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1 | INTRODUCTION

In order to use medications properly, it is imperative to assess the adverse events (AEs). This assessment is made
concomitantly with efficacy evaluations in clinical studies. The purpose of assessing AEs in clinical studies is to evalu-
ate the AE patterns that are likely to occur during treatment. The occurrences of AEs are summarized per treatment,
and a meta-analysis is often applied to the summarized AE data."* However, such a population-level method does not
predict the occurrences of AEs at the patient level, and thus the meta-analysis cannot be used to determine a patient-
level treatment strategy. At the patient-level, a predictive model including Poisson- or logistic regression uses the occur-
rence of an AE as an outcome and data such as age, weight, and biomarkers as predictors.>® In general, however, hun-
dreds of different AE types are observed in clinical trials, with low occurrence frequency. It is impractical to predict all
AE types, even though the data of patients characteristics are available. At the patient level, an AE pattern that is likely
to occur is sufficient information to support the treatment strategy, even though the occurrence of each AE type cannot
be predicted. Therefore, it is important to know which AE pattern occurs at the patient level. We refer to the extent to
which a patient has each pattern component as “patient-level safety profile”.
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To obtain AE patterns and patient-level profiles, this paper utilizes co-occurrence relationships of patient-level AEs. For
example, among the AEs of anticancer treatments, “vomiting” and “nausea” tend to occur simultaneously. Statistical models
dealing with such co-occurrences include matrix decomposition which could probably extract the “vomiting and nausea pat-
tern.” In other fields, such as natural language processing, matrix decomposition with nonnegative constraints on the ele-
ments (nonnegative matrix factorization, NMF”®) is often applied to nonnegative data such as the number of occurrences.
For example, one study applied NMF to the number of occurrences of words in web postings or product labels for drugs and
was able to extract patterns.” To the best of our knowledge, however, NMF has not yet been applied to patient-level AEs.
Meanwhile, a previous study applied factor analysis, a form of matrix decomposition, to data from approximately 200 patients
in a single clinical study and focused on fewer than 20 AEs of interest. Due to the small amount of data, however, only two
patterns were extracted and were not used for construction of the patient-level safety profiles.'® Moreover, factor analysis
contains strong constraints on the factor score matrix which can cause several issues. For example, the estimation results
contain negative values, making the interpretation of patterns and safety profiles difficult.

The aim of this paper is to develop a method which identifies treatment-specific AE patterns and constructs patient-level safety
profiles. We used patient AE information gathered from treatment onset to a predetermined time point. In this way, we could know
the profiles and predict which AEswere likely to occur from the aforementioned time point to the end of treatment.

To this end, we intended to apply NMF to the AE data. However, this could not be realized without developing a
new statistical model expanding NMF. Because AEs in clinical studies include both disease-specific and treatment-
specific events, we needed to build a model to separate them. Moreover, AE data from clinical trials includes severity
(ordinal categorical data) and the information of AEs varies with severity; hence, our model was constructed to avoid
losing this information. Also, because a single clinical study does not contain sufficient data for our desired analysis, we
included the assumption that treatment-specific AE patterns are similar for drugs with the same mechanism of action.
This allowed us to use a sufficient number of patients from multiple clinical studies within a meta-analysis framework.
These expansions enabled us to use actual data to extract AE patterns and demonstrate patient-level safety profiles.

In Section 2, an example of patient-level AEs data handled in this paper, our statistical model, and patient-level
safety profile are described. In Section 3, the results from application of these methods are presented. In Section 4, we
summarize and discuss our findings.

2 | DATA AND ANALYSIS METHODS

Although our method was widely applicable to clinical study data with patient-level AEs, specific data was explained
earlier to understand the proposed model in Section 2.2.

2.1 | Data

Three datasets (registration numbers 118, 120, and 127) were chosen from the Project Data Sphere, which contains patient-
level AE information. Each dataset corresponds to one Phase I1I study and has only control arm data. These datasets were
selected because they were derived from three studies with the highest number of participants. They consisted of breast cancer
patients who had undergone chemotherapy. The dosages and disease conditions slightly differed among the studies. Neverthe-
less, these discrepancies were not considered because we assumed that they had negligible influences on the analysis.

The datasets included AEs that occurred during baseline or treatment periods. Their severities were defined by the
Common Terminology Criteria for Adverse Events (CTCAE, 1: mild, 2: moderate, 3: severe, 4: life-threatening, and 5:
death) and ranged from 1 to 4. The baseline data represent AEs occurring during the pre-treatment period (from regis-
tration to randomization). This type of data is generally recorded. In this paper, because alopecia occurred in more than
70% of the patients, its pattern was clear and it was excluded from the analysis. Patients without AEs were also
excluded, because their safety profiles were estimated to be zero and their data did not contribute to the estimation of
AE patterns. There were 3317 patients and 99,546 AEs analyzed.

The outline of each arm included in the datasets is shown in Table 1. The index p is defined for the treatment
periods to divide AEs by treatment. For example, a clinical study with s = 1 includes one arm named “AC — T,” in
which 1625 patients were enrolled and treated with four cycles of AC (doxorubicin + cyclophosphamide) followed by
four cycles of T (docetaxel). p = 1 represents the baseline period, and the AEs occurring during this period are stored in
the matrix Y; as described below. p = 2 represents the treatment period using AC, and the AEs that occurred during
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TABLE 1 Summary of each arm and indices in the three datasets

Period Treatment Mechanism Number of Number
Study index s Arm index p Treatment index m index ¢t patients of cycles
1 AC—T 1 Baseline NA NA 1625 NA
1 AC—T 2 AC 1 1 1625
2 AC—T 3 T 5 2 1583
2 FAC 4 FAC 2 1 731
3 A—CMF 5 Baseline NA NA 480 NA
3 A—CMF 6 A 3 1 480 4
3 A—CMF 7 CMF 4 1 459 3
3 AC—CMF 8 Baseline NA NA 481 NA
3 AC—CMF 9 AC 1 1 481 4
3 AC—CMF 10 CMF 4 1 472

Note: s represents the index of the studies and p represents the index of the periods. A is doxorubicin, C is cyclophosphamide, F is 5-fluorouracil, M is
methotrexate, and T is docetaxel. AC, FAC, and CMF represents combination therapies. t represents the index of the treatments and m represents the index of
the mechanisms. Docetaxel is a taxane-based anticancer drug that binds to microtubules and inhibits mitosis. The other drugs inhibit DNA or RNA synthesis
and are often used in combination. Their AEs are relatively similar. Therefore, two mechanisms of action were assumed here, namely, inhibition of nucleic
acid synthesis and inhibition of mitosis. Cycles represent the lengths of the treatment periods.

this period are stored in Y,. Similarly, p = 3 represents the treatment period using T. The number of patients decreases
to 1583 in p = 3 because 42 patients dropped out of the study. We also define the treatment index and the mechanism
index to facilitate the description of equations. The index of the periods was p = 1, ..., 10, the index of the studies was
s € {1,2,3}, the index of the treatments was t € {1, ..., 5} and the index of the mechanisms of action was m € {1, 2}. The
study and the treatment were determined by period p and the mechanism of action was determined by treatment t.
Therefore, they were suffixed such as s, t,, and my, when they were accessed using p. For example, s3 = 1, 3 = 5
and ms = 2.

In this paper, AEs with the same name but different severities were distinguished. The combination of name and
severity was treated as “AE type”. For example, VOMIT with severity 2 is “VOMIT_2.” Consequently, the total number
of AE types was J = 843.

These datasets included the number of occurrences of each AE type per cycle. The number of occurrences was sum-
marized per period p and the result was expressed as N, x J matrix Y, (p = 1, ..,, 10), where N, is the number of
patients who participated in period p. Y, was a sparse matrix in which many elements were 0. Y;P f, which is the (i, j)
element of Y), represents the number of occurrences of AE type j for patient i during period p.

2.2 | Analysis methods

2.2.1 | Statistical model

Here, the statistical model for generating Y, (p = 1, ..., 10) is explained. Scalars are in italics, vectors are in bold font,
and matrices are in bold italics.

Hereafter, one period p was selected and fixed. Y, was written as Y, N, as N, s, as s, f,, as t, and m, , 4S M. The patient
index was written as i and the AE type index was written as j.

Because Y was count data, it was assumed that each element of Y independently followed the following Poisson
distribution:

Y~ Poisson(Cid) i=1,...N j=1,..,J (1)

where C; is a constant representing the length of the treatment period of patient i (i.e., the number of cycles in the
aforementioned data).
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A;; was separated into [} derived from treatment ¢ and a ) derived from study s. In other words,

(s)

Yy=p +a) i=1,..N j=1,..J (2)

where a( Jisa parameter per study representing the occurrence intensity of each AE caused by disease, radiotherapy,
etc. For the baseline data, only a;; ) was considered and it was assumed that ﬂ

ﬂij is the (i, j) element of the N ><] matrix ﬂ(t) and a is the (i, j) element of the N xJ matrix a®. The occurrence
patterns of AEs are usually limited."* Therefore, it was assumed that they consisted of a combination of relatively few
patterns with little information loss and the matrix decomposition was applied as follows:

Y =000 (3)

a® = E(S)TI(S> (4)

where 6 is an N x K matrix, ¢” is a K x J matrix, & is an N x L matrix, and 4 is an L x J matrix. K and L are <J
and represent the numbers of AE type occurrence patterns. ¢ and 5 are common to all patients and represent the occur-
rence intensities of all AE types determined for each pattern. @ and € represent the extent to which each patient has
each pattern component. Expressing a matrix by the product of low-rank matrices generally facilitates interpretation
and improves prediction accuracy by eliminating noise.

The decomposition of # into @ and ¢ is not unique. The constraints for  and ¢ make them identifiable except
the order of the components and make the estimation possible. For example, the constraint that @ and ¢ are
orthogonal matrices makes matrix decomposition equivalent to principal component analysis. However, the
approximation of Y is poor because orthogonality is a strong constraint. It is difficult to interpret the result
because certain elements of @ and ¢ are negative. Moreover, some J;, which represents the average number of
occurrences, may also be negative. Therefore, in this paper, the constraint that all elements of # and ¢ are non-
negative was added (NMF).

0 was reparametrized as follows:

0" = expém (5)

where é(t) is an N x K matrix, and the exp function operates on each element and returns a matrix.
For ¢, background knowledge of treatments was used, and it was assumed that ¢ is constructed as follows:

(I>,<:) = softmax (M,(Cm) + R,(f)) k=1,..K (6)

where <I>,((t) represents the row vector of the k-th row of d)(‘). u = softmax(v) converts vector v into vector u whose ele-

ments are nonnegative and have a sum of 1, using the following formula:

U expy;
Al e —
>_j€XpV;

Equation (6) facilitates comparisons between treatments because the sum of J elements of each row (pattern) of (l)(t)
becomes 1. M is a K x J matrix representing the mean effect of the mechanism of action m. R is a K x J matrix rep-
resenting the random effect of treatment t. M) and M® were considered for all data. For “AC,” “FAC,” “A,” and
“CMF,” which inhibit nucleic acid synthesis, the random effects of R, R®, R®, and R® were considered, respectively
(see Table 1).

Similar constraints were assumed for a® as in . & was reparametrized as follows to make each element
nonnegative:
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z()
£V = expt’ (7)
7 was defined using L x J matrix $ as follows:

n'*) = softmax <S§S)> I=1,..,L (8)

If AEs caused by disease were of interest, S;S) could be divided into mean- and random effects as for the treatments.

In an occurrence pattern, AE types with the same name and similar severities (e.g., NAUSEA_2 and NAUSEA_3)
should have similar occurrence intensities. Therefore, M<m), R® and S were constrained using a NDLM (normal
dynamic linear model),"* which is often applied in dose-response curves:

M,((;?)NN(M,if),az(;) k=1,..K (jj)eJ (9)
,NN( Yo G) k=1,..K (j,j) €T (10)
SZ(J.S?NJ\/(S,(j”,aé) I=1,..,L (jjj)eJ (11)

where 7 is a set of the combination of AE types j and j satisfying the conditions that j and j have the same AE name,
their severities are adjacent, and j < j’.

The addition of a constant to each element of the argument vector does not change the output of the softmax func-
tion. Therefore, M('”), R® and S were constrained as follows so that they could be identified and estimated:

M ~N(0.03) k=1,..K j€3J (12)
R ~N(0,63) k=1,..K j€3J (13)
Sy ~N(0,62) 1=1,...L j€3 (14)

where J is a set of AE type j satisfying the condition that j has the lowest severity in each AE name.
Considering Equations (1)-(14) for all data Y}, (p = 1, ..., 10), the log of the posterior probability was constructed as
follows:

logP(0 M § S | Yp,GM,UR,GS,GG)
= igpjilogPoisson (ngp ) | CEP ) [expé(t" )softmax (M (ms) +R(’P)) + expé(s" )softmax (S(SP))] >
p=1li=1j=1 ij
2 K
#33 | Dt (M 0.3, )+ Y logh (M | M0 )
m=1k=1|j €3 (Jj)ed (15)
K
+ Z Zlog./\/ (R,({? | 0,6122> + 3 logV (R,({;E \R,(c?,aé)

i3 i) ed

> logh’ (s§;> | o,ag) + 3 logV (Sfj,) | sgf),aé)
icE

(i) ed

—+

[~ ;Mm
- 1

“
1l
—
1l
—
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where the softmax function operates on each row of a matrix and returns a matrix, Poisson(y | A) represents the proba-
bility mass at y of the Poisson distribution with parameter A, and N (y | u,6°) represents the probability density at y of
the normal distribution with parameters z and ¢ In the Appendix A, we explain that the models and Equation (15)
can be simplified under certain conditions.

2.2.2 | Estimation

0O, M, RO, €9 and S were estimated by maximizing the log-probability logP in Equation (15). o5, 65, o0&, and os
could also be estimated if there was sufficient data. In this paper, they were regarded as hyperparameters and
assigned fixed values. Although the number of parameters is large, the parameters are identifiable because
matrix decomposition is an informative constraint,” and Equations (6), (8)-(14) do not cause the loss of
identifiability.

The software used for this estimation were Stan 2.17.'*> Maximum a posteriori (MAP) estimation was per-
formed using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The Stan and R
programs are available on GitHub,'”> and statisticians can use our method by modifying parts of the
programs.

2.2.3 | Hyperparameter determination

The number of patterns K and L were hyperparameters that had to be fixed before estimation. Although there are sev-
eral determination methods, the technique applied here ensured hyperparameter interpretation according to back-
ground information. If the number of patterns was too small, several were combined and extracted as one pattern. As a
rule, however, this manipulation should be avoided. Conversely, if the number of patterns was large, similar patterns
were extracted.

Other determinations were based either on predictive performance or information criteria, such as the Akaike Infor-
mation Criterion (AIC) and the Widely Applicable Information Criterion (WAIC).'® On the other hand, one study indi-
cated that results derived from the number of patterns determined by these methods do not align with the actual
interpretation.’

In this paper, the hyperparameters were determined as follows. The small value L = 2 was selected because there
are far fewer AEs associated with the disease itself than those originating from anticancer treatments used in the clini-
cal studies. The number of detectable patterns associated with the disease was assumed to be small. In fact, in the data
in Section 2.1, less than 10% of the total AEs could be attributed to the disease. K = 15 was set because similar patterns
occur when K is assigned higher values. For actual clinical studies, L and K must be determined after trying several
values and discussing the results.

o = 1.5 because the number of severities was as low as 1 to 4. 63, = 5 and 65 = 5 were sufficiently large to express
any pattern and or = 0.5 because it was assumed that the magnitude of the random effect was about 10% that of the
mean effect.

2.3 | AE patterns

The estimate of ¢ is a set of AE type patterns specific to treatment ¢. CI),(;) is pattern k and a vector of occurrence inten-
sities of all AE types. AE types most likely to occur in pattern k are readily confirmed by rearranging its intensities in
descending order and plotting them in a table or graph. Patterns where severe AEs are most likely to occur can also be

confirmed.

The estimate of Ol@ represents responsiveness of patient i to treatment ¢, and it provides condensed information of
Y; through the patterns. 91.(]? is the extent to which patient i has a pattern k component. 8 can also be interpreted as
the soft clustering result for the patients, where each patient can have components belonging to multiple clusters. The
number of patients with high values of a pattern k component can be established by visualizing the distribution of 95,?,

which represents the k-th column of 8 (a column vector).
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2.4 | Patient-level safety profile

Suppose that patient i’ receives treatment ¢ and his/her AEs (i.e., Y;) are assessed to estimate Og,t) at a particular time
point in a new clinical study.

All parameters can be estimated from the data, including the AEs of patient i’ obtained from the start of the
treatment to the specified time point and the AEs from other patients and other clinical studies. The estimation
will reveal which pattern components are abundant in patient i and predict which AE types are most likely to
occur from the specified time point to the end of treatment. This method is effective if computation time and
resources suffice. However, it is not realistic to repeat parameter estimation whenever the assessment time
point changes.

When prompt predictions are needed during a new clinical study, diverting the already estimated ¢ (e.g., our esti-
mated ¢”) enables rapid 0, estimation. Assuming that ¢® are sufficiently close to the true Values and the influence of
each study (i.e., a ) is suff1c1ent1y small, we maximize the following log-probability to estimate 0, (0,

J
Zlog Poisson (Yirj | C
1

j=

i(expéifﬁ)gbiﬁb (16)

k=1

where C is a constant representing the length of the treatment period of patient i. The posterior distribution may also
be estimated by settlng noninformative prior distributions or appropriate prior distributions for 9,

The estimate of 0 and Equations (2)-(4) indicate that 4;; can be calculated. 4;; is the mean number of occurrences
of AE typejina future treatment period. AE types with high /1 must be carefully momtored

3 | RESULTS

We applied the method described in Section 2.2 to the data in Section 2.1 for AE pattern extraction and patient-level
safety profile estimation. The results corresponding to Sections 2.3 and 2.4 are explained below.

3.1 | AE patterns

Here, the ¢ patterns of treatment AC (t = 1) are shown. For the patterns of all treatments, see Table S1.

The 15 patterns of ¢ were numbered in descending order of the log-probability increase. The results of patterns
1 to 15 are shown in Table 2. Because the log-probability increase involving patterns 1 to 8 was greater than 80% of that
for all patterns, we focused on the results from patterns 1 to 8.

For instance, pattern 2 is a ‘“nausea and vomiting pattern” in which nausea and vomiting of severities 2 and
3, respectively, tended to occur simultaneously. However, nausea and vomiting of severity 1 were segregated into pat-
terns 1 and 5 because the numbers of their occurrences were very large. Pattern 4 was interpreted as a “constipation
pattern” and included constipation, stomatitis, and weight increase. Pattern 6 was the “neuropathy pattern” involving
taste perversion, diarrhea, insomnia, and lacrimation disorder. Pattern 7 was another “neuropathy pattern” with nausea
of severity 2, nail disorder, vasodilation, anorexia, and weight decrease.

Next, we confirmed the responsiveness of the 2106 patlents being administered AC. The dlStI‘lbuthIlS of 9
corresponding to patterns 1 to 8 are shown in Figure 1. The 0 for most patients was almost 0 but 9 was high in a
few cases.

For the remaining treatments, we can also extract 15 patterns gb(‘)

and plot distributions of 9:(,1)

3.2 | Patient-level safety profile

We demonstrated patient-level safety profiles using the method in Section 2.4. Suppose that four new patients (i=1,
., 4) received AC in a new clinical study. Fixing ¢ to the values in Section 3.1 and applying Equation (16), we esti-

mated 9},1) by MAP estimation every time an AE occurred. 01.(,1) can be calculated for any AE data. For example, the AE
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TABLE 2 Result of ¢

Pattern k
1
2

10

Pattern k
11

AE type
NAUSEA_1
VOMIT_2
NAUSEA_2
VOMIT_3
NAUSEA_3
ASTHENIA_1
CONSTIP_1
STOMATITIS_2
WEIGHT INC_1
WEIGHT INC_2
INFECT_2
STOMATITIS_3
VOMIT_1

TASTE PERVERS_1

DIARRHEA_1
INSOMNIA_1

LACRIMATION DIS_1

MENS DIS_1
SKIN DRY_1
FEVER_1
PHARYNGITIS_1
STOMATITIS_3
NAUSEA_2
NAIL DIS_1
VASODILAT_2
ANOREXIA_2
PAIN ABDO_2
NAIL DIS_2
WEIGHT DEC_1
ANOREXIA_3
WEIGHT DEC_3
STOMATITIS_1
STOMATITIS_3
ASTHENIA_2
ASTHENIA_3
HEADACHE_1
MYALGIA_1
RHINITIS_1
ARTHRALGIA_1
SKIN DIS_1
DIARRHEA 3
AE type
VASODILAT 1
ANOREXIA_1
PAIN_1
CONSTIP_2

WILEY_L ®3

)
99.9
447
2.4
6.2
6.0
99.9
53.7
23.6
17.6
1.8
1.3
0.6
99.8
22.5
19.4
16.8
13.9
13.2
4.7
3.3
1.9
0.1
46.1
24.6
139
6.3
2.7
1.7
14
0.3
0.1
99.3
0.3
95.6
4.1
39.8
20.7
19.1
13.5
3.5
0.2
o
30.6

=

29.9
19.5
13.4

(Continues)
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TABLE 2 (Continued)

Pattern k AE type 4);;)
DEPRESSION_1
2.6
CONJUNCTIVITIS_1 1.2
CONSTIP_3 0.2
12 NEUROPATHY_1 17.6
DYSPNEA_2 10.3
RASH MAC PAP_1 9.9
EDEMA PERIPH_1 8.1
INSOMNIA_2 7.0
DIZZINESS_1 6.7
INFECT_1 4.7
TASTE PERVERS_2 2.9
DYSPNEA_3 0.6
HEADACHE_3 0.2
13 MENS DIS_3 10.0
PAIN ABDO_1 6.9
INFECT_3 5.0
DIARRHEA_2 4.3
PAIN BACK_1 3.8
WEIGHT DEC_1 3.4
SWEAT_1 3.4
ARTHRALGIA_2 2.9
14 DYSPEPSIA_1 49.1
HEADACHE_2 21.2
DYSPEPSIA_2 15.9
INJECT SITE REACT_1 8.7
HEADACHE_1 1.6
HEADACHE_3 0.5
DYSPEPSIA_3 0.4
15 CONJUNCTIVITIS_1 10.9
COUGH INC_1 10.1
ANXIETY_1 9.5
DRY MOUTH_1 7.5
PAIN BONE_1 4.7
DRY EYE_1 4.4
ALLERG REACT_1 3.9
PALPITAT_1 3.7
BRONCHITIS_3 0.3
ALLERG REACT_3 0.3

Note: The unit of occurrence intensity was converted to % because the sum of occurrence intensities per pattern was set to 1 by the softmax function. The top
eight AE types whose occurrence intensities are more than 1% are presented for each pattern. We also show the top two AE types with severity 3 or higher and
whose occurrence intensities are more than 0.1% (bold letters).

data of the four patients were assumed to be the same as i = 548,338,871,530, who received AC, respectively (see
Data S1).

The estimated 65,1) at the end of the second cycle is shown in Figure 2 (left). In patient 1, pattern 7 component
(.e., 99;) was very high due to vasodilation of severity 2 and abdominal pain of severity 2. Abdominal pain of severity
2 was a rare AE type that occurred in only 1.9% (40 out of 2106) of patients who received treatment AC, contributing to
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at the end of the second cycle

an increase in 6’ , because it is a pattern-7-specific AE type. Patient 2 had only two pattern components The pattern

components of patlent 3 were separated into high and low. A scatter plot of the estlmated 0

at the end of the second

cycle and at the end of the fourth cycle is shown in Figure 2 (right). In patients 1 to 3, the pomts are near the diagonal,

which suggests that 0(

diagonal, 0 may remain unstable due to the insufficient AE data.

We assumed that the estimated 0 was close enough to the true value at the end of the second cycle. We then cal-
culated /1(, according to Equations (2) and (3) and listed the AE types most likely to occur in the future (Table 3). Those
AE types should be carefully monitored.

of patients 1 to 3 are stable. In contrast, because the points of patient i = 4 are far from the
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TABLE 3 Top 10 AE types and top

AE type ’19,) 10 severe AE types with the largest /19])
NAUSEA_2 1.02
DYSPEPSIA_1 0.61
NAIL DIS_1 0.55
CONSTIP_1 0.53
TASTE PERVERS _1 0.33
ASTHENIA_1 0.32
VASODILAT_2 0.31
DIARRHEA 1 0.29
HEADACHE_2 0.26
INSOMNIA_1 0.25
MENS DIS_3 0.091
INFECT_3 0.046
FEVER_3 0.013
ASTHENIA_3 0.012
HEADACHE_3 0.008
ANOREXIA_3 0.008
LEUKOPENIA_3 0.008
STOMATITIS_3 0.007
LEUKOPENIA_4 0.006
DIARRHEA_3 0.006

4 | DISCUSSION

Our statistical model with patient-level AE data extracted AE patterns specific for each treatment. We clarified that our
method allowed interpretable patient-level safety profiling in a clinical study such as the illustration of the data analysis
in this paper. Our statistical model can use the number of occurrences of each AE in a patient to predict future AEs if
the total number of occurrences is sufficiently large so that the estimated @ is close enough to the true value. The pro-
posed method is also widely applicable to data obtained from clinical studies with patient-level AEs, regardless of dis-
ease or treatment. We believe that this paper is of great significance to the current situation where patient-level data is
being released.

In Section 2.1, we excluded alopecia due to its common occurrence in patients. Such a frequent AE is called
“stopwords” in the field of natural language processing (e.g., prepositions). It is common to remove such terms
before matrix decomposition.'® If alopecia were included, many patterns would have contained alopecia, which
would prevent pattern extraction and pattern interpretation. Therefore, we decided to exclude alopecia from the
analysis in this paper.

A limitation that was noted in our method is that K must be determined before analysis (Section 2.2.3).
For example, if we used K = 10, instead of pattern 6 and pattern 7, a mixture of those patterns would have
been extracted. We used K = 15 after discussion because we thought they can be separated. Although non-
parametric Bayesian methods can estimate K, further research is needed to examine whether it is effective for
our model.

In our model, 65,? represents the responsiveness of patient i to treatment ¢. If 0:(,? and 0:(]? are strongly correlated, a
patient may be advised to opt for alternate treatments wherein severe AEs seldom occur based on the correlation. In
this paper, however, there was no strong correlation between treatments. For this reason, it was difficult to predict AEs
caused by a certain treatment based on the AEs induced by a different one.

For the sake of simplicity, we assumed that (1) the dosages of each drug were the same across clinical studies,
(2) treatments were not changed within a cycle, and (3) the order in which the AEs occurred was insignificant.
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Regarding (1), in practice, however, the dosages varied depending on the clinical studies. Regarding (2), treatments
may change within a cycle due to drug withdrawal or dose reduction. (1) and (2) can be resolved by incorporating a
dose-response model whose shape parameters are adjusted by the dosages actually administered. Regarding (3), the
number, order, and timing of occurrences may all be important. This obstacle may be overcome by modeling the occur-
rence data as time series without summarizing them for each treatment period.

In this paper, we did not show the result of using patient information such as age or weight, however, these factors
could be incorporated into our model. Because 65,? represents the responsiveness of patient i to treatment ¢, 91.(,? could be
expressed using patient information as follows:

M =f(xi)
91.(]? ~ LogNormal (ﬂik, 62)

where X; is a vector of patient information for patient i. y; is determined by a certain function f of x, and 95,? follows a
lognormal distribution with u; as a parameter. We can also incorporate exposure and other pharmacokinetics data into
the model. In our study, we attempted to use age, weight, and laboratory measurements as x; for the data. The result
showed that these information were not useful predictors for 0:(,? in this data. In future research, the effective integra-
tion of patient information into the model will be investigated.

Performance evaluation using artificial data is impractical due to the complexity of the AE data structure. Our

method should be validated by applying it to larger datasets to use in a clinical study.
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APPENDIX A.

Case 1: one mechanism, multiple treatments, multiple studies, and multiple periods

The superscript m in M"™ is removed. The log-probability Equation (15) is reduced to:

log P(é“),M,R“),E“),S“) | Yp.0m,08,05,0 )

P Ny J
= ZZprg Poisson (ijp ) | Cl{p) [expé<t”>softmax (M +R(’p)) +exp§(s”>softmax(s(sp))] >
p=1li=1j=1 ij
K
+> | D log N (Mg | 0,03) + > log N'(Myy | Myg,03,)
k=1|j€3 () edT
T K [
+ ZZ Zlog N(R,i? | 0,0’123) + Z log N(Rf;? | RQ,O‘%)
t=1k=1[j €3 (J.J"eg
S L [
+3°3 (Y log v (Sl(;) | o,og) I (S}J? | sl(js),aé)
s=11=1 _j€3 (JJj) e T

Case 2: one mechanism, one treatment, multiple studies, and multiple periods
In addition to the above case 1, the superscripts ¢ in g, 82, and ¢” are removed. R®” and Equations (10) and

(13) are eliminated. Equation (6) is simplified to: (I)](:):softmax(Mk). The log-probability Equation (15) is
reduced to:
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log P(é,Mgé(S)aS(S) | Yp70M565’GG)
P Ny J } }
= ZZZlog Poisson <Y§jp ) | c?’ ) [eposoftmax(M )+ expf(s" )softmax (S(Sp)ﬂ )
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m
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Case 3: one mechanism, one treatment, one study, and multiple periods

In addition to the above case 2, the superscripts s in a'®, &, and # are removed. The log-probability Equation (15)
is reduced to:

M’v
Mg

J
log P(0,M.E,S | Yp,0m,05,06) = Zlog Poisson(Yg’) | c® [expOsoftmax (M) +exp§softmax(S)]U)

p=li=1j=
o

+) Zlog/\/ My | 0,03) + > log N (M | Myj,0%)
k=1|j€ () ed
T

+> | logN (Sy | 0,08) + > logh (Sy | Sy.0p)
I=1|j€3 (.Jj)e T

Case 4: one mechanism, one treatment, one study, and one period (no baseline period)
In addition to the above case 3, a®, &9, ®, and S® are eliminated, and Equations (4), (7), (8), (11), and (14) are

eliminated. The subscripts and superscripts p are removed. Equation (2) is simplified to 4; = f, and the log-probability
Equation (15) is reduced to:

N J
log P(0.M | Y,0om,06) = ZZlog P01sson<YU | Ci [eposoftmax(M)}y)

i=1j=1

=

+ Z Zlog N (M | 0,0%) + Z log\ (My; | My, 05)

=1]j€3 () eJg
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