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An embodied, autonomous agent able to set its own goals has to possess geometrical

reasoning abilities for judging whether its goals have been achieved, namely it should

be able to identify and discriminate classes of configurations of objects, irrespective of

its point of view on the scene. However, this problem has received little attention so

far in the deep learning literature. In this paper we make two key contributions. First, we

propose SpatialSim (Spatial Similarity), a novel geometrical reasoning diagnostic dataset,

and argue that progress on this benchmark would allow for diagnosing more principled

approaches to this problem. This benchmark is composed of two tasks: “Identification”

and “Discrimination,” each one instantiated in increasing levels of difficulty. Secondly, we

validate that relational inductive biases—exhibited by fully-connected message-passing

Graph Neural Networks (MPGNNs)—are instrumental to solve those tasks, and show

their advantages over less relational baselines such as Deep Sets and unstructured

models such as Multi-Layer Perceptrons. We additionally showcase the failure of high-

capacity CNNs on the hard Discrimination task. Finally, we highlight the current limits of

GNNs in both tasks.

Keywords: graph neural net, neural networks, similarity learning, structured representation, machine learning,

artificial intelligence, spatial reasoning

1. INTRODUCTION

Building autonomous agents that can explore their environment and build an open-ended
repertoire of skills is a long-standing goal of developmental robotics and artificial intelligence in
general. To this end, one option that has been explored in the literature is autotelic agents: agents
that can set their own goals and learn to reach them. Within the deep learning community, this has
taken the form of Deep Reinforcement Learning agents that take a goal—expressed for instance as
a target state of the world, a sentence in some language, or some other representation—as input
additionally to the observation; these agents are able to alter their behaviors in light of the provided
goal to execute it in the environment. Crucial to the development of such agents, especially from a
developmental perspective, is the learning of a goal-achievement function (or reward function) that
measures how close the agent is to reaching its goal (Bahdanau et al., 2019; Colas et al., 2020). This
warrants the independent study of such goal-achievement functions. One of the design choices
this implies is the chosen representation for the goal, observed state and the associated network
architecture for the reward and policy. Since this representation is crucial for performance and
robustness of the networks, a principled approach would be representing these states and goals in
a cognitively plausible way.
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The world appears to us as immediately organized into
collections of objects, arranged together in natural scenes. These
independent entities are the support for mental manipulation
and language, and can be processed separately and in parallel
(Kahneman et al., 1992; Pylyshyn, 2007; Green and Quilty-Dunn,
2017). These objects are themselves composed of constituent
elements whose precise arrangement in space determines their
properties. To implement this kind of structure into neural
networks, there is a strong emerging movement that advocates
for the use of more structured models (Lake et al., 2016; Battaglia
et al., 2018), in particular for using models displaying relational
inductive biases (Battaglia et al., 2018). Inductive biases are
constraints that bias the convergence of function approximators
toward a particular kind of function. In deep learning, the most
common form of inductive bias is given by the architecture
of the model. Relational inductive biases refer to architectures
supporting the processing of data composed of separate objects,
described in the same space, and their relations. Graph Neural
Networks (GNNs) (Gori et al., 2005; Kipf and Welling, 2016;
Gilmer et al., 2017), function approximators operating on graph-
structured input (that can return graph, set, or scalar output)
naturally implement these inductive biases; this is so because the
computation they perform is a composition of 1) independent
but similar operations on object representations and 2) of binary
functions taking pairs of objects (edge computation, representing
the relational part). Models based on these ideas have achieved
substantial progress compared to unstructuredmethods in recent
years on graph-based data or on more general scenes, whether it
is by considering the input as sets of objects in a shared space (Qi
et al., 2016; Zaheer et al., 2017) or by explicitly considering the
relations between objects (Battaglia et al., 2016; Kipf et al., 2019).

Objects and their relations thus seems like a natural
representation for states of the world, and thus, by extension, for
goals a goal-conditioned agent has to reach. This representation
lends itself to geometrical, or spatial, reasoning. Spatial reasoning
implies processing configurations of objects and their precise
relations in space to judge for instance whether a particular
structure of blocks is stable or not (Hamrick et al., 2018), a task
that requires fine-grained reasoning over the shapes, orientations
and positions of the blocks. These kinds of representations
can be acquired in an unsupervised manner directly from the
observations (Burgess et al., 2019; Greff et al., 2020; Locatello
et al., 2020), which makes them appealing in a context where
the agent has to abstract away some of the information in
its goal (thus it cannot represent its goal as a target image,
it is too low-level) but has no access to language information
which would allow it to represent its goals in terms of a
language instruction. Object representations thus allow for a
moderate level of abstraction in which geometrical information is
preserved. They additionally open up the possibility for the agent
of learning to achieve object-configuration goals irrespective
of its particular point of view on the objects (invariance to
geometrical similarity), which is highly desirable: a pyramid of
blocks remains a pyramid regardless of the particular point of
view taken by the builder on the scene. A final advantage of
representations of goals and states as configurations of objects is
their compositional nature (echoing the compositional nature of

language): once the agent has learned to stack the blue block on
the red block, if it generalizes well it should be able to stack the
red block on the blue block.

For all the reasons outlined above, it is thus desirable to
make a study of the ability of neural networks to learn to
identify and discriminate configurations of objects. However,
to our knowledge there is currently no controlled dataset
or benchmark allowing to systematically study the problems
outlined above. In this work, we introduce SpatialSim (Spatial
Similarity), a novel spatial reasoning benchmark, to provide a
well-defined and controlled evaluation of the abilities of models
to successfully recognize and compare spatial configurations
of objects. We divide this into two sub-tasks of increasing
complexity: the first is called Identification, and requires to learn
to identify a particular arrangement of objects; the second is
called Discrimination, and requires to learn to judge whether
two presented configurations of objects are the same, up to
a change in point of view. Furthermore, we test and analyse
the performance of increasingly connected GNNs in this task.
We find that GNNs that operate on fully-connected underlying
graphs of the objects perform better compared to a less-
connected counterpart we call Recurrent Deep Set (RDS), to
regular Deep Sets and to unstructured MLPs, suggesting that
relational computation between objects is instrumental in solving
the SpatialSim tasks. To summarize the key contributions of
the paper:

• We introduce and motivate SpatialSim, a set of two spatial
reasoning tasks and their associated datasets.

• We compare and analyze the performance of state of the
art GNN models on these two tasks. We demonstrate
that relational computation is an important component of
achieving good performance.

• We provide preliminary analysis in the limits of these models
in completely solving the benchmark.

2. THE SPATIALSIM BENCHMARK

2.1. Description
In this work, we consider the problem of learning to recognize
whether one spatial configuration of objects is equivalent
to another. The notion of equivalence that we consider is
grounded in the motivation outlined above: train models that
can reason on configurations of objects regardless of their point
of view. Because of that, we define equivalence in SpatialSim
as geometrical similarity, e.g., any arbitrary composition of
translations, rotations, and scalings. In general terms, we
frame the problem as a classification problem, where positive
examples are drawn from the same similarity equivalence
class, and negative examples are drawn from a different one.
Since we want, for this first study, to provide the simplest
possible version of the problem, we place ourselves in the
2d plane. Extending the setting to 3 dimensions does bring
some additional complexity but does not change the underlying
mathematical problem (rotations in 2d can be parametrized by
their origin and angle, so 3 dimensions, whereas rotations in
3d can be parametrized by their origin and euler angles, so 6
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FIGURE 1 | Visual illustration of SpatialSim. The benchmark is composed of two tasks, Identification and Discrimination. In Identification, the model is tasked with

predicting whether a given configuration is the same as a held-out reference one, up to rotation, translation and scaling. In Discrimination, a dual-input model is tasked

with recognizing whether a given pair of configurations is the same up to rotation, translation and scaling. We represent visual renderings of our objects, but note that

for all objet-based models we consider the object-based representation is used as input: see main text.

dimensions). We provide a visual illustration of the setting in
Figure 1.

To provide a clean and controlled benchmark to study the
ability of models to learn spatial similarity functions, we work
with object features that are already given to the model. We
ask the question: supposing we have a perfect feature extractor
for objects in a scene, are we able to learn to reliably recognize
spatial configurations? Working with objects directly allows us
to disentangle the feature extraction process from the spatial
reasoning itself.

We define a set of nobj objects as colored shapes in 2d space,
each uniquely characterized by a 10-dimensional feature vector.
There are three possible shape categories, corresponding to
squares, circles and triangles; the shape of each object is encoded
as a one-hot vector. The shapes are distributed in continuous 2d
space, and their colors belong to the RGB color space, where
colors are encoded as a floating-point number between 0 and
1. The objects additionally have a size and an orientation, the
latter given in radians. The feature vector for each object is the
concatenation of all the previously described features, and a scene
containing several objects is given as a set of the individual feature
vectors describing each object. Note that the objects are provided
without any order, and any permutation of the objects is possible
encoding for a given scene; this is to test the permutation-
invariance of the models. a highly desirable property.

We subdivide SpatialSim in two tasks. The first one,
Identification, allows us to evaluate the abilities of different
models to accurately summarize all relevant information to
correctly respond to the classification problem. In this task, we
sample a random configuration that will be the one the model

in required to learn to identify. One configuration corresponds
to one datasets, and we evaluate the capacities of the models on
a set of configurations. The second task, Discrimination, allows
us, in addition to the study allowed by the Identification task, to
judge whether the computation learned by amodel can be trained
to be universal across configurations. For this purpose, the task
requires to predict whether two distinct presented configurations
belong to the same class or not.We give additional details on data
generation for those two settings in the following sections, and a
summary table in the Supplementary Material section A.

2.2. First Task: Identification
The Identification task is composed of several reference
configurations of nobj objects, each corresponding to a distinct
dataset. Each sample of one dataset is either in the same similarity
equivalence class as the reference configuration, in which case
it is a positive example; or in a different similarity class as the
reference, in which case it is a negative example. The same objects
are present in all samples, not to give the model any additional
information unrelated to spatial configurations.

This simple task allows us to isolate how well the model
is able to learn as a function of the number of objects nobj:
indeed, the model must make a decision that depends on the
relationship between each objects, and for this purpose has to
aggregate incoming information from nobj vectors: when nobj
gets large the information the model is required to summarize
increases. This can lead to loss of performance is the capacity of
the models stays constant. For this reason, we structure the task
with an increasing number of objects: we generate 27 datasets,
with nobj ∈ [3..30]. We further group them into 3 collections of
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low number (nobj ∈ [3..8]), medium number (nobj ∈ [9..20]) and
high number (nobj ∈ [21..30]).

For a given number of objects nobj and based on one
reference configuration generated by sampling nobj random
objects uniformly in 2d space, we generate a balanced dataset
composed of:

Positive examples: After applying a small perturbation of
factor ε, to each of the objects in the reference, very slightly
changing their color, position, size and orientation, we apply
a rotation around the configuration barycenter B with an
angle φ ∼ U([0, 2π]), a scaling,of center B and magnitude
s ∼ U([0.5, 2]), and a translation of vector t. The latter is
sampled from the same distribution as the positions of the
different objects.

Negative examples: These examples are generated by applying
a small perturbation to the features of the objects in the reference,
slightly changing their colors and sizes, and then re-sampling
randomly the positions of the objects, while keeping the object’s
identity (shape, size, color). After randomly resampling the
objects’ positions, we apply a rotation, scaling and translation
drawn from the same distribution as in the positive example to
all objects. This is done to ensure no spurious correlations exist
that could help models identify positive from negative examples
regardless of actual information about the configuration. While
it is, in theory, possible to sample a negative example that is close
to the positive class, the probability is very low in practice for
numbers of objects n ≥ 3.

For each reference configuration, we generate 10,000 samples
for the training dataset, and 5,000 samples, from the same
distribution, for the validation and test datasets. For each dataset,
we train a model on the train set and test it on the test set.
The obtained test accuracies of the models over all datasets
are averaged over a group (low, medium and high number
of objects).

2.3. Second Task: Discrimination
In this section, we describe our second task.While in the previous
setup the model had to learn to identify a precise configuration,
and could learn to perform computation that does not generalize
across configurations, we envision Discrimination as a more
complex and complete setting where the model has to learn to
compare two different configurations that are re-drawn for each
sample. This task, while being more difficult than Identification,
is also more general and more realistic: while sometimes an
agent may be confronted with numerous repetitions of the same
configuration that it has to learn to recognize—for instance,
humans become, by extensive exposition, quite proficient at the
task of recognizing the special configuration of visual elements
that is human faces—but a very common task an intelligent agent
will be confronted to is entering a new room filled with objects it
knows but that are arranged in a novel way, and having to reason
on this precise configuration.

For this task, because each sample presents a different set of
objects, nobj can vary from one sample to the other, and thus
a single dataset can cover a range of number of objects. We
generate three distinct datasets, one with nobj ∈ [3..8], one with
nobj ∈ [9..20] and one with nobj ∈ [21..30]. In preliminary

experiments we have observed learning the Discrimination task
is very hard, leading to a great dependence on the initialization
of networks: some seeds converge to a good accuracy, some don’t
perform above chance. This is due to the presence of rotations
in the allowed transformations in the positive examples; a dataset
containing only translations and scalings leads to good learning
across initializations. Note that this problem with rotations
persists for a simplified setup containing only configurations of
nobj = 3 objects. To alleviate this and carry the optimization
process we introduce a curriculum of five datasets, each one with
a different range of allowed rotations in the generation process,
with the last one spanning all possible rotation angles.

We generate the dataset as:
Positive examples: We draw the first configuration by

randomly sampling the objects’ shape, size, color, position and
orientation. For obtaining the second configuration, we copy
the first one, apply a small perturbation to the features of each
object, and apply a random rotation, scaling, and translation
to all objects, using the same process as described in the
Identification task.

Negative examples: We draw the first configuration as
above, apply a small perturbation of magnitude ε and for the
second one we randomly re-sample the positions of each object
independently, while keeping the other features constant. We
finally apply a random rotation, scaling and translation and this
gives us our second set of objects.

For each range of number of objects and for each dataset of the
curriculum we generate 100,000 samples for the training set. We
generate a validation and a testing set of 10,000 samples for each
range of nobj. Those datasets contain rotations in the full range.

3. MODELS AND ARCHITECTURES

With the benchmark, we establish a first set of reference
results from existing models in the in the literature, serving
to identify their strengths and limits, and as baselines for
further work. We consider Message-Passing GNNs for their
established performance, notably in physical reasoning tasks,
along with stripped-down versions of the same models.
Additionally, our hypothesis is that models that implement
relational computation between objects will perform best in
this benchmark, because it requires taking into account the
relative positions between objects and not only their absolute
positions in 2d-space. To test this hypothesis, we model a
configuration of objects as a graph, where the individual objects
are the nodes. We then train three GNN models with decreasing
levels of intra-node communication: MPGNN (full Message-
Passing GNN, see Gilmer et al., 2017) performs message-
passing updates over the complete graph where all object-
object edges are considered; GCN (Kipf and Welling, 2016)
computes updated node representations based on the sun-
aggregation of linearly transformed node representations from
incoming edges, RDS (Recurrent Deep Set) is a Deep Set model
(Zaheer et al., 2017) where each object updates its features
based on its own features and a global vector aggregating all
the other object features (all-to-one message passing); and a

Frontiers in Artificial Intelligence | www.frontiersin.org 4 January 2022 | Volume 4 | Article 782081

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Teodorescu et al. Recognizing Configurations of Objects With GNNs

regular Deep Set model where each node updates its own
features independently.

We additionally compare, for both tasks, our models to
Multi-Layer Perceptron (MLP) baselines. Our MLP baselines
are built to have the same order of number of hidden units
as the GNNs, to allow for similar representational capacity.
However, because there is a considerable amount of weight
sharing in GNNs compared to MLPs the number of weights is
much higher, and additionally, increases substantially with the
number of objects. More details on the MLP baselines are given
in the Supplementary Material section C. As a final baseline,
and to validate our claims on the importance of relational
inductive biases on geometrical reasoning, we compare those
architectures operating on object-based input with ResNet18-
based architectures operating directly on pixel input.

For all GNN models, after N node updates, the node
features are summed, passed through an MLP to output a two-
dimensional vector representing the score for the positive and
negative class. For the Discrimination task, the models take as
input two configurations, pass them through two parallel GNN
layers, concatenate their output embeddings and pass this vector
through a final MLP to produce scores for both classes. For a
detailed description of all models, including a visual overview,
please refer to the Supplementary Material section C.

4. EXPERIMENTAL RESULTS

4.1. Identification
In this section we report the experimental results for the
Identification task. Reported results are averaged over 10
independent runs and across datasets in the same group (low,
medium, high number of objects). For a fair Discrimination
across parameter numbers in the GNNS, we build each internal
MLP used in the message computation, node-wise aggregation,
graph-wise aggregation and prediction steps with the same
number of hidden layers d and the same number of hidden
units h. Since the DS and RDS layer can be seen as stripped-
down versions of the MPGNN layer, if d and h stay constant
the number of parameters drops for the RDS layer, and drops
even further for the DS layer. To allow for a fair Discrimination
with roughly the same number of parameters in each model, we
use h = 16 for all architectures and d = 1 for the MPGNN,
d = 2 for the RDS and d = 4 for the DS, and we report the
number of parameters in the table. For the embedding vector
that aggregates the whole configuration information, we use a
dimension hu = 16: thus the number of objects is at first small
compared to hu and gradually becomes larger as nobj increases.
We found no significant difference between using one or several
rounds of node updating in the GNNs, so all our results were
obtained with N = 1. We train for 20 epochs with the Adam
optimizer (Kingma and Ba, 2014), with a learning rate of 10−3

and a batch size of 128.
We report the means and standard deviations of the test

accuracies across all independent runs in Table 1, as well as
the numbers of parameters for each model. Chance is at 0.5.
For object-based models, we observe the highest accuracy with
the MPGNN model, on all three object ranges considered. It

TABLE 1 | Test classification accuracies (means and standard deviations are given

over datasets and seeds) for the three different models on the Identification task.

Model nobj ∈ [3..8] nobj ∈ [9..20] nobj ∈ [21..30] Parameters

MPGNN 0.97± 0.026 0.98 ± 0.024 0.98 ± 0.028 2,208

GCN 0.54 ± 0.033 0.52 ± 0.014 0.51 ± 0.013 2530

RDS 0.91 ± 0.062 0.85 ± 0.128 0.78 ± 0.19 2,038

Deep Set 0.65 ± 0.079 0.60 ± 0.082 0.58 ± 0.09 2,386

ResNet18 0.99 ± 0.017 1.0 ± 0.007 1.0 ± 0.013 11.7M

MLP Baseline 0.82 ± 0.09 0.59 ± 0.051 0.56 ± 0.051 6k/48k/139k

Bold values indicate highest average accuracy.

achieves upwards of 0.97 percent accuracy, effectively solving the
task for numbers of objects ranging from 3 to 30. Note that in
this range performance of the MPGNN stays constant when the
number of objects increases. In contrast, the RDS model achieves
good performance (0.91) when the number of objects is low,
but its performance decreases as the number of objects grows.
GCNs perform barely above chance in this task, possibly due
to the lower expressivity of linear layers compared to MLPs in
the relation operation. Deep Sets show lower performance in all
cases, and the MLP achieves 0.85 mean accuracy with nobj ∈

[3..8] but its performance drops sharply as nobj increases. Finally,
we can see that the CNN-based model completely solves the task
from pixel input, no matter the number of objects. This suggests
that solving this task is possible by simply pattern-recognizing the
positive examples with a high-capacity model.

Our results provide evidence for the fact that, while it
is possible to identify a given configuration with well-above
chance accuracy without performing any relational computation
between objects, to effectively solve the task it seems necessary
to perform fully-connected message-passing between the objects,
especially when the number of objects increases. However,
while the number of parameters stays constant in a fully-
connected MPGNN when nobj increases, the amount of

computation scales as the number of edges [O(n2
obj
)]. This makes

using MPGNNs on complete graphs harder to use at scale.
However, note that we consider this task as an abstraction
for naturally-occurring configurations of objects that contain a
limited number of objects, so this quadratic increase in time
complexity should not be a problem in practice. Additionally,
we provide evidence that this task is efficiently solvable by large,
unstructured architectures.

4.2. Discrimination
We now turn to our Discrimination task. We compare the dual-
input architecture with different internal layers: MPGNN, GCN,
RDS and DS, and to MLP and ResNet18 baselines. The MLP is
built according to the principle stated above, and takes as input a
concatenation of all the objects in both configurations. As in the
previous section, to ensure a fair comparison between models in
terms of the number of parameters we provide our GCN, RDS
and DS layers with deeper MLPs (see section C on model details
in Supplementary Material). We train models on three datasets,
respectively with nobj ∈ [3..8], nobj ∈ [9..20] and nobj ∈ [21..30],
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TABLE 2 | Test classification accuracies for the three different models on the

discrimination task.

Layer type nobj ∈ [3..8] nobj ∈ [9..20] nobj ∈ [21..30] Parameters

MPGNN 0.89 ± 0.030 0.81 ± 0.121 0.71 ± 0.176 4,686

GCN 0.55 ± 0.006 0.50 ± 0.004 0.50 ± 0.05 4,962

RDS 0.8 ± 0.133 0.68 ± 0.154 0.52 ± 0.04 5,326

Deep Set 0.51 ± 0.014 0.50 ± 0.001 0.50 ± 0.005 5,274

ResNet18 0.50 ± 0.002 0.50 ± 0.004 0.50 ± 0.005 11.7M

MLP Baseline 0.55 ± 0.002 0.51 ± 0.006 0.50 ± 0.004 26k/192k/552k

All metrics were computed on 10 different seeds and trained for 5 epochs on each dataset

of the curriculum. Bold values indicate highest average accuracy.

for 10 seeds per dataset, in Table 2. For this task, we train models
with the Adam optimizer on 5 epochs on each curriculum dataset
(25 epochs total) with a batch size of 128 and a learning rate of
10−3.

We report mean accuracies of the different models
and their standard deviation in Table 2. As before, chance
performance is 0.5. We immediately see the increased difficulty
of Discrimination compared to Identification: the model
based on MPGNN layers performs best, with mean accuracies
of 0.89, 0.81 and 0.71, compared to a performance above
0.97 on Identification. In this case we see the performance
drop for MPGNN when nobj increases. RDS performs well
above chance when the number of objects is small, but its
performance drops rapidly afterwards. GCN performs slightly
above chance in the condition with low number of objects,
but its performance drops to chance levels afterwards. Both
Deeps Sets and the MLP fail to reliably perform above chance.
Interestingly, while ResNet18-based models were able to
completely solve Identification, they fail to perform above
chance in Discrimination, highlighting the harder nature of
the task. While ResNet’s high capacity allowed it to memorize
the positive examples in Identification, the dynamic nature
of Discrimination (new configurations are presented at each
sample) creates difficulty for unstructured models. As concerns
object-based models, we established in the previous section that
complete message-passing between nodes is instrumental in
learning to identify particular configurations. The experiments
in the Discrimination task suggest that layers that allow nodes to
have access to information about other nodes are key to achieve
good performance, whether this communication is centralized,
via conditioning by the graph-level feature as in the RDS, or
decentralized, as allowed by the MPGNN layer. Additionally,
full node-to-node communication seems to be crucial for good
performance, and we show in the next subsection how this affects
the functions learned by the models. However, it does not seem
to be enough to completely solve the task. We provide additional
details on the generalization properties of the models in the
Supplementary Material sections E–G.

4.3. Model Heat Maps
In addition to the above quantitative results, we assess the quality
of the learned functions for different models. We do this by

visualizing the magnitude of the difference between the scores
of the positive and negative classes, as output by the different
models, as a function of the position of one of the objects in
the configuration. We show the results in Figure 2. Beyond the
clear qualitative differences between different models, this figure
clearly shows the shortcomings of the models. A perfect model
for this task would show a high-magnitude region in the vicinity
of the considered object, and low values everywhere else. Ideally,
the object would be placed at a global maximum of this score
difference function. Instead, both the RDS and MPGNN models
show extended crests of highmagnitudes: this means that moving
the considered object along those crests would not change the
prediction of the models, whereas the configurations are clearly
changed. This suggests that all models we considered are limited
in their capacity to distinguish classes of similar configurations.
This lack of a clearly identifiable global maximum over variations
of the position of one object suggests a possible reason for ceiling
in performance exhibited by our models: the tested GNNs are
unable to break certain symmetries. For the RDS, since each
node only has access to global information about an aggregate
of the other nodes, it is not surprising to see it exhibit the
radial symmetry around the barycenter of the configuration.
MPGNNs seem to operate in a different way: for each node the
learned function seems to show symmetry around axes related to
the principal directions of the distribution of other nodes. The
models are thus unable to discriminate a large subspace of the
configuration space (e.g., the RDS is insensitive to the rotation of
one object around the barycenter of the configuration, since the
object stays in the high-magnitude zone).More discussion on this
subject can be found in the Supplementary Material section D.

4.4. Generalization to Different Numbers of
Objects
We have highlighted in the previous section some qualitative
measures of the shortcoming of our models in the proposed
tasks. To complete these results, in this section we present a
generalization experiment for the Discrimination task. Since the
models for this task are trained on any couple of configurations,
they can be transferred to datasets with higher numbers of
objects. In this experiment we train Deep Set, RDS and MPGNN
models on one dataset (nobj ∈ [3..8], nobj ∈ [9..20], or nobj ∈

[21..30]) and test the models on all three datasets. The results are
reported in Table 3.

The results demonstrate the limited abilities of the models to
transfer their learned functions to higher or lower numbers of
objects. For instance, MPGNNs achieve 0.89 test accuracy when
trained and tested on 3–8 objects, but this performance decreases
sharply on the datasets with higher numbers of objects. This is
less the case for RDS, presumably because the simpler functions
they learn, while achieving lower performance when tested on
the matching dataset, are more robust to higher numbers of
objects. Another interesting point is that models trained on 9
to 20 numbers of objects appear to transfer better than other
conditions. In particular, both RDS and MPGNN achieve higher
mean test accuracy when transferring from 9–20 objects to 21–
30 objects than models which were directly trained on 21–30
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FIGURE 2 | Magnitude of the difference in predicted score for the positive and negative classes for a comparison between a 5-object configuration and a perturbed

version of this configuration where one object is displaced over the 2d-plane. Value displayed is score+ − score−, where score+ corresponds to the score of the logits

of the positive class as output by the model, and score_ corresponds to the logits of the negative class. Left row is with RDS layers and right row is with MPGNN. For

each row, the displaced object’s position is indicated with a blue star, the other ones with a blue dot. The sizes, colors, orientations and shapes of the objects are not

represented. Bright yellow means the model assigns the positive class to the configuration where the displaced object would be placed here, black means the

negative class would be assigned.

TABLE 3 | Generalization results between datasets for Deep Set, RDS and

MPGNN. The numbers plotted are averages of testing accuracies.

3–8 9–20 21–30

3–8

0.51 ± 0.016 0.49 ± 0.046 0.50 ± 0.043

0.80 ± 0.133 0.66 ± 0.138 0.51 ± 0.048

0.89 ± 0.03 0.71 ± 0.092 0.56 ± 0.075

9–20

0.51 ± 0.046 0.50 ± 0.001 0.50 ± 0.047

0.75 ± 0.125 0.68 ± 0.154 0.52 ± 0.054

0.68 ± 0.063 0.81 ± 0.121 0.68 ± 0.16

21–30

0.50 ± 0.04 0.51 ± 0.068 0.50 ± 0.05

0.60 ± 0.087 0.68 ± 0.15 0.52 ± 0.04

0.51 ± 0.048 0.77 ± 0.12 0.71 ± 0.18

Columns correspond to training datasets, rows to testing datasets. Each block

corresponds to one train-set/test-set combination. In each block, the results are given

from top to bottom for Deep Set, RDS and MPGNN. Diagonal blocks correspond to

matching train set/test set combinations. All reported results are averages and standard

deviations over 10 different runs. Rows and columns are annotated with the nobj range.

Bold values indicate highest average accuracy.

numbers of objects. The 21–30 dataset is harder to train on, so
themodels trained directly on this dataset may never learn, which
bring the mean accuracy down. This suggests that functions
useful for good performance on 9–20 numbers of objects are also
useful for 21–30 numbers of objects. In contrast, functions useful
for good performance on 3–8 numbers of objects do not transfer
well to higher numbers of objects.

This evaluation suggests a tradeoff in being able to solve the
task well for low numbers of objects vs. being able to solve the
task for high numbers of objects. This confirms the qualitative
evaluation in Section 4.3, where we remarked that the functions
learned by the models varied greatly with the dataset they were
trained on.

5. RELATED WORK

5.1. Spatial Relations and Language
While previous work in Visual Question Answering (VQA Antol
et al., 2015) and Instruction-Following Reinforcement Learning
(Luketina et al., 2019) have considered issues related to the ones
we consider in SpatialSim, such work is constrained to using
spatial relations that can be labeled by natural language. For
instance, one of the standard benchmarks in VQA is the CLEVR
dataset (Johnson et al., 2016). In CLEVR, questions are asked

about an image containing a collection of shapes. The questions
themselves are more designed for their compositionality (“the
object that is of the same color as the big ball that is left of
. . . ”) than for geometric reasoning per se. While the dataset does
contain questions related to spatial reasoning, there are very
few of them (four) and they are of a different nature than the
precise reasoning on configurations that we wish to address. For
instance, the concepts of “left of” or “right of,” while defining
broad spatial relations, are not invariant to the point of view
of the observer. Since language abstracts away geometry, such a
benchmark is unsuitable to the study of geometrical reasoning.
Consider the task of stacking rocks of different shapes to make a
tower; a language description could be “stack this rock on top of
this one which is on top of this one etc . . . ” But the “on top of”
does not capture the precise positional information that allows a
rock-stacking agent to estimate the centers of mass to correctly
balance its construction. Their linguistic nature makes those
datasets unsuitable for investigating the question of learning
to identify and compare precise geometrical arrangements of
objects. A follow-up to CLEVR is the CLEVRER dataset and
tasks (Yi et al., 2020). While this benchmark is very thorough,
requiring solutions to be able to perform prediction as well as
counterfactual reasoning, we would argue that the tested abilities
are a bit broad. In this work, we focus on a more restrained
task that allows us to test the abilities of our models to perform
recognition of equivalence classes of objects.

5.2. Graph Neural Networks
This is based on the recent line of work on neural networks that
operate on graph-structured input. Seminal work (Gori et al.,
2005; Scarselli et al., 2009) involved updating the representations
of nodes using a contraction map of their local neighborhood
until convergence, a computationally expensive process. Follow-
up work alleviated this, by proposing neural network models
where each layer performs an update of node features based
on the previous features and the graph’s adjacency matrix, and
several such layers are stacked to produce the final output.
Notably, Graph Convolutional Networks (GCNs) (Bruna et al.,
2014; Defferrard et al., 2016; Kipf and Welling, 2016), in their
layers, use a linear, first-order approximation of spectral graph
convolution and proved effective in several domains (Duvenaud
et al., 2015). However, these works have focused on working
on large graphs where the prediction at hand depends on its
connectivity structure, and the GCN can learn to encode the
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structure of their k-hop neighborhoods (for k computation
steps). In our case there are a lot less objects, and the precise
connectivity is irrelevant since we consider GNNs on fully-
connected graphs.

A different class of networks (MPGNNs) has been proposed to
more explicitly model an algorithm of message-passing between
the nodes of a graph, using the edges of the graph as the
underlying structure on which to propagate information. This
is the class of model that we consider in this work, because of
their flexibility and generality. A variant of this was first proposed
to model objects and their interactions (Battaglia et al., 2016;
Santoro et al., 2017) by explicitly performing neural computation
on pairs of objects. The full message-passing framework was
introduced in Gilmer et al. (2017) for supervised learning on a
molecular dataset, and was expanded in Battaglia et al. (2018),
which provided a unifying view of existing approaches.

A line of theoretical work has focused on giving guarantees on
the representational power of GNNs. Xu et al. (2018) introduced
a simple model that is provably more powerful than GCNs,
and universality of approximation theorems for permutation
invariant (Maron et al., 2019) and permutation equivariant
(Keriven and Peyré, 2019) functions of nodes of a graph have
also derived recently. However, the models constructed in these
proofs are theoretical and cannot be tractably implemented,
so this line of work opens interesting avenues for empirical
research in the capacities of GNNs in different practical settings.
In particular, Xu et al. (2018) found that GNNs have powerful
theoretical properties if the message-aggregation function is
injective. This means that the aggregation function has to
preserve all the information from its input, which is a collection
(of a priori unbounded size) of vectors, to its output, which
is a single vector of bounded dimension. Our setting allows
us to examine the ability of GNNs to appropriately aggregate
information in an experimental setting.

Finally, our work relates to recent work on learning distance
functions over pairs of graphs (Ma et al., 2019). Recent work (Li
et al., 2019), in a model they call Graph Matching Network, has
proposed using a cross-graph node-to-node attention approach
for solving the problem, and compared it to an approach without
cross-graph attention, that is closely related to our models for
the Discrimination task. However, our work here is distinct, not
so much in the actual architectures used, but in the properties
of the setting. Their work considered a task related to graph
isomorphism, where the precise connectivity of the graph is
important. In this work we are interested in the features of the
nodes themselves and we consider the underlying graph simply
as a structure supporting the GNN computation.

5.3. Learning Same-Difference Relations in
Convolutional Neural Networks
Related to our work in a recent line of contributions looking
to examine the relational reasoning capacities of machine vision
systems, in particular of Deep Convolutional Neural Networks
(DCNNs) (see Ricci et al., 2021 for a recent review). This line
of work focuses on tasks where a network has to classify images
containing two similar or different shapes, usually the two similar

shapes being translated and scaled versions of each other. This
task, often studied in humans (since Shepard and Metzler, 1971
in the case of mental rotations), entails abstract relational visual
capabilities and it has been shown to be solved by non-human
primates (Donderi and Zelnicker, 1969), birds (Katz andWright,
2006), rodents (Wasserman et al., 2012), and insects (Giurfa
et al., 2001). Kim et al. (2018) have shown that regular DCNNs
and Relation Networks (Santoro et al., 2017) have difficulties
learning the same-different abstract categories, a problem that is
alleviated by using a Siamese architecture taking as input each
of the shapes, a process the authors link to perceptual grouping
of objects in humans. Relatedly, Puebla and Bowers (2021) have
shown that DCNNs evaluated on the same-different task are not
robust to changes in the low-level features of the underlying
images, arguing that representations of objects and their relations
are needed. This is the setting in which we place ourselves in our
second task, Discrimination, where object representations are
directly accessible to networks with varying amounts of relational
computation. In addition, we consider rotational invariance as
part of our equivalence classes, which has not been considered in
this line of work.

5.4. Unsupervised Object Discovery Across
Time
In recent years there also has been a trend toward using
object-centric approaches to physical reasoning, by learning
unsupervised latent representations of objects from videos
of dynamic object interaction. Constrastive Structured World
Models (C-SWMs) (Kipf et al., 2019) learn, from pixel input, a
latent representation in as a set of entities, after having passed
an encoder; the latents are trained in a contrastive fashion, with
positive pairs being continuous in time and negative pairs being
randomly matched. This contrastive training scheme ensures
the latents capture meaningful information without having to
compute any loss in pixel space. AlignNet and OAT (Creswell
et al., 2020, 2021) also operate on raw videos of dynamic objects,
using a MONet encoder (Burgess et al., 2019) to produce a
latent representation of a set of objects. The goal of this work
is to find, for any given time step, a permutation between object
indices such as the objects resulting from the encoding are always
enumerated in the same order. As the focus of the work is
not object interaction, their dynamics model is not relational,
and is based on an LSTM acting on entity features. The OP3
model (Veerapaneni et al., 2020) builds upon a similar idea than
IODINE (Greff et al., 2020)—that is, inferring the entities present
in a scene through iterative refinement—extended to temporally-
extended image inputs; as such, it also includes a dynamics model
based on a GNN. The authors show that using their approach in
model-based planning leads to better generalization compared to
using unstructured or non-relational approaches. These models
have in common that the entity encoder is separate from the
dynamics model which operates over a structured latent space.
While physical reasoning is feasible using non-relational models
(Eslami et al., 2018), each of these works provide evidence for
the usefulness of object-centric inductive biases as well as of
the separation between object perception models and physics
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models. SpatialSim focuses on the object-relation component,
but this previous line of work suggests how well-performing
object encoders could be extracted, even with a very simple
encoding scheme (as in the case in C-SWMs), from the spatial
and temporal structure of observations of interacting objects.
However, the implicit spatial reasoning tasks that are solved
in these tasks are somewhat easier than what is needed in the
SpatialSim benchmark because the worlds they consider have
smooth transitions: contiguous frames are close to each other in
pixel and entity space, which is not the case in our setup.

6. CONCLUSION

In this work, we motivated the use of GNNs to learn goal-
achievement functions over equivalences classes of spatial
configurations of objects. We introduced SpatialSim, a simplified
but challenging spatial reasoning benchmark that serves as a first
step toward more general geometrical reasoning where a model
has to learn to recognize an arrangement of objects irrespective of
its point of view. We demonstrated that the relational inductive
biases exhibited byMessage-Passing GNNs is crucial in achieving
good performance on the task, compared to a centralized
message-passing scheme or to independent updating of the object
features. MPGNNs achieve near-perfect performance on the
Identification task, but achieve much lower performance on the
Discrimination task. Our experiments with ResNets suggest that
object-centered architectures are also instrumental in solving
the difficult Discrimination task, as demonstrated by the failure
of CNNs with 4 order of magnitude more parameters than

the small relational neural networks we consider. Our analysis
suggests two shortcomings of current models on this benchmark:
1) the models struggle to accurately summarize information
when the ratio between the number of objects and the size of
the embedding used for representing the whole configuration
becomes large and 2) GNNs in spite of their relational inductive
biases struggle to break certain symmetries; we take this to mean
additional theoretical and experimental research is needed to find
more appropriate biases for geometrical reasoning.
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