ensemble empirical mode decomposition
(CEEMD) [29] and improved CEEMD (ICEEMD) [30]. The controlled coefficients of the
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signal-to-noise ratio (SNR) in CEEMD and ICEEMD were fixed [29,30] and can be further
improved by customization (via optimization).

In our work, the requirement of powerline noise transformation is to minimize the
powerline noise of the originating datasets so that new powerline noise (based on destina-
tion datasets) can be added. In addition, it is desirable to maximize the noise generated by
the electric appliance because it is a useful characteristic for feature extraction in the ELD
model. Hence, the research problem of powerline noise transformation can be formulated
as a multi-objective optimization problem called optimized complete ensemble empir-
ical mode decomposition (OCEEMD). It helps to capture the temporal resolutions and
frequency components of the signal. The signal is expressed as various intrinsic mode func-
tions (IMFs) and a residual. Furthermore, the output of OCEEMD performs second-phase
decomposition by WPT. The rationale of WPT is to emphasize time components and to
characterize orthogonality, smoothness, and localization properties [31,32]. To summarize,
we combined OCEEMD and WPT as OCEEMD–WPT, which captures both the time and
frequency components of signals.

The mathematical formulations of OCEEMD and WPT are explained in Sections 2.3.1
and 2.3.2, respectively.

2.3.1. Optimized Complete Ensemble Empirical Model Decomposition

We consider an originating dataset Xi = [X1, . . . , XM]∀i ∈ [1, M], where M is the total
number of originating datasets. We define Xi = [xi(1), · · · , xi(Li)] ∈ RN , where Li is the
length of Xi, which is decomposed into various IMFs and a residual using OCEEMD.

GWN N(0, 1) is introduced to xi(t)∀t ∈ [1, Li] with realization j ∈ [1, J] on residual
rik∀k ∈ [1, K], where K is the total number of IMFs. This GWN-masked signal is given
as follows:

x̃j
i(t) = xi(t) + αikwj

i(t) (1)

where αik is the controlled coefficients of the SNR to be optimized and wj
i(t) is the GWN.

First, the first IMF IMFi1(t) and residual ri1 are computed:

IMFi1(t) =
1
J

J

∑
j=1

IMFj
i1(t) (2)

IMFj
i1(t) = EMDi1

(
x̃j

i(t)
)

(3)

ri1 = xi(t)− IMFj
i1(t) (4)

where EMD(·) is the basic EMD decomposition function. The decomposition is repeated
with general formulas:

IMFik(t) =
1
J

J

∑
j=1

EMDik

(
r̃j

i,k−1(t)
)

(5)

r̃j
ik(t) = rik(t) + αikwj

i(t) (6)

rik = ri,k−1(t)− IMFi,k−1(t) (7)

which are stopped when r̃j
ik(t) has one extremum. The original signal xi(t) can be recon-

structed by all IMFs and the last residue ri, f inal .

xi(t) =
K

∑
k=1

IMFik(t) + ri, f inal (8)
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2.3.2. Wavelet Packet Transform

The results of IMFik(t) are further decomposed and extended. The extended version
of IMFik(t) is IMFik(t)e (of length Le) and is given by the following:

IMFik(t)e =
[
IMFik,0, · · · , IMFik,Le

]
(9)

Le =

{
length

{
IMFik(t)

}
+ 2(Llow − 2) + 0

length
{

IMFik(t)
}
+ 2(Llow − 2) + 1

length
{

IMFik(t)
}
= even

length
{

IMFik(t)
}
= odd

(10)

with low-pass filter hlow =
[
hlow,0, · · · , hlow,Llow−1

]
of length Llow.

The general form of the approximated WPT coefficients with hlow is given by the following:

aik,m =
Llow

∑
n=0

IMFik,2m+n × hlow,n∀m ∈ [0, (Le − Llow)/2] (11)

Likewise, the high-pass filter hhigh =
[

hhigh,0, · · · , hhigh,Lhigh−1

]
of length Lhigh is

defined. The general form of approximated WPT coefficients with hhigh is given by
the following:

bik,m =

Lhigh

∑
n=0

IMFik,2m+n × hhigh,n∀m ∈
[
0,
(

Le − Lhigh

)
/2
]

(12)

For the selection of wavelets, typical Daubechies wavelets (D2–20) were selected
for analysis.

As mentioned above, the controlled coefficients of the SNR αik must be optimized. We
formulated the optimization problem as a multi-objective optimization problem with two
objective functions, in which F1 is the kurtosis and F2 is the residual difference:

Max F1 =
E
{
(γ−γ)4

}
σγ

4
(13)

Min F2 =

√√√√∑m(x̂[m]− x[m])2

∑m x[m]2
(14)

where E{·} is the expected value, and γ and σγ are the average and standard deviation,
respectively, of wavelet coefficients γ.

A reference-point-based multi-objective evolutionary algorithm following the NSGA-
II framework (NSGA-III) [33,34] was adopted to solve the multi-objective optimization
problem. NSGA-III has advantages in solving the optimization problem with smaller
population sizes, thus lowering the computation time, enhancing the diversity of the new
population based on the reference points, and using adaptive allocation of reference points
depending on the Pareto-optimal front. The flow of the NSGA-III-based OCEEMD–WPT is
shown in Figure 2.

The pseudo-code of the NSGA-III is summarized in Algorithm 1. The reference
points are predefined with locations and uniformly distributed on a hyperplane to ensure
the convergence of solutions. It adopts a set of reference directions (rays starting from
the original and pointing towards the reference point) to maintain the diversity among
solutions. The goal of a multi-objective evolutionary algorithm is to seek a Pareto solution
set that is evenly distributed, well extended, and converged. Regarding the association of
the populations with reference points, there are two possibilities: (i) if only one member of
the population is associated with the reference point, the reference point is ignored in the
current generation and, (ii) if more than one member of the population is associated with
the reference point, the member with the shortest perpendicular distance is included.
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Figure 2. Conceptual flow of the NSGA-III-based OCEEMD–WPT.

Algorithm 1 Training(Xi)

Input: Training datasets Xi
Output: NSGA-III-based OCEEMD–WPT Model
1. Calculate the number of reference points;
2. Generate NSGA-III parameters such as population size and values of the objective functions;
3. Apply non-dominated sorting on the population;
while iterations i ≤maximum number of_iterations do
4. Apply tournament selection with two parents in terms of probability;
5. Apply crossover between two parents;
6. Apply non-dominated sorting on the population;
7. Associatae the populations with reference points;
8. Apply the niche preservation to select individuals associated with each reference point;
9. Store the niche obtained solutions for the next generation;
10. i = i + 1;
End while
Model←Pareto optimal solutions

3. Analysis and Comparison

To evaluate the performance of the proposed NSGA-III optimized OCEEMD–WPT
approach for merging heterogeneous ELD datasets, four studies were conducted (i) on the
performance of NSGA-III-optimized OCEEMD–WPT, (ii) on the contribution of NSGA-III
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to solving the controlled coefficients, (iii) on the contribution of merging CEEMD and WPT,
and (iv) on the performance of the proposed approach in comparison to existing works
merging time-series heterogeneous data.

The performance indicator of the powerline noise transformation is based on the
average improvement of signal-to-noise ratio (SNR) in dB.

3.1. Performance Evaluation of Proposed Work

Recall that there are seven heterogeneous ELD datasets considered, as shown in
Table 1. The evaluation of the proposed NSGA-III optimized OCEEMD–WPT can be
formulated as seven destinations (each ELD dataset corresponds to one destination). The
experiment is based on a workstation (i7-10850H 2.7–5.1 GHz CPU, NVIDIA Quadro RTX
3000 6 GB GDDR6 GPU, and 64 GB memory). The average computational times for WPT
(one execution), CEEMD (one execution), and NSGA-III are 0.001 s, 0.0568 s, and 8.5 min to
1.4 h, respectively. The average improvement in SNR is summarized in Table 2.

Table 2. Average improvement in signal-to-noise ratio (SNR) using the proposed NSGA-III-optimized OCEEMD–WPT.

Average Improvement in SNR (dB)

Destination REDD UK-DALE WHITED
(Germany)

WHITED
(Austria)

WHITED
(Indonesia) COOLL LIT

REDD [23] N/A 10.6 11.2 11.9 10.8 7.8 8.2
UK-DALE [24] 9.3 N/A 12.5 12.7 12.3 8.5 8.8

WHITED [25] (Germany) 9.8 11.1 N/A 13.2 12.5 9.2 9.4
WHITED [25] (Austria) 9.9 11.6 13.0 N/A 12.6 9.3 9.5

WHITED [25] (Indonesia) 10.3 10.9 12.7 13.0 N/A 9.0 9.2
COOLL [26] 8.4 8.9 10.4 10.5 10.2 N/A 7.8

LIT [27] 8.7 9.2 10.6 10.8 10.5 8.1 N/A

Based on the results, there are two key observations:

• The larger the number of classes in the originated ELD dataset, the larger the average
improvement in SNR.

• The larger the number of classes in the destination ELD dataset, the larger the average
improvement in SNR.

3.2. Study on the Contribution of NSGA-III to Solving Controlled Coefficients

The optimal design of the controlled coefficients of the SNR was solved by NSGA-III
and compared with the performance based on fixed controlled coefficients (without opti-
mization) [29,30]. Table 3 summarizes the average improvement in SNR of CEEMD–WPT.
It can be seen from the results that CEEMD–WPT yields a smaller average improve-
ment in SNR compared with the proposed NSGA-III optimized OCEEMD–WPT. When
attributed to the fixed controlled coefficients using CEEMD–WPT, less powerline noise can
be eliminated.

Table 3. Average improvement in SNR with CEEMD–WPT (with fixed controlled coefficients).

Average Improvement in SNR (dB)

Destination REDD UK-DALE WHITED
(Germany)

WHITED
(Austria)

WHITED
(Indonesia) COOLL LIT

REDD [23] N/A 6.9 7.8 8.3 7.6 5.3 5.7
UK-DALE [24] 6.4 N/A 9.0 9.4 8.8 5.8 6.1

WHITED [25] (Germany) 6.7 7.6 N/A 10.1 9.0 6.2 6.4
WHITED [25] (Austria) 7.1 8.1 9.7 N/A 9.4 6.5 6.6

WHITED [25] (Indonesia) 7.5 7.4 9.3 9.8 N/A 5.9 6.1
COOLL [26] 5.7 6.1 6.8 7.0 6.6 N/A 5.4

LIT [27] 6.0 6.3 7.2 7.5 6.9 5.6 N/A
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Comparing the columns between Tables 2 and 3, the proposed approach improves
the average SNR by 37.3–47.4%, 43.2–53.6%, 34.0–52.9%, 30.7–50%, 34.0–54.5%, 43.1–52.5%,
and 43.9–50.8% for REDD, UK-DALE, WHITED (Germany), WHITED (Austria), WHITED
(Indonesia), COOLL, and LIT, respectively. This reflects the need for an optimal design of
the controlled coefficients.

3.3. Study on the Contribution of Merging Complete Ensemble Empirical Model Decomposition
and Wavelet Packet Transform

To examine the advantages of merging CEEMD and WPT as two stages of decomposi-
tion of electricity data, the performance of the average improvement in SNR using either
standalone CEEMD or WPT is summarized in Tables 4 and 5, respectively.

Table 4. Average improvement in SNR with standalone CEEMD.

Average Improvement in SNR (dB)

Destination REDD UK-DALE WHITED
(Germany)

WHITED
(Austria)

WHITED
(Indonesia) COOLL LIT

REDD [23] N/A 5.3 6.5 6.9 6.2 4.0 4.4
UK-DALE [24] 4.7 N/A 7.4 7.7 7.2 4.3 4.6

WHITED [25] (Germany) 5.0 6.2 N/A 8.5 7.6 4.8 5.2
WHITED [25] (Austria) 5.4 6.7 8.1 N/A 7.9 5.1 5.8

WHITED [25] (Indonesia) 5.7 6.1 7.9 8.2 N/A 4.6 4.9
COOLL [26] 4.2 4.9 5.4 5.6 5.2 N/A 4.3

LIT [27] 4.5 5.1 5.7 5.9 5.6 4.2 N/A

Table 5. Average improvement in SNR with standalone WPT.

Average Improvement in SNR (dB)

Destination REDD UK-DALE WHITED
(Germany)

WHITED
(Austria)

WHITED
(Indonesia) COOLL LIT

REDD [23] N/A 4.9 6.0 6.3 5.8 3.8 4.2
UK-DALE [24] 4.1 N/A 7.1 7.2 6.8 4.1 4.4

WHITED [25] (Germany) 4.3 5.7 N/A 7.9 7.2 4.5 5.0
WHITED [25] (Austria) 4.9 6.0 7.6 N/A 7.4 4.9 5.3

WHITED [25] (Indonesia) 5.4 5.5 7.4 7.6 N/A 4.4 4.7
COOLL [26] 3.9 4.6 5.1 5.3 4.9 N/A 4.1

LIT [27] 4.2 4.8 5.4 5.6 5.3 4.1 N/A

Figure 3 presents the range of percentage improvements by the proposed work com-
pared with standalone CEEMD (Figure 3a) and standalone WPT (Figure 3b) as well as those
between standalone CEEMD and standalone WPT (Figure 3c). The proposed work achieved
the greatest improvements in SNR, followed by standalone CEEMD and standalone WPT.

Figure 3. Cont.
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Figure 3. Summary on the range of percentage improvements between models: (a) between the
proposed model and standalone CEEMD, (b) between the proposed work and standalone WPT, and
(c) between standalone CEEMD and standalone WPT.

3.4. Performance Comparison between the Proposed Approach and Existing Works

To the best of our knowledge, this is the first study to consider merging heterogeneous
ELD datasets. Therefore, we compared the proposed approach with those in existing works
on other research topics based on time-series data. Table 6 summarizes the performance
of the proposed approach and those in existing works using discrete Fourier series [35],
CEEMD with permutation entropy [36], and discrete Fourier transform and discrete cosine
transform [37].

Table 6. Average improvement in SNR using the proposed approach and those in existing works [35–37].

Originating Dataset

REDD UK-DALE WHITED
(Germany)

WHITED
(Austria)

WHITED
(Indonesia) COOLL LIT

Destination
Dataset

Improvement in SNR presenting in a format of Proposed [35]
[36] [37]

REDD [23]
N/A N/A 10.6 5.4 11.2 6.3 11.9 6.8 10.8 6.1 7.8 4.0 8.2 4.5
N/A N/A 5.7 7.4 7.0 8.4 7.4 9.0 6.7 8.3 4.5 6.0 4.9 6.3

UK-DALE [24]
9.3 4.2 N/A N/A 12.5 7.5 12.7 8.0 12.3 7.3 8.5 4.2 8.8 4.7
5.5 7.0 N/A N/A 8.1 9.9 8.3 10.2 7.6 9.4 4.7 6.6 5.3 6.9

WHITED [25]
(Germany)

9.8 4.5 11.1 6.1 N/A N/A 13.2 8.4 12.5 7.6 9.2 4.7 9.4 5.2
5.9 7.5 6.7 8.2 N/A N/A 9.0 11.0 8.2 9.6 5.4 6.8 5.7 7.2

WHITED [25]
(Austria)

9.9 5.2 11.6 6.5 13.0 8.0 N/A N/A 12.6 7.8 9.3 5.1 9.5 5.7
6.3 7.9 7.4 8.8 8.8 10.6 N/A N/A 8.6 10.2 5.8 7.5 6.2 7.5

WHITED [25]
(Indonesia)

10.3 5.6 10.9 5.9 12.7 7.6 13.0 7.9 N/A N/A 9.0 4.6 9.2 5.0
6.6 8.2 6.5 7.9 8.5 10.2 8.8 10.6 N/A N/A 5.3 6.5 5.4 6.8

COOLL [26]
8.4 4.0 8.9 4.9 10.4 5.5 10.5 5.9 10.2 5.3 N/A N/A 7.8 4.8
4.9 6.3 5.5 6.5 6.0 7.5 6.1 7.8 5.5 7.1 N/A N/A 4.7 6.1

LIT [27]
8.7 4.5 9.2 5.2 10.6 5.9 10.8 6.2 10.5 5.5 8.1 4.4 N/A N/A
5.5 6.7 5.8 6.9 6.2 8.0 6.4 8.2 6.0 7.5 5.0 6.3 N/A N/A
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Compared to [35], the proposed approach enhances the SNR by 83.9–121%, 76.9–96.3%,
62.5–89.1%, 57.1–78.0%, 61.5–92.5%, 82.4–102%, and 62.5–87.2% for REDD, UK-DALE,
WHITED (Germany), WHITED (Austria), WHITED (Indonesia), COOLL, and LIT, re-
spectively. The results reveal that the proposed approach outperforms those in exist-
ing works [35–37]. Compared to [36], the proposed approach enhances the SNR by
56.1–71.4%, 56.8–86.0%, 47.7–73.3%, 46.7–72.1%, 46.5–85.5%, 60.3–80.9%, and 53.2–70.4%,
respectively. Finally, compared to [34], the proposed approach enhances the SNR by
25.3–33.3%, 31.8–43.2%, 22.6–38.7%, 20–34.6%, 23.5–43.7%, 24–38.5%, and 26.7–35.3%,
respectively.

4. Conclusions and Future Work

Merging ELD datasets (heterogeneous in nature) provides a larger pool of data for
training ELD models. More data availability is advantageous for deep learning-based
methods. In this paper, we propose an NSGA-III-based OCEEMD–WPT approach for
powerline noise transformation so that heterogeneous ELD datasets can be merged, with
the unification of powerline noise. Various studies determining the necessity for NSGA-III,
for combining CEEMD and WPT, and for making comparisons with existing works were
conducted to confirm the effectiveness of the proposed approach, which enhances the SNR
significantly. The results of this research could be beneficial in shifting from total electricity
consumption to consumption of individual appliances, which could possibly reduce the
number of power-hungry appliances. Current work could be realized by enabling optimal
tracking [38] and price control [39] strategies for heterogeneous loads. Secured control
can be guaranteed using blockchain-based authentication and authorization [40], and
convolutional neural network [41]. Consequently, climate change as a critical governing
factor in the global hydrological cycle could be relieved [42].

Since the current work is the first to consider merging ELD datasets, there are research
limitations; thus, we suggest conducting further investigations in the following areas:
(i) consideration of more ELD datasets based on a summarized list of datasets from a review
article [16]. (ii) evaluation of the performance of the proposed approach and existing works
in low-frequency (i.e., aggregated electricity data) ELD datasets. (iii) evaluation of the
performance enhancement of deep learning-based models for ELD, and (iv) exploration of
alternative approaches to addressing the challenges that arise when the number of classes
in the ELD datasets is small.
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