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Background. A polyphagous insect herbivore has a wide range of host plants. However,
it has been found that many polyphagous herbivores commonly exhibit a strong
preference for a subset of species in their broad host range, and various host biotypes
exist in herbivore populations. Nutrition and secondary metabolites in plants affect
herbivore preference and performance, but it is still not clear which factors determine
the host range and host preference of polyphagous herbivores.

Method. Cotton-melon aphids, Aphis gossypii Glover, collected from cotton and
cucumber crops, were used in this study. The genetic backgrounds of these aphids were
detected using microsatellite PCR and six genotypes were evaluated. Performance of
these six aphid genotypes on excised leaves and plants of cotton and cucumber seedlings
were examined through a reciprocal transplant experiment. In order to detect whether
the feeding experience on artificial diet would alter aphid host range, the six genotypes
of aphids fed on artificial diet for seven days were transferred onto cotton and cucumber
leaves, and then their population growth on these two host plants was surveyed.
Results. Aphids from cotton and cucumber plants could not colonize the excised leaves
and intact plants of cucumber and cotton seedlings, respectively. All six genotypes of
aphids collected from cotton and cucumber plants could survive and produce offspring
on artificial diet, which lacked plant secondary metabolites. The feeding experience
on the artificial diet did not alter the ability of all six genotypes to use their native
host plants. However, after feeding on this artificial diet for seven days, two aphid
genotypes from cotton and one from cucumber acquired the ability to use both of the
excised leaves from cucumber and cotton plants. The two aphid genotypes from cotton
conditioned by the feeding experience on artificial diet and then reared on excised
cucumber leaves for >12 generations still maintained the ability to use intact cotton
plants but did not establish a population on cucumber plants. However, one cucumber
genotype conditioned by artificial diet and then reared on excised cotton leaves could
use both the intact cotton and cucumber plants, showing that the expansion of host
range was mediated by feeding experience.

Conclusion. Feeding experience on artificial diet induced the expansion of host range
of the cucurbit-specialized A. gossypii, and this expansion was genotype-specific. We
speculated that feeding on a constant set of host plants in the life cycle of aphids may
contribute to the formation of host specialization.
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INTRODUCTION

Most insect herbivores have specialized diets (Jaenike, 1990; Via, 1991; Caballero, Ramirez ¢
Niemeyer, 2001; Stone et al., 2009). Even polyphagous species show some degree of dietary
specialization, and they often perform better on some host plants than on others. Particular
insect herbivore populations may perform better on their natal hosts than on non-natal or
novel hosts (Jaenike, 1990). The formation of host biotypes and the potential flexibility of
dietary specialization within polyphagous species is not well understood. For example, host
specialization in the polyphagous aphids, Acyrthosiphon pisum and Rhopalosiphum maidis,
could not be modified by feeding experience on a novel host (Via, 1991; Caballero, Ramirez
¢ Niemeyer, 2001). However, host specialization in other insect herbivore species was
alterable (Singer, Thomas & Parmesan, 1993; Messina, Mendenhall & Jones, 2009; Wu et al.,
2013). The introduction of a novel plant into a region led to a change in host availability
for Euphydryas editha butterflies, and even resulted in a local population’s refusal to accept
their ancestral hosts (Singer, Thomas ¢ Parmesan, 1993). The seed beetles, Callosobruchus
maculatus (F.), performed worse when they were fed on lentil than on mung bean, but
after ten generations on lentil, their survival rate increased up to 88% which was similar
to the value (97%) on mung bean, and consequently a self-sustaining population on lentil
resulted (Messina, Mendenhall ¢ Jones, 2009). These results illustrate that the diet of insect
herbivores can change in response to resource availability (Cates, 1980).

The cotton-melon aphid, Aphis gossypii Glover, has a wide host range, perhaps 900
species belonging to 116 plant families, such as Cucurbitaceae, Malvaceae, Solanaceae,
Rutaceae, and Asteraceae (Ebert ¢~ Cartwright, 1997; Blackman ¢ Eastop, 2000). However,
many studies illustrate that A. gossypii populations have formed obvious host races,
which use only a subset of host plant species in their recorded host range (Kring, 1959;
Guldemond, Tigges & De Vrijer, 1994; Liu, Zhai & Zhang, 2002; Liu, Zhai & Zhang, 2008;
Liu et al., 2004). Numerous cases of host race, biotype, and host-specialized strains in
A. gossypii populations have been found all over the world. In Europe, the aphid A. gossypii
from chrysanthemum could not colonize cucumber and vice-versa, cacumber aphids did
not use chrysanthemum (Guldemond, Tigges ¢» De Vrijer, 1994). Five host races (cucurbits,
cotton, eggplant, potato, and chili- or sweet-pepper races) were identified in A. gossypii
populations collected from five plant families in five large geographical regions (Carletto
et al., 2009). In China, A. gossypii populations on cotton could not colonize cucumber
seedlings, and the populations collected from cucumber could not colonize cotton seedlings
either (Liu, Zhai ¢ Zhang, 2008; Wang et al., 2016). The populations on cucumber could
not use chrysanthemum, but these on cotton could use this plant (Liu, Xu ¢ Lei, 2017).
These results indicate that A. gossypii populations have differentiated into at least two host
biotypes: cotton- and cucurbit-specialized aphids.
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Moreover, recent experimental data show that host specialization in A. gossypii
populations is conditional. The host range expansion of host-specialized A. gossypii has
been found under some specific conditions (Liu, Zhai ¢» Zhang, 2008; Wu et al., 2013;
Xu, Ma ¢ Liu, 20145 Liu, Xu & Lei, 2017; Hu et al., 2017). Feeding experience on cowpea
for one generation or on hibiscus plants for three generations extended the host range
of the cucurbit-specialized biotype, and this biotype gained the ability to use both the
cotton and cucumber seedlings (Liu, Zhai ¢» Zhang, 2008; Wu et al., 2013). When the
cotton-specialized biotype was reared for five or more generations on zucchini plants, it
acquired the ability to use cucumber seedlings, but consequently lost the ability to use
cotton plants (Wu et al., 2013). The cucumber at the inflorescence stage and cotton at
the infructescence stage acted as a refuge for the cotton- and cucumber-specialized aphid
biotypes, respectively, when these aphids encountered a food deficiency (Liu, Xu & Lei,
2017). These previous studies illustrate that the host range of aphid populations varies with
the population’s feeding experience, and the host specialization of aphids to a specific host
plant can change over a small number of generations.

Feeding experience, or host shifts, give aphids an opportunity to ingest some novel
substances from new plants. Nutritional quality and secondary metabolites in plants affect
the food quality of host plants for insect herbivores (Felton et al., 1989; Felton, 1996; Couture
et al., 2016). Only the populations or species of insects adapted to the nutrients and the
secondary metabolites of plants can survive and colonize the plant. That feeding experience
on specific host plants shifted the host specialization of A. gossypii suggests that substances
in host plants might determine the host range of aphids. How feeding experience over a
small number of generations can maintain or change the host range of aphids is not clear.

On the other hand, genetic backgrounds of aphids may affect their host range. It has
been found that the genetic structure of insect populations changed in association with the
use of novel host plants (Singer, Thomas ¢» Parmesan, 1993). High genetic differentiation
between host races was found in the pea aphid (Jaquiéry et al., 2012). The main genotypes
of A. gossypii on cotton and cucurbit plants were also different (Carletto et al., 2009; Wang
et al., 2016; Liu, Xu ¢ Lei, 2017).

In this study, we propose the hypothesis that the host range of the cotton-melon aphid
is determined by aphid genetic background and feeding experience. Due to the coexistence
of nutrition and defensive contents in plants, it is difficult to distinguish the roles of
nutrition and secondary metabolites in aphid feeding experience. Therefore, experiments
using artificial diets can reveal how feeding experience alters insect host range, because the
contents in artificial diet are wholly controllable. In this study, we firstly confirmed that
three aphid genotypes in A. gossypii populations collected from cotton did not establish
populations on intact plants or excised leaves of cucumber, and the other three genotypes
collected from cucumber did not establish populations on intact plants or excised leaves of
cotton. Secondly we examined the performance of these six aphid genotypes on artificial
diet without plant secondary metabolites, and found that all of them could complete their
life cycles. And then, these six aphid genotypes reared on artificial diet were transferred
onto cotton and cucumber excised leaves to examine their ability to use leaves of both
plant species. Finally, the genotypes that established populations on both the cotton and
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Table 1 Collection information and genotypes of the cotton-melon aphids used in this study.

Genotype Host Sampling Sampling Microsatellite loci
plant date location
Ago-24 Ago-53 Ago-59 Ago-66 Ago-89
CO-1 Cotton Jul 2001 Nanjing 114 118 161 147 151
114 118 161 167 151
CO-2 Cotton Aug 2014 Huangshan 114 118 167 147 151
153 160 182 167 163
CO-3 Cotton Jul 2014 Nanjing 153 118 161 147 151
163 160 167 167 163
CU-1 Cucumber Jul 2001 Nanjing 153 118 182 147 151
153 118 200 167 163
CU-2 Cucumber Aug 2014 Nanjing 153 118 182 147 151
217 118 200 167 163
CU-3 Cucumber Aug 2014 Anyang 114 118 161 147 151
153 118 161 147 151

cucumber leaves via feeding experience on artificial diet were transferred back onto the
cotton and cucumber seedlings to examine the change in host range. The study addresses
the role of feeding experience on artificial diet in determining aphid host range, and
provides a better understanding of the formation of aphid host specialization.

MATERIALS AND METHODS

Aphids and genotyping

The cotton-melon aphids, A. gossypii, used in this study were originally collected from
cotton and cucumber fields in Nanjing, Huangshan, and Anyang, China. The collection
sites for each aphid sample were at least 100 m apart to reduce the risk of sampling offspring
from the same clone. The genotype of each aphid was examined by five microsatellite loci
(Vanlerberghe-Masutti, Chavigny & Fuller, 1999). The six aphid genotypes used in this study
were genetically distant (Table 1). Three were collected from cotton (CO-1, CO-2, CO-3),
and three from cucumber (CU-1, CU-2, CU-3) (Table 1). These six aphid genotypes were
reared under conditions of 27 °C, L:D = 14 h:10 h and RH = 75% using their original host
plant seedlings of cotton (Sumian 4) and cucumber (Lufeng). Host plants were cultured
in a greenhouse at 27 °C in the campus of Nanjing Agricultural University, Nanjing,
China, from September 2016 to June 2017. Each genotype reproduced parthenogenetically
throughout the rearing period. Endosymbionts in all six genotypes of aphids were examined
by diagnostic PCR with specific primers based on 16S rRNA gene sequences from Buchnera
aphidicola, Regiella insecticola, Hamiltonella defense, Serratia symbiotica, Arsenophonus,
Rickettsia, Rickettsiella, Spiroplasma, and X type and the wsp gene from Wolbachia (Zhang
et al., 2016). We found that all six aphid genotypes did not host these symbionts except B.
aphidicola, an obligate symbiont.
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Population establishment of six aphid genotypes on the cotton and
cucumber plants

Cotton and cucumber genotypes CO1-3 and CU1-3 were transferred onto cotton and
cucumber plants with six leaves and reared at 27 °C and 75% RH in a laboratory growth
chamber. Twenty 7-day-old apterous aphids were placed onto each individual plant, and
then covered with a plastic chamber. The number of aphids (population size) in a chamber
was counted every two days until all the aphids died or the aphid population increased.
The death of aphids indicated that the genotype could not establish a population on the
tested plant; an increase of population size indicated that the genotype could establish a
population. Fach aphid genotype had three replicates on both cotton and cucumber plants.

Population establishment of six aphid genotypes on the cotton and
cucumber excised leaves

Leaves cut from cotton and cucumber seedlings at the growth stage with 4-9 leaves were
used to rear six aphid genotypes at 27 °C and 75% RH. The leaf petiole was wrapped in
wet cotton wool to keep it fresh. One leaf was placed into a Petri dish (90 mm diameter, 20
mm height), and then 40 7-day-old apterous aphids were released into the dish. The total
number of aphids in a Petri dish was investigated every three days for six time points to
determine if the aphid population increased or died on the tested leaf. The leaf in a dish
was replaced with a fresh one every three days. The experiment for each genotype reared
on excised leaves from the natal and alternative host plants was performed with five and
ten replicates, respectively.

Performance of aphids on artificial diet and excised leaves

The liquid artificial diet of aphids was prepared according to the method by Mittler ¢» Dadd
(1962) and Auclair (1967a), Auclair (1967b). The main ingredients of this artificial diet
are amino acids, sugar and vitamin B, excluding any secondary metabolites in host plants
(Table 2). Life tables of each aphid genotype on the artificial diet were established. During
the experiment, 150 pl artificial diet was placed between two layers of thin Parafilm which
was fixed to one end of a glass tube (25 mm in diameter and 30 mm height). Fifteen to
twenty apterous adult aphids were transferred onto the Parafilm in the tube, and then the
other end of the tube was covered with one layer of Parafilm to prevent escape of aphids
(Fig. 1). The next day, all the adults in the tube were removed, and ten newly-born nymphs
were maintained as the original cohort for establishing the population documented in
the life table. The survival and reproduction of the cohort of aphids were surveyed every
two days until they died. During the reproductive period, nymphs were counted and then
removed. The artificial diet was replaced every three days. The life tables of six aphid
genotypes were performed on the artificial diet with 4 or 5 replications.

The life tables of three genotypes from cotton and three genotypes from cucumber were
also performed on the excised cotton and cucumber leaves, respectively. The leaf petiole
was wrapped in wet cotton wool to keep leaf fresh, and then the leaf was placed into a Petri
dish. Five apterous adult aphids were transferred onto the leaf for producing offspring
at night, and then the mother aphids were removed and ten new-born aphids were kept
for surveying their survival and reproduction. The survey was performed every two days
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Table 2 Ingredient of the artificial diet in 100 ml H,O.

Ingredient Dosage/mg Ingredient Dosage/mg
Cholesterol 5.0 Sucrose 30,000.0
L-Arginine 400.0 KH,PO, 500.0
L-Threonine 200.0 MgCl,-6H,0 200.0
L-Leucine 200.0 Biotin (VB;) 0.2
L-Tryptophane 120.0 Folic acid 0.5
L-Aspartic acid 600.0 Riboflavin (VB,) 2.5
Glycine 100.0 Pyridoxol (VBg) 2.5
L-Tyrosine 20.0 Calcium pantothenate (VBs) 5.0
y-aminobutyric acid 20.0 Choline chloride 50.0
L-Histidine 200.0 Thiamine hydrochloride (VB;) 2.5
L-Lysine 200.0 Nicotinic acid (VB3) 10.0
L-Phenylalanine 120.0 Inose 50.0
L-Asparagine 110.0 P-Aminobenzoic acid 10.0
L-Glutamin 600.0 Ascorbic acid 100.0
L-Serine 100.0 Ca(H,POy), 1.4
L-Cysteine 50.0 FeCsH50,-5H,0 0.4
L-Methionine 120.0 MgSO, 1.4
L-Valine 200.0 CuCl,-2H,0 0.6
L-Isoleucine 150.0 ZnCl, 2.6
L-Glutamic acid 200.0 Ca(C3H503),-5H,0 34
L-Alanine 100.0 NaH,P0O,-2H,0 1.0
L-Proline 100.0 NaCl 0.6
L-Cystine 10.0 MnCl,-4H,0 1.0

following the method used in the artificial diet experiment above. Five replications were
performed for each genotype on the cotton and cucumber excised leaves. The intrinsic rate
of natural increase (r,,) was used to indicate the performance of aphids on artificial diet
or host leaves which was calculated by the formula: r,,, = In(Ry)/T, where Ry= X I, my,
T = Xxl,,m, /Ry, I, is the proportion of individuals in the initial cohort alive at age x days,
and m, is the mean number of progeny produced per mother aphid alive on day x.

Population growth of the artificial diet-conditioned aphids on cotton
and cucumber leaves

The population growth of six aphid genotypes conditioned by artificial diet was measured
on the excised cotton and cucumber leaves. Forty 7-day-old apterous aphids fed on artificial
diet for seven days were transferred onto an excised cotton or cucumber leaf in a Petri dish,
and then the number of aphids (population size) was observed every three days until all the
aphids died or the aphid population increased. The observation lasted for at least 16 days.
The experiments for all six genotypes on cotton and cucumber leaves were replicated 10
times except the genotype CU-1 on cucumber with five replications because of the lower
progeny of CU-1 on artificial diet and stable survival rate on cucumber. These artificial
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Figure 1 A diagram of artificial diet used in this experiment.
Full-size &l DOI: 10.7717/peer;j.7774/fig-1

diet-conditioned aphids could not establish populations on the alternative host plant, so
the number of aphids on the intact host plant was not analyzed.

Population establishment on cotton and cucumber plants for these
aphids adapted to the alternative host leaves via artificial diet
conditioning

We found that two aphid genotypes (CO-2 and CO-3) from cotton and one genotype
(CU-3) from cucumber could establish populations on excised leaves of the alternative
host plants, cucumber and cotton, respectively, when they fed on artificial diet for seven
days. Therefore, we reared these genotypes on their alternative host plant leaves for more
than 150 days (>12 generations), and then we transferred them onto an intact cotton and
cucumber plant (with 4-6 leaves) to examine whether these novel leaf-conditioned aphids
could use both the cotton and cucumber plants. Twenty 7-day conditioned apterous aphids
were transferred from the alternative host leaves onto cotton and cucumber plants, and
then the population sizes were observed every two days. The observation lasted for 17-49
days according to the rate of population increase. When the number of aphids had grown
more than 10-fold on the alternative host plant, the observation ended. Three replications
were performed for each genotype and host plant.

Data analysis

The r,, of different aphid genotypes on artificial diet and excised leaves was analyzed using
a general linear model and the aphid genotype and food type (excised leaf and artificial
diet) were considered as fixed factors. The r,, of each genotype reared on artificial diet and
excised leaves was compared using student’s ¢ test. Comparisons of the r,, among different
genotypes on artificial diet or excised leaves, and population sizes among aphid genotypes
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Figure 2 Population sizes of six aphid genotypes. (A) Aphids on cotton plants. (B) Aphids on cucumber

plants.
Full-size Gl DOL: 10.7717/peerj.7774/fig-2

on cotton and cucumber were analyzed using ANOVA followed by Tukey HSD post hoc
comparisons. All the statistical analyses were performed using software SPSS 17.

RESULTS

Population establishment of different aphid genotypes on intact plants
of cotton and cucumber

The aphids from intact cotton and cucumber plants did not establish populations on the
alternative host plant. The three aphid genotypes collected from cotton CO-1, CO-2, and
CO-3 established populations on cotton plants, but the three genotypes from cucumber
CU-1, CU-2, and CU-3 did not establish populations on cotton (Fig. 2A). The aphid
genotypes from cucumber survived 3-11 days on cotton plants (Fig. 2A). Similarly, the
three aphid genotypes collected from cucumber CU-1, CU-2, and CU-3 established
populations on cucumber plants, but genotypes from cotton CO-1, CO-2, and CO-3 did
not establish populations on cucumber plants, and they survived only 3—7 days (Fig. 2B).

Population growth of different aphid genotypes on excised leaves of
the alternative host plant

The aphids on cotton and cucumber did not establish populations on the excised leaves
from the alternative host plant. The aphid populations of six genotypes increased well
on the excised leaves from their natal host plants (Figs. 3A 3B), but the genotypes from
cucumber survived 4-10 days on the excised cotton leaves (Fig. 3A), and the genotypes
form cotton survived 25-37 days on the excised cucumber leaves (Fig. 3B).

Performance of different aphid genotypes on artificial diet

The artificial diet was not very suitable for the six aphid genotypes, compared to the host
leaf. The intrinsic rates of natural increase (r,,) of aphid populations were significantly
affected by food type (F; 50 =2,316.782, P < 0.001) and aphid genotype (Fs 59 = 14.095,
P <0.001) (Fig. 4). The r,, of all six aphid genotypes on excised leaves from the natal host
plant were significantly higher than that on the artificial diet (CO-1: t = 14.141, P < 0.001;
CO-2: t =14.265, P < 0.001; CO-3: t =16.483, P < 0.001; CU-1: + =29.805, P < 0.001;
CU-2: t+ =42.605, P < 0.001; CU-3: t = 17.075, P < 0.001) (Fig. 4). The r,, values on natal
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Different lowercases and uppercase represent significant difference among aphid genotypes on host leaves
and artificial diet, respectively at P < 0.05.
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host leaves were 1.5 to 5.2 times higher than the values on the artificial diet for all six aphid
genotypes. The r,,, of CO-1 was significantly higher on the artificial diet than that of the
other five genotypes, and the r,, of CU-3 was significantly higher than that of CO-2, CU-1,
and CU-2 on artificial diet (F5 24 =42.634, P < 0.001) (Fig. 4).

Feeding experience on artificial diet affects host range of aphids
Feeding experience on artificial diet altered host plant range of some aphid genotypes.
Three aphid genotypes from cotton CO-1, CO-2, and CO-3 still maintained the ability to
use their natal host cotton leaf when they were conditioned to the artificial diet for seven
days (Fig. 5A). Moreover, two aphid genotypes CO-2 and CO-3 acquired the ability to
use cucumber leaf, an alternative host plant (Fig. 5A). The population sizes of CO-2 and
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CO-3 on excised cucumber leaves were significantly higher than that of CO-1, CO-2 and
CO-3 on excised cotton leaves (Fs 54 = 181.42, P < 0.001; Fig. 5A). Although genotype
CO-1 conditioned to artificial diet could survive a long time on excised cucumber leaves
(34 days), it did not establish a population (Fig. 5A).

Three aphid genotypes from cucumber CU-1, CU-2, and CU-3 established populations
on excised cucumber leaves after they fed on artificial diet for seven days (Fig. 5B).
Interestingly, one aphid genotype (CU-3) established a population on excised cotton leaves
too after feeding experience on artificial diet, and the population size of this genotype
on cotton leaves was significantly larger than those of genotypes CU-1 and CU-2 (
F5.49=126.91, P < 0.001) (Fig. 5B). Genotypes CU-1 and CU-2 could survive more than
100 days on cotton leaves after feeding experience on artificial diet, but eventually all of
them died (Fig. 5B).

Feeding experience on the excised leaf affects aphid host range

Host range expansion of aphids mediated by feeding experience was genotype-dependent.
The aphid genotypes CO-2 and CO-3 established populations on the excised leaves of
cucumber after feeding experience on artificial diet. However, after they were reared for
12 successive generations on the cucumber leaves, both genotypes still could use cotton
plants, but could not use cucumber plants (Fig. 6A). By contrast, the genotype CU-3 fed
on excised cotton leaves for 12 generations after experience on artificial diet could use both
the cucumber and cotton plants (Fig. 6B), suggesting the expansion of host range. The
population growth of these CU-3 on cotton plants was faster in one replicate after 25 days
than in the other two, and therefore, the average number of aphids showed a high variance
(Fig. 6B).

DISCUSSION

Phytophagous insects, including dietary generalist species, often exhibit host specialization
(Futuyma & Moreno, 1988; Jaenike, 1990; Sword, Joern ¢ Senior, 2005; Stilmant et al.,
2008). However, several factors, including both evolutionary and ecological processes,
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Figure 6 Population growth of three aphid genotypes on cotton and cucumber plants. (A) Two geno-
types from cotton. (B) One genotype from cucumber. These three genotypes were reared for 12 genera-
tions on the alternative host leaves after conditioning to artificial diet for seven days.
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may induce changes in the host range of insect herbivores, and result in the acquisition or
loss of specific host plants in their host range (West-Eberhard, 1989; Gorur, Lomonaco

& Mackenzie, 2007). The host specialization of phytophagous insects is not wholly
conservative (Nosil, 2002; Gorur, Lomonaco ¢ Mackenzie, 2005; Liu, Zhai & Zhang, 2008).
The results of the present study indicate that some aphid genotypes acquired the ability to
survive and establish populations on excised leaves of a novel host plant which they did not
use, after they underwent a feeding experience on artificial diet, but some genotypes did
not acquire this ability. A previous study also found that a specific host plant could lead
to a host shift of the host-specialized aphids (Wu et al., 2013). Because the experimental
plants included both nutrients and secondary metabolites, it was unclear how each of these
substances or if both contributed to the host shift of aphids. In this study, we found that
the artificial diet lacking in secondary metabolites could alter the host range of a part of
genotypes in A. gossypii aphids from cotton and cucumber. This result shows that feeding
experience with nutrients alone can contribute to a change in host range of some aphid
genotypes. Aphids feeding on different host plants may ingest different nutrients, and each
genotype may adapt specifically to this nutrient profile (Via, 1991; Carletto et al., 2009;
Alkhedir et al., 2016). Further study is needed to determine which specific nutrients are
involved.

Plant resistance to aphids is related to host quality in terms of free amino acids
composition, phytohormone content (abscisic acid, jasmonic acid, salicylic acid), and
secondary metabolite profiles (Kant et al., 2004; Schilmiller ¢ Howe, 2005; Chiozza, O’Neal
& Maclntosh, 20105 Vos et al., 2013; Agut et al., 2014; Agut et al., 2016). Nutritional quality
and secondary metabolite profiles vary dramatically between the natal and alternative host
plants for aphids (Wang et al., 2015; Wang et al., 2017). As key nutrients for insects, free
amino acids in plants are closely related to insect feeding, development, and reproduction
(Mittler, 19705 Wilkinson & Douglas, 2003). Within a host plant species, phenotypic
variation, sometimes characterized as plant vigor, affects the performance of aphids
(Price, 1991; White, 2009); variation in plant vigor would result from variation in nutrients
and secondary metabolites. In previous studies, we found that the cucurbit-specialized A.
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gossypii aphids could not survive on vigorous cotton plants, but they could colonize the
old cotton plants by feeding on their old leaves. In contrast, the cotton-specialized aphids
preferentially chose the vigorous seedlings of cotton and fed on the new leaves (Xu, Ma ¢
Liu, 2014; Liu, Xu & Lei, 2017). In this study, the results indicate that the excised leaves and
intact plants have different effects on performance of aphids. Other studies point to some
of the specific differences between excised leaves and intact plants. The excised leaves of
corn seedlings produced more jasmonic acid- and volicitin-induced sesquiterpene volatile
than intact plants (Schmelz, Alborn & Tumlinson, 2001). Leaf excision stimulated increased
ethylene production in rice leaves ( Tsai, Hung ¢ Kao, 1996). The amino acid content in the
excised turnip leaves was higher than that in the intact leaves (Thomas, Sorensen ¢ Painter,
1966). Plant secondary metabolites and nutrients have a strong impact on consumption and
growth in dietary generalist herbivores, such as the cabbage looper Trichoplusia ni (Kaplan,
McArt & Thaler, 2014). Excised leaves and old plants might have reduced defensive traits
and improved nutrients to aphids compared to vigorously growing tissues, so aphids from
other hosts might survive on them. For example, survival of spotted aphids was higher on
excised than intact leaves of alfalfa (Thompson, Stewart &~ Morris, 1966). However, in this
study, we also found that an artificial diet lacking secondary metabolites not only changed
performance of aphids, but also induced host range expansion of these aphids. The result
indicates that just host nutrients and not the secondary metabolites which aphids ingest
from food can affect aphid host range. We speculated that the cucurbit-specialized and
cotton-specialized biotypes in A. gossypii populations might result from different nutrient
profiles, such as amino acids, in cotton and cucumber plants. Better understanding of
the relationships between plant nutrients and the host range of herbivorous insects will
inform the physiological mechanism by which feeding experience alters host range shifts
in A. gossypii.

In this study, we also found that the effect of feeding experience on aphid host range
was dependent on aphid genotypes. Feeding experience induced the expansion of host
range in some aphid genotypes but not all. Aphids with different genetic backgrounds may
have different requirements for nutrition, and consequently live on different host plants.
Therefore, the nutrients which can induce changes in host range for different genotypes
may be different. It has been found that feeding experience of two clones of the pea aphid,
Acyrthosiphon pisum, on alfalfa or red clover did not alter aphid’s specialization to the natal
host plant (Via, 1991), and some genotypes of Rhopalosiphum maidis could withstand wheat
stressing conditions, but the conditioning on wheat did not decrease the capacity to use their
native host Johnson grass (Caballero, Ramirez ¢ Niemeyer, 2001). Genetic differentiations
may contribute to host shifts of insects. The rapid adaptation of seed beetle Callosobruchus
maculatus to a poor host was mediated by genetic variation at multiple genetic loci, and
the contribution of genetic drift was small (Gompert & Messina, 2016). Genetic trade-offs
associated with host use have been found in phytophagous insects (Hawthorne & Via,
2001; Gompert & Messina, 2016). Genetic structures of A. gossypii populations on cotton
and cucumber plants were different (Liu, Xu & Lei, 2017). Feeding on a constant set of
host plants in the life cycle of aphids may result in the genetic differentiation among
different host strains, causing the formation of host specialization and evolution of host
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plant use. Therefore, using genomics techniques will clarify the molecular mechanisms of
evolutionary adaptation of insect herbivores to their host plants.

Epigenetic effects and microbial symbionts cannot be ignored in changes of aphid host
range (Kim, Thairu ¢ Hansen, 2016). DNA methylation is a general epigenetic mechanism
for organisms to adapt to environmental changes. For example, two biotypes of the Russian
wheat aphid, Diuraphis noxia, using different host plants showed different methylation
levels (Gong et al., 2012). The high variance in the population size of CU3 conditioned by
artificial diet and the alternative host plant appeared on cotton plants, and only some aphid
genotypes, but not all, could change their host range via the feeding experience on artificial
diet. These results imply that there may be epigenetic effects of aphid host range mediated
by feeding experience. On the other hand, insect symbionts may be hidden players in
insect—plant interactions (Frago, Dicke ¢» Godfray, 2012). Host plant specialization of the
pea aphids was found to be governed by a facultative symbiont, R. insecticola (Tsuchida,
Koga & Fukatsu, 2004). Although all the aphid genotypes used in this study were not
infected with facultative symbionts, the obligate symbiont B. aphidicola was present. The B.
aphidicola can supply nutrients for aphids, such as amino acids (Douglas ¢ Prosser, 1992),
and changes in the population size of this symbiont can affect fitness of aphids (Chen, Lai
& Kuo, 2009; Vogel & Moran, 2011). Symbiont density in aphids was different when aphids
fed on different host plants (Zhang et al., 2016). Insect symbionts contributed to a variety
of extended insect host phenotypes (Kim, Thairu ¢ Hansen, 2016). We speculate that
different dietary nutrients may affect the changes of aphids in epigenomics or microbial
symbionts, and consequently results in the change of aphid host range.

CONCLUSIONS

The cotton-melon aphid populations exhibit obvious host specialization to cotton and
cucumber plants. The aphids on cotton do not use cucumber, and aphids on cucumber
cannot establish populations on cotton. Aphids from both the cotton and cucumber can
establish populations on an artificial diet, and the short-term feeding experience on this
artificial diet results in host expansion of some genotypes. The host range change of aphids
mediated by feeding experience on artificial diet is dependent on aphid genetic, epigenetic,
or symbiont backgrounds. Nutrients of host plants may contribute to the formation of host
specialization and evolution of host plant use in aphid populations. Host specialization may
be easy to form in aphid populations feeding on a constant set of host plants in life cycle.
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