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Chronic eosinophilic inflammation is associated with tissue remodeling and fibrosis in 
a number of chronic T-helper 2 (Th2)-mediated diseases including eosinophilic esoph-
agitis (EoE) and asthma. Chronic inflammation results in dysregulated tissue healing, 
leading to fibrosis and end organ dysfunction, manifesting clinically as irreversible air-
way obstruction in asthma and as esophageal rigidity, strictures, narrowing, dysmotility, 
dysphagia, and food impactions in EoE. Current therapies for EoE and asthma center 
on reducing inflammation-driven tissue remodeling and fibrosis with corticosteroids, 
coupled with symptomatic control and allergen avoidance. Additional control of Th2 
inflammation can be achieved in select asthma patients with biologic therapies such 
as anti-IL-5 and anti-IL-13 antibodies, which have also been trialed in EoE. Recent 
molecular analysis suggests an emerging role for structural cell dysfunction, either 
inherited or acquired, in the pathogenesis and progression of EoE and asthma tissue 
remodeling. In addition, new data suggest that inflammation-independent end organ 
rigidity can alter structural cell function. Herein, we review emerging data and concepts 
for the pathogenesis of tissue remodeling and fibrosis primarily in EoE and relevant 
pathogenetic parallels in asthma, focusing additionally on emerging disease-specific 
therapies and the ability of these therapies to reduce tissue remodeling in subsets of 
patients.

Keywords: eosinophilic esophagitis, asthma, inflammation, tissue remodeling, fibrosis, structural cell dysfunction, 
corticosteroid, biologic therapy

inTRODUCTiOn

Allergic inflammation has the capacity to recruit eosinophils to the site of inciting stimulus. 
Prolonged eosinophil infiltration can contribute to significant tissue injury, leading to maladaptive 
tissue remodeling and fibrosis. We will focus primarily on eosinophilic disorders associated with 
robust tissue remodeling, specifically eosinophilic esophagitis (EoE) and its relevant pathogenetic 
parallels in asthma.
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CLiniCAL FeATUReS OF TiSSUe 
ReMODeLinG

The hypereosinophilic syndrome (HES)-associated tissue remod-
eling is arguably the most severe with cardiac damage leading 
to potential morbidity due to endomyocardial fibrosis. Asthma-
associated airway remodeling occurs with epithelial denudation 
and goblet cell metaplasia, subepithelial fibrosis, angiogenesis, 
and smooth muscle hypertrophy (1). Remodeling is believed 
to be the mechanism to irreversible airway obstruction (2). 
EoE is an emerging chronic allergen-driven immune-mediated 
inflammatory disease that has been gaining recognition, with an 
increasing prevalence reaching 1 case per 1,000 persons (3–5). 
Chronic, unbridled inflammation in EoE leads to progressive 
esophageal fibrostenosis with rigidity and dysmotility with food 
impactions (6–9). Adult studies clearly demonstrate a natural 
history to stricture formation (6, 7). In both asthma and EoE, 
remodeling begins early in life, before the age of 6  years, and 
children with EoE can have histologic remodeling at as young as 
2 years of age (2, 10).

Eosinophilic esophagitis is defined as a marked esophageal 
eosinophilic inflammation (≥15 eosinophils per high power 
field) that includes other inflammatory cells that likely contribute 
to remodeling such as mast cells, basophils, and adaptive as well 
as innate lymphoid cells (11–15). In the face of chronic antigen 
exposure and tissue damage, a progressive maladaptive esopha-
geal tissue remodeling response causes clinical manifestations 
of dysphagia, food impactions, and, sometimes, spontaneous 
esophageal perforation (6, 16–20). In children, EoE often pre-
sents clinically as abdominal pain, nausea, vomiting, regurgita-
tion, feeding difficulty, food aversion, weight loss, and failure to 
thrive; in adults, dysphagia and food impactions become more 
clinically prominent due to progression of esophageal dysfunc-
tion and fibrosis (13, 21). EoE severity has been associated with 
a lower body mass index, likely secondary to chronic nutritional 
deficit from recurrent dysphagia, food impaction, and food aver-
sion (22). Although most EoE patients are well appearing, they 
often require a multimodal management approach that includes 
chronic medical treatment, dietary restriction, lifestyle changes, 
and repeated endoscopic diagnostic and therapeutic evaluations, 
creating a significant healthcare burden and impaired quality of 
life (18, 23–28).

In EoE, endoscopic features of remodeling vary between age 
groups. In children, features of esophageal pallor and furrows 
associate with histologic fibrosis and clinical dysphagia (29).  
In contrast, adult features of remodeling include concentric 
rings, narrowing, strictures, and the esophageal “pull” sign 
(30, 31). The narrowed and fibrostenotic esophagi are often 
the endoscopic features of adult EoE and can be intermittently 
observed in a subset of children (32). Functional readouts of 
esophageal rigidity include esophageal manometry and the 
novel application of the functional luminal imaging probe to 
assess esophageal rigidity and motility (33, 34). Indeed, esopha-
geal rigidity predicts the risk of food impactions. Ultrasound 
studies in both adults and children show transmural esophageal 
thickening (35, 36). Similarly, CT scans of asthmatic airways 
demonstrate airway wall thickening even in children, while 

the HES heart can show increased cardiac muscle fibrosis with 
decreased chamber space (2).

Histologic Features of Remodeling
Asthmatic airways demonstrate subepithelial fibrosis, with 
increased trichrome staining. The asthmatic epithelium demon-
strates defective epithelial barrier function and loss of junctional 
proteins, with goblet cell metaplasia (2, 37). Airway epithelial 
barrier function is thought to regulate asthma pathogenesis (38). 
Subepithelial angiogenesis accounts for airway wall edema, while 
thickened airway smooth muscle causes airway hyperreactivity. 
On the basis of the findings in remodeled asthmatic airways, 
our lab sought to understand whether esophageal biopsies from 
children with severe EoE had histologic findings akin to the 
remodeled asthmatic airway. Indeed, histopathologic analysis has 
shown extensive cellular and extracellular remodeling changes in 
EoE (13, 21, 39, 40). Remodeling is manifested in the epithelium 
as basal cell hyperplasia, dilated intercellular spaces, and desqua-
mation; and in the subepithelium as fibrosis, angiogenesis, and 
smooth muscle hyperplasia (16, 21, 41). The loss of barrier func-
tion is a cardinal feature of the EoE esophagus with decreased 
expression of desmoglein-1 and filaggrin in addition to decreased 
E-cadherin and claudin-1 (42–44).

MOLeCULAR MeCHAniSMS OF TiSSUe 
ReMODeLinG

interleukins and Cytokines involved in 
Remodeling
Current concepts of tissue remodeling have centralized on cel-
lular and extracellular matrix responses to repetitive tissue injury 
and ineffective tissue regeneration in the context of chronic 
inflammation (1, 13, 21, 45). It appears that the mechanisms of 
remodeling are similar in asthma and EoE (Table 1). IL-4 and 
IL-13 play pivotal roles in asthma pathogenesis (1, 46). Progress 
in EoE pathogenesis to date has focused mainly on IL-13 (42, 47). 
Allergen-mediated induction of IL-4, IL-5, and IL-13 promotes 
a T-helper 2 (Th2) immune response, resulting in eosinophil 
recruitment and activation. In addition, profibrotic factors such 
as TGFβ1 appear to play an important role in the remodeling 
associated with these allergic diatheses (21).

IL-13 has emerged as a master regulator in EoE and drives the 
recruitment and activation of eosinophils via eotaxin-3/CCL26 
and IL-5, further augmenting Th2 inflammation in the esophagus 
that can result in irreversible stricture formation (42, 47, 48). IL-13 
contributes to the disruption of the epithelial barrier function, in 
part, via induction of calpain-14 that cleaves desmoglein-1 (49). 
Esophageal epithelial cells respond to IL-13 stimulation with 
STAT6-dependent expression of eotaxin-3/CCL26 that amplifies 
the chemotactic signals for further eosinophilic recruitment (47). 
IL-13 either alone or in combination with TGFβ1 can induce tis-
sue fibroblasts to express periostin, further promoting eosinophil 
adhesion to fibronectin (50). IL-13 overexpression in an inducible 
transgenic murine model causes esophageal eosinophilia and 
stricture formation; turning off IL-13 overexpression to remove 
allergic inflammation reduces tissue eosinophilia but is unable 
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TAbLe 1 | Eosinophilic esophagitis and asthma: summary.

eosinophilic esophagitis Asthma

Clinical manifestations of 
dysregulated tissue remodeling

Esophageal narrowing, strictures, rigidity, dysmotility, dysphagia, food 
impactions

Irreversible airway obstruction, dyspnea, wheezing, oxygen 
desaturations

Relevant pathogenic cytokines IL-5, IL-13, TGFβ1 IL-4, IL-5, IL-13, TGFβ1

Relevant pathogenic chemokines CCL26 CCL11, CCL24, and CCL26

Cellular manifestations Epithelial desquamation, basal zone hyperplasia, subepithelial fibrosis, 
angiogenesis, smooth muscle cell hypertrophy

Epithelial denudation, goblet cell metaplasia, subepithelial 
fibrosis, angiogenesis, smooth muscle hypertrophy

Tissue mastocytosis Yes Yes

Structural cell alterations Myofibroblast formation, smooth muscle cell hypertrophy, epithelial 
barrier dysfunction

Myofibroblast formation, smooth muscle cell hypertrophy, 
epithelial barrier dysfunction
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to reverse the established esophageal stricture (48). In addition, 
GATA-1-null eosinophil-deficient IL-13 transgenic mice are 
able to develop esophageal tissue remodeling as evidenced by 
esophageal epithelial thickness, collagen deposition, and cellular 
hyperplasia (51). In contrast to IL-5, IL-13-mediated esophageal 
dysmotility and dysfunction via collagen deposition, angio-
genesis, and epithelial hyperplasia can occur independently of 
eosinophilic inflammation (48, 51). In murine models of asthma, 
airway structural remodeling has been shown to persist even after 
complete resolution of allergic inflammation (52, 53).

IL-5 is a major cytokine that regulates eosinophilopoeisis 
and the trafficking, survival, and activation of eosinophils (54). 
Arguably, the best evidence for the role of IL-5 in human asthma 
is the success of humanized, monoclonal anti-IL-5 antibodies in 
treating eosinophilic asthma although their ability to decrease 
remodeling in human tissues is not clear. Peripheral blood from 
patients with active EoE have increased frequency of circulating 
activated eosinophils and IL-5-expressing CD4+ T  cells, and 
peripheral blood mononuclear cells from EoE patients produce 
significantly more IL-5 compared to healthy controls when 
stimulated with house dust mites, ragweed, milk, Aspergillus 
fumigatus, or soy (55–59). Upregulated local expression of IL-5 
promotes eosinophilic trafficking to the esophagus (60–62). Mice 
deficient in either IL-5 or eosinophils have diminished lamina 
propria collagen and fibronectin deposition in experimental EoE 
(62, 63). Esophageal strictures develop in IL-5-overexpressing 
transgenic mice, but not if these mice are also genetically defi-
cient in eosinophils (48), demonstrating that the pro-remodeling 
effects of IL-5 are not intrinsic to this interleukin but, rather, 
through its capacity to recruit and activate inflammatory cells.

eosinophils and Other immune Cells in 
Tissue Remodeling
Tissue inflammation in EoE is patchy and can be transmural, with 
immune cell infiltration and structural changes extending from 
the epithelium to the underlying muscle layers allowing multiple 
tissue layers to be directly exposed to the damage induced by 
inflammatory cells (39, 64–66). Epithelial barrier disruption acti-
vates a program of IL-33, TSLP, and eotaxin-3/CCL26 expression 
in EoE that promotes Th2 immune activation and eosinophil infil-
tration (12, 67–71). Eotaxin-3/CCL26 is a potent chemoattractant 
for eosinophils that is highly upregulated in esophageal biopsies 

and sera of EoE patients (72, 73); plasma levels of eotaxin-1/
CCL11 and eotaxin-2/CCL24 are not increased in active EoE 
(73). In comparison, epithelial levels of CCL24 and CCL26, but 
not CCL11, are elevated in severe asthma (1, 74). Asthmatic 
eosinophils migrate better in response to ex vivo stimulation with 
CCL26 than CCL11 or CCL24 (75); in addition, CCL26 stimula-
tion of asthmatic eosinophils demonstrates a biphasic migration 
pattern that potentially contributes to eosinophil-dependent 
pathogenesis of persistent asthma. IL-33 and TSLP can activate 
the recently discovered Th2-promoting group 2 innate lympho-
cytes (ILC2), which are enriched in active EoE and may promote 
remodeling via the expression of IL-5 and IL-13 (14). Infiltrating 
eosinophils further drive EoE inflammation via a multitude 
of mechanisms including degranulation, inflammatory, and 
profibrotic cytokine secretion such as IL-4, IL-5, IL-13, GM-CSF, 
and TGFβ1, and eosinophil extracellular trap formation, which 
correlates with inflammatory features such as white exudates 
in active EoE (40, 69). GM-CSF blockade reduces basal cell 
hyperplasia and epithelial remodeling in experimental EoE (76). 
Other eosinophil blocking strategies are also successful in EoE 
animal models including antibody blockade with anti-Siglec-F 
(63, 77). Although eosinophils infiltrate densely in EoE, their 
complex interactions with non-immune cells such as epithelial 
cells, fibroblasts, and smooth muscle cells and other immune cells 
such as mast cells, ILC2, basophils, T cells, and invariant natural 
killer T cells likely dictate the histologic and clinical remodeling 
outcomes of the disease (5, 13, 14, 40, 78).

Eosinophilic esophagitis and asthma are also characterized by 
tissue mastocytosis, which contributes to esophageal and airway 
dysfunction. Murine models of EoE, which are deficient in mast 
cells, show that mast cells contribute to smooth muscle cell mass 
(11). Mast cells are also reservoirs for profibrotic factors such as 
TGFβ1, and decreases in mucosal mast cell numbers are likely 
one mechanism by which fibrosis improves following therapy 
(79). Similarly, other tryptase-positive cells such as basophils 
have been implicated in EoE, and blocking the TSLP receptor 
diminishes basophil-induced complications such as food impac-
tions in experimental EoE (12).

Profibrotic Cytokines
Symptomatic EoE presents clinically as dysphagia, stemming  
from maladaptive esophageal tissue remodeling that results 
in fibrosis causing esophageal dysfunction and dysmotility. 
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Eosinophils and mast cells are significant sources of TGFβ1, as 
previously identified in the esophagus of EoE patients and in the 
lungs of asthmatic patients (16, 79, 80). Eosinophils and eosin-
ophil-derived products increase extracellular matrix production 
of fibronectin and collagen I in primary human esophageal fibro-
blasts and muscle cells in a process dependent on TGFβ1 and p38 
signaling (81). TGFβ1 expression is elevated in the epithelium 
and subepithelium of adult and pediatric EoE patients (16, 82). 
TGFβ1 signaling induces collagen deposition and production of 
fibronectin and other extracellular matrix proteins; and blockade 
of the canonical TGFβ1 signaling pathway, Smad2/3, decreases 
remodeling in an oral ova murine EoE model (83). Also invoking 
the canonical TGFβ1 pathway, there is an increased epithelial 
and subepithelial expression of nuclear Smad2/3 in pediatric 
EoE patients. In addition, eosinophil-derived products, secreted 
products from eosinophil-fibroblast/muscle cell co-cultures, 
TGFβ1, or IL-13 altered esophageal muscle contraction in a 
feline EoE model (81). In a cohort of pediatric EoE patients, 
fibrosis was associated with eosinophilic degranulation in the 
epithelium as measured by staining for eosinophilic major basic 
protein, whereas fibrosis was not associated with the degree of 
esophageal eosinophilia, the number of mast cells, or mast cell 
degranulation (67). Kita and colleagues proposed that detection 
of eosinophil degranulation might be a more accurate assessment 
of EoE severity, based on their observations of marked deposition 
of eosinophil-derived neurotoxin in adult EoE biopsies (84).

In addition to its profibrotic effects, TGFβ1 can alter tissue 
contractility. TGFβ1 activates tissue fibroblasts, resulting in 
myofibroblast differentiation that further contributes to extracel-
lular matrix deposition and collagen contraction (85). In addition, 
TGFβ1 induces primary esophageal smooth muscle cell contrac-
tion, a mechanism dependent on the canonical Smad2/3 pathway 
and phospholamban, a sarcoendoplasmic reticulum protein that 
regulates calcium flux, which is upregulated in EoE biopsies  
(79, 85). It is interesting to speculate if esophageal phospholam-
ban plays a role akin to asthmatic orosomucoid like 3, which is 
clearly implicated in the pathogenesis of asthma.

TGFβ1 also has significant effects on the epithelium. It breaks 
down epithelial barriers in asthma by decreasing the expression 
of adhesion molecules. In EoE, remodeling has been associated 
with epithelial–mesenchymal transition, a TGFβ1-regulated 
process (86, 87). TGFβ1 significantly induces plasminogen 
activator inhibitor 1 (PAI-1)/serpinE1 in esophageal epithelial 
cells. Epithelial PAI-1 reflects the severity of histologic fibrosis 
and is also required for TGFβ1-induced expression of phos-
pholamban and α-smooth muscle actin (αSMA) in esophageal 
fibroblasts, suggesting that it is part of the pathway to esophageal 
myofibroblast accumulation (88). Children with genotype TT 
at the TGFβ1 promoter have significantly elevated numbers of 
TGFβ1-positive cells, increased mast cells (but not eosinophils), 
more severe epithelial remodeling, and, when food sensitized, 
worse fibrosis than children of non-TT genotype (89).

Fibrosis may also occur independently of TGFβ1, as other 
profibrotic molecules such as CCL18 and fibroblast growth fac-
tor-9 (FGF9) are elevated in EoE tissue biopsies (90, 91) and not 
all adult subjects have elevated TGFβ1 (82, 91). CCL18 is simi-
larly elevated in the bronchoalveolar lavage and sera of asthmatic 

patients and preferentially attracts Th2 cells and basophils (92). 
Eosinophil-derived major basic protein induces FGF9 produc-
tion that can contribute to the fibroproliferative response in EoE 
(90). To our knowledge, the role of FGF9 in asthma has not yet 
been described.

Mechanotransduction and Remodeling
There is accumulating evidence that mechanical signals 
(“mechanosignaling”) alter the function of structural cells in 
the airway and esophagus in a manner that can be independent 
of, dependent on, or synergistic with, inflammation (93–95). 
Our recently published data demonstrate that rigid matrix 
alters the gene expression profile of primary human esophageal 
smooth muscle cells toward a pathogenic profile similar to that 
induced by TGFβ1 (95). EoE fibroblasts from children and 
adults had increased αSMA and traction force when cultured on 
a rigid matrix (94). Airway epithelial cells respond to physical 
parameters such as compressive forces mimicking those seen 
in an edematous airway with increased production of disease 
relevant inflammatory markers such as endothelin and TGFβ2 
and decreasing expression of barrier proteins (93). In addition, 
compression forces increase fibroblast expression of collagens. 
Asthmatic bronchial fibroblasts exhibit higher elastic modulus 
than control cells; TGFβ1-induced differentiation of bronchial 
fibroblasts into myofibroblasts is enhanced by increasing matrix 
stiffness (96, 97). Airway smooth muscle cell contraction induces 
the release of more active TGFβ1 (98). Methacholine-induced 
bronchoconstriction in the absence of inflammation is sufficient 
to induce airway remodeling in asthmatic patients (99). Taken 
together, these compelling data invoke a shift in the thought 
paradigm from focus almost exclusively on inflammation to 
one with an integrated focus on the mechanosignaling coupled 
to inflammation. Indeed normalization of mechanosignaling is 
likely required to effectively reduce the propagation of inflamma-
tion and dysregulated structural cell gene expression. Currently, 
it is not clear what direct or indirect effects there are on inflam-
matory cells cultured either in an environment that is rigid or 
compressed. However, it is well accepted that cells such as mast 
cells respond to physical insults such as scratching.

CURRenT AnD eMeRGinG 
THeRAPeUTiCS FOR ALLeRGiC 
ReMODeLinG

Currently, there are no FDA-approved drugs indicated for the 
treatment of EoE. Some of the current treatment strategies and 
their effects on airway and esophageal remodeling are summa-
rized below (5, 18, 28, 100, 101).

Topical Corticosteroids
Topical esophageal corticosteroids constitute the most commonly 
utilized EoE therapy in children and adults. Similarly, inhaled 
corticosteroids are the most common agent used for persistent 
asthma. There has been relatively rapid accumulation of data 
for EoE since biopsies are procured regularly as part of disease 
monitoring. In contrast, airway biopsy is done in the context of 
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clinical trials. Short-term studies in children have demonstrated 
that topical corticosteroids decrease fibrosis, VCAM-1, epithelial 
remodeling, subepithelial TGFβ1, and nuclear Smad2/3-positive 
cells in the subset of patients who have resolution of epithelial 
eosinophils following therapy (102). As such, it appears that in 
“responder” children, remodeling is in flux and can be reversed 
or improved with short-term therapy. Such treatment-responsive 
remodeling likely constitutes a physiologic rather than a patho-
logic process. In contrast, children who are “non-responders” to 
therapy, as defined by persistent esophageal eosinophilia despite 
therapy, have continued subepithelial fibrosis, vascular activa-
tion, and TGFβ1-expressing cells. Topical fluticasone treatment 
downregulates mRNA expression of eotaxin-3 and decreases the 
degree of eosinophilic and lymphocytic tissue infiltration in EoE 
esophagi (47, 103, 104). In addition, topical fluticasone treatment 
of EoE patients reduces IL-13 mRNA expression and reverses 
expression of 98% of IL-13-induced EoE transcriptome to the 
levels of healthy controls (47). EoE esophageal mucosal integrity 
is improved with topical fluticasone, as seen with normalization 
of expression of desmoglein-1 and filaggrin (105, 106). Peripheral 
blood eosinophils isolated from adult corticosteroid-treated EoE 
patients sustain their activated phenotype (107), but exhibit 
decreased CD18 surface expression, with resultant diminished 
adherence of eosinophils to ICAM-1, ICAM-2, and endothelial 
cells (108). Budesonide treatment of adult EoE patients results in 
a statistically significant reduction in absolute blood eosinophil 
count and serum levels of CCL17, CCL18, CCL26, eosinophil-
cationic protein, and mast cell tryptase. In addition, the absolute 
blood eosinophil count changes correlate with esophageal 
eosinophil density (109, 110).

Since EoE is a chronic disease, chronic therapy seems war-
ranted. Studying a group of 32 children over a mean of 5 years 
(maximum of 10 years) treated with corticosteroids, Rajan and 
colleagues showed that children with EoE who persistently 
respond well to therapy have significantly less fibrosis and lower 
endoscopic scores than children who respond suboptimally to 
therapy (10). The clinical reasons for differences in response to 
therapy are not clear. However, it is possible that a “remodeling 
first-inflammation second” EoE phenotype is less responsive to 
steroid therapy. It is also possible that mechanical alterations 
in the esophagus, such as rigidity, change the structural and/
or inflammatory cell response to interventions. This concept is 
echoed in the adult literature where the fibrostenotic, dysmotile 
esophagus is substantially more resistant to topical therapy with 
corticosteroids (9, 111). In terms of endoscopic and symptoms 
severity, topical corticosteroids can improve the diameter of the 
strictured adult EoE esophagus and decrease the rate of food 
impactions (8, 112).

In asthma, the effects of inhaled corticosteroids on remodeling 
and the best remodeling endpoint to follow are not entirely clear 
(2). This is likely due to the paucity of repeated human airway 
tissue for study and the complexity of the pulmonary structure 
as branching occurs. In a murine model of allergen-induced 
asthma, corticosteroids prevent myofibroblast accumulation and 
peribronchial collagen deposition and fibrosis (113). In addition, 
corticosteroids can improve a subset of gene transcripts in asth-
matic airway fibroblasts (2). Combination treatments with inhaled 

corticosteroids and long-acting β2-adrenergic receptor agonists 
together have demonstrated superior prevention of asthma 
exacerbations (114). Systemic corticosteroids used during severe 
asthmatic exacerbations exhibit variable responsiveness, thought 
related to the underlying asthma heterogeneity, for example, 
corticosteroid-responsive type 2-high airway inflammation-
driven “concordant disease” versus corticosteroid-resistant type 
2-low “discordant disease” (115–119). Although inhaled steroids 
can improve epithelial shedding, this is not a consistent finding. 
Studies of the reticular basement membrane thickening dem-
onstrate improvements, but whether improvement in basement 
membrane thickening corresponds to improvements in asthma 
complications such as difficult-to-treat airway hyperreactivity or 
irreversible airflow obstruction is not clear. Although there is not 
a paucity of human tissue for study in EoE, the most clinically 
meaningful endpoint of remodeling is still unclear, although the 
best targets are likely to be fibrosis and early-onset esophageal 
rigidity.

Efficacy of topical corticosteroid therapy is dependent on 
mucosal drug delivery and esophageal mucosal contact time (120). 
Swallowed aerosolized corticosteroid has variable delivery, with 
oral viscous corticosteroid preparation achieving superior esoph-
ageal mucosal delivery and treatment efficacy (120). Emerging 
non-proprietary and proprietary formulations of corticosteroid 
are expected to improve treatment options, drug bioavailability, 
and treatment efficacy (120–124). While corticosteroid treat-
ment for EoE is effective, there exists a significant number of EoE 
patients who do not respond to topical corticosteroid treatments 
(122, 125). It has been proposed that topical corticosteroids 
are unable to penetrate the deeper esophageal layers where 
significant eosinophilic inflammation and tissue remodeling and 
fibrosis are likely to take place. Oftentimes, biopsies are limited 
to the superficial layers and may offer an incomplete picture of 
the histologic response. Targeting the fibrotic tissue may offer 
enhanced corticosteroid uptake. Currently, a clinical trial for 
EoE is examining the effect of losartan, an angiotensin II receptor 
blocker used clinically for hypertension that also exerts anti-
fibrotic effect through suppression of active TGFβ1 levels (126). 
Losartan has been shown to inhibit collagen I synthesis, resulting 
in improved distribution and efficacy of antitumoral agents (126). 
Another potential beneficial effect of anti-fibrotic therapy might 
involve an indirect improvement of structural cell dysfunction by 
reducing tissue rigidity. This is based on the novel observation by 
Aceves and colleagues that a rigid matrix induces morphologic 
and transcriptional changes in esophageal smooth muscle cells 
with increased collagen deposition and cellular hypertrophy (95). 
Similar subsequent work by Muir et al. demonstrated the role of 
matrix stiffness in modifying TGFβ1signaling and contractility 
of primary esophageal fibroblasts (94). Taken together, target-
ing inflammation-dependent and inflammation-independent, 
rigidity-dependent pathways may represent novel strategies to 
modulate tissue remodeling and fibrosis in EoE and beyond.

elimination Diets in eoe
In children, dietary modification to remove allergen-derived anti-
genic stimulation has been shown to reverse subepithelial fibrosis 
in EoE (127, 128). In addition, the combination of elimination 
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diet and topical corticosteroids can decrease fibrosis in children 
(127). The effect of elimination diet on adult remodeling is not 
as clear.

biologic Therapy
Anti-IL-5 blockade with mepolizumab is safe and achieves 
significant reduction in circulating peripheral eosinophils and 
inflamed tissue eosinophilia (129–131). Even though IL-5 is 
a key regulatory cytokine of eosinophils that is upregulated in 
EoE, anti-IL-5 therapy using two different humanized mono-
clonal antibodies partially reduces tissue eosinophilia but does 
not alter esophageal fibrosis (132, 133). Although histologic or 
radiographic endpoints have not been systematically assessed 
in asthma, anti-IL-5 is effective in patients with severe, steroid 
refractory asthma and can be steroid sparing in patients with 
HES (134–136). In children with EoE, mepolizumab treatment 
decreases the numbers of tryptase-positive cells, IL-9-positive 
cells, and esophageal eosinophil–mast cell couplets (137).

Anti-IL-13 monoclonal antibody QAX576 significantly 
reduces esophageal eosinophilia and expression of EoE-related 
genes up to 6 months after treatment, but demonstrates only a 
trend for improved clinical symptoms (138). IL-13 blockade 
with a humanized monoclonal antibody RPC4046 significantly 
reduces esophageal eosinophilia and endoscopic features in EoE 
patients and also improves dysphagia; however, the effect is more 
prominent in steroid refractory EoE patients, suggesting that 
severe subjects may do well with anti-IL-13 therapy (139). This is 
consistent with the decrease in transcription of some remodeling 
genes including periostin for up to 6 months following treatment 
(138). Anti-IL-13 therapy also decreases markers of remodeling 
such as periostin and osteopontin in asthmatics, and subjects 
with higher serum periostin levels are more responsive to anti-
IL-13 therapy (136, 140). Dupilumab, a blocker of both IL-4 and 
IL-13, may be of utility in asthma and EoE-associated remodeling 
(140–142).

COnCLUSiOn

Both EoE and asthma are diseases that involve robust tissue 
remodeling as part of the disease processes with resultant 

end organ dysfunction in a subset of subjects. In asthma, the 
clinical complication is irreversible airway obstruction. In EoE, 
it is stricture formation. One mechanism to this complication is 
prolonged, unbridled inflammation that can occur due to lack of 
therapeutic intervention or the failure of therapies to adequately 
control disease progression. The presumed inflammatory signals 
are from infiltrating cells that respond to alterations in structural 
cell physiology such as decreased barrier function and the onset of 
chemokine production. However, other signals such as mechani-
cal changes in the airways due to airway rigidity and epithelial 
contraction during repeated rounds of bronchoconstriction drive 
structural cells such as epithelium to generate inflammatory 
signals that could propagate inflammation and be unresponsive 
to standard anti-inflammatory therapies such as corticosteroids.

In addition to these issues, a number of additional consid-
erations should be made when assessing the Th2-associated 
remodeling. The first issue is what parameters reflect remod-
eling most reliably? The second is the issue of pathogenic versus 
physiologic remodeling. The use of physiologic markers such 
as esophageal strictures or fixed airway obstruction likely 
represents an endgame of chronic disease and will likely be 
difficult to control. For this reason, one goal should be to find 
early markers of remodeling and control them. Of course, 
remodeling is also a normal process of wound healing that 
is necessary and required. What is not clear is how the shift 
from physiologic to pathogenic remodeling occurs. Possible 
explanations include disease duration, chronic inflammation,  
and/or mechanical signals such as tissue rigidity. Understanding 
the molecular mechanisms and the clinical phenotypes of 
these processes will be essential to better control allergic tissue 
remodeling and its consequences.
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