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a b s t r a c t 

Objectives: Africa has experienced fewer COVID-19 cases and deaths than other regions, with a contrasting epi- 

demiological situation between countries, raising questions regarding the determinants of disease spread in Africa. 

Methods: We built a susceptible–exposed–infected–recovered model including COVID-19 mortality data where 

recovery class is structured by specific immunization and modeled by a partial differential equation considering 

the opposed effects of immunity decline and immunization. This model was applied to Tunisia, Senegal, and 

Madagascar. 

Results: Senegal and Tunisia experienced two epidemic phases. Initially, infections emerged in naive individuals 

and were limited by social distancing. Variants of concern (VOCs) were also introduced. The second phase was 

characterized by successive epidemic waves driven by new VOCs that escaped host immunity. Meanwhile, Mada- 

gascar demonstrated a different profile, characterized by longer intervals between epidemic waves, increasing 

the pool of susceptible individuals who had lost their protective immunity. The impact of vaccination on model 

parameters in Tunisia and Senegal was evaluated. 

Conclusions: Loss of immunity and vaccination-induced immunity have played crucial role in controlling the 

African pandemic. SARS-CoV-2 has become endemic now and will continue to circulate in African populations. 

However, previous infections provide significant protection against severe diseases, thus providing a basis for 

future vaccination strategies. 
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The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus has

een ongoing for over 3 years. According to World Health Organization

WHO) data 1 , the number of cases and deaths due to COVID-19 is sig-

ificantly lower in Africa than in the rest of the world. However, lower

esting rates, case detection rates, and deaths reported in Africa could

ccount for the lower number of cases and deaths. 

More importantly, SARS-CoV-2 has heterogeneously affected African

ountries [1] . Tunisia, Senegal, and Madagascar reported 1 , 152 , 483,

6 , 594, and 66 , 098 confirmed cases and 29 , 378, 1968, and 1403 deaths,

espectively, by April 23, 2023. These disparities can be partly attributed

o demographic factors. Compared to Senegal and Madagascar, Tunisia

as a relatively older population demographic (median age, 32.8 years;
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ife expectancy at birth, 76 years; individuals aged > 65 years represent

.86% of the population). These indicators were 19 years, 62.5 years,

nd 3.1% in Senegal and 19 years, 57 years, and 3.47% in Madagascar,

espectively 2 . 

The contrasting impact of the epidemic on African countries might

lso reflect differences in the severity and promptness of public health

nd social measures (PHSMs) imposed by the national health authorities

o limit virus transmission. These PHSMs also shape the introduction and

iffusion of new variants of concern (VOCs) into populations. In the past,

frican population might also have been diversely exposed to pathogens

hat share cross-reactivity to SARS-CoV-2, which conferred partial resis-

ance to the emerging coronavirus. Finally, the genetic background and

ate at which the immunity to SARS-CoV-2 wanes after natural infection

ay influence individual responses to the virus and resistance to reinfec-
2 https://www.indexmundi.com 
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Figure 1. Conceptual diagram of the model. 
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ion. To the best of our knowledge, no previous study has reported the

econstruction of SARS-CoV-2 transmission in African countries using a

athematical model that integrates immunity data. 

The humoral immune responses acquired after SARS-CoV-2 infection

re typified by the production of antibodies against the viral nucleo-

rotein (N) and surface spike (S) protein (among other viral antigens).

hile antibodies to N protein are not protective (i.e. non-neutralizing),

ntibodies to S protein (and particularly to the receptor binding domain

RBD] domain) efficiently neutralize the excreted SARS-CoV-2 virus i.e.

he original ancestral strain as well as the first VOCs (i.e. 𝛼, 𝛽, 𝛿 VOCs),

ut they are less effective against Omicron [2–4] . Antibody titers to

ARS-CoV-2 decline over time after infection and may fall below the

hreshold, usually within a few months [5] . The cellular immune re-

ponses mounted after SARS-CoV-2 infection also contribute to stronger

esistance against severe disease after reinfection and likely account for

n increasing cross-immunity over time observed in individuals who

ave experienced multiple reinfections [6] . They could also explain why

ndividuals who no longer have detectable anti-S/RBD antibodies show

esistance to the virus. These characteristics are applicable to vaccine-

nduced immunity as well, with the vaccine type and the expressed pro-

ein(s) serving as additional influencing factors. 

In this study, we aimed to assess the role of immunity and vi-

al variants in shaping the dynamics of the SARS-CoV-2 pandemic in

frica. Specifically, we conducted a comparative analysis with a focus

n Tunisia, Senegal, and Madagascar, representing the Northern, West-

rn, and Austral Africa, respectively. Our study incorporated epidemio-

ogical parameters including daily cases, daily deaths, epidemic waves,

merging VOCs, and the impact of the natural decay of post-infectious

ARS-CoV-2 immunity within the population. 

By investigating these factors, our study contributes to a comprehen-

ive understanding of the SARS-CoV-2 pandemic in African countries,

hedding light on the influence of immunity and viral variants on dis-

ase dynamics. The findings of this study can provide data for improving

ublic health strategies and interventions tailored to the unique context

f African countries. 

odel description and parameter evaluation 

We compared the SARS-CoV-2 pandemic dynamics in Senegal,

adagascar, and Tunisia using the susceptible–exposed–infected–

ecovered/Death (SEIR)/DS model developed by White and Medley
101 
7] and reviewed by Barbarossa et al. [8] ( Figure 1 ). The susceptible

ompartment ( S ) was divided into two groups: S1 for individuals who

ad previously been infected, identified by antibodies (Abs) to S/RBD

ut not to N, and S2 for those without prior infection (no N and no

/RBD). Individuals in the S1 or S2 stages could have been infected

y exposed (E) or infected individuals (I). The transition from exposed

o infected occurs after developing antibodies, whether symptomatic or

symptomatic. I compartment was divided into Ind and Id , where the

ormer was not detected, and the latter tested positive. Individuals in

he I group either recovered ( R ) or died ( D ). 

We assumed that individuals who recovered from SARS-CoV-2, de-

oted as R , have different levels of residual immunity. We structured the

ompartments of recovered patients based on the levels of anti-S anti-

odies detected by enzyme-linked immunoassay, which is a good proxy

or the levels of neutralizing antibodies. When an individual’s neutraliz-

ng antibody titer drops below a certain threshold, they are moved from

he R pool to the susceptible (S1 ) pool. We used 𝜏 to denote the level

f immunity (i.e. the concentration of antibodies to S/RBD). Immunity

oss was modeled using a partial differential equation, which accounted

or both spontaneous decline and/or boosting through vaccines and/or

xposure to the virus. The density of recovered individuals at time t ,

enoted as r ( t, 𝜏), was determined based on antibody level 𝜏. Rinput ( t )

epresented the influx of recovered individuals at each time unit, while

input represented the flux of individuals who have lost their immunity.

he total immunized population was obtained by integrating r ( t, 𝜏) over

he range of 𝜏 values. More details are provided in appendices A and B

nd Table 1. 

The increase in the number of infections led to an increase in the

ecovery class inflows, R . Each observed epidemic wave generated a

ohort of individuals who became infected simultaneously and subse-

uently entered the recovery class as a group, creating a correspond-

ng cohort wave in the seroimmune space, represented by r ( t, 𝜏). The

eroimmune wave declined over time at a rate f ( t ) and ultimately lost

fter 1 /f ( t ). To evaluate the kinetics of antibodies to the S or N proteins

f SARS-CoV-2 [i.e. f ( t )], we used four datasets acquired in Senegal be-

ween August 14, 2020 and August 17, 2021 (corresponding to epidemic

aves 2, 3, and 4) [9] . Data were normalized using technology and pro-

eins. We divided the normalized kinetic data into discrete four-time

roups: > 150 days; [50 , 150 days]; [23 , 50 days], and < 23 days, and

erformed a linear regression analysis, called the linear kinetic model,

nd a logistic regression analysis, called the non-linear kinetic model. A
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Figure 2. From left to right: Senegal 2a; Madagascar 2b; and Tunisia 2c. Each country is successively represented from top to bottom: the simulated data for daily 

cases, daily deaths, and daily hospitalizations per 100,000 individuals curves, the Google mobility curve, and the Oxford stringency index curve (OXCGRT Stringency 

Index) from the beginning of the epidemic to Oct. 2022. The simulated data for infected individuals ( I ) fit both the daily cases of SARS-CoV-2 and reported data 

from national seroprevalence surveys. We observed that Senegal and Tunisia have experienced six waves, whereas Madagascar has experienced five waves. The three 

countries have undergone historical, 𝛼, 𝛿, and omicron VOCs. The mobility curves of the three countries were similar. Except for the first wave corresponding to 

the start of the epidemic, when severe preventive measures and PHSMs actions were effectively implemented, the two indicators are rising and will become positive 

between April and June 2021, indicating the relaxation of these actions in all countries. Except for the first wave, Senegal and Madagascar had very few cases 

according to the stringency index. Although significant PHSMs decisions have been made in Tunisia, they have not been implemented. 

PHSM, public health and social measures ; RBD, receptor binding domain; VOC, variant of concern. 
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imilar analysis was performed for immunoglobulin G antibodies against

he N protein (Appendix Table 2 and Figure 7). 

The threshold below which recovered patients become susceptible

as evaluated using a pre-pandemic database built in 2018 with sera

rom individuals who had never been infected with SARS-CoV-2 (Sene-

alese Dielmo 2018 cohort). We observed that the time required for

mmunity loss, T , falls within the range of 180–210 days, which is con-

istent with the findings of previous studies by Poll´an et al. [10] and

an et al. [11] . As the linear regression yielded an R2 > 0.8 for all T

(180 –210) days, we conducted a sensitivity analysis on r ( t, 𝜏) with re-

pect to the range of 180 to 240 days. 

We incorporated daily case and death data from WHO databases for

enegal, Tunisia, and Madagascar in our model 3 . The model parame-

ers are listed in appendix Table 1. Vaccination data from Tunisia and

enegal were integrated into the model, while data from Madagascar

ere excluded due to low vaccination coverage. External data sources,

ncluding the Oxford SARS-CoV-2 Government Response Stringency In-

ex 4 , Google Mobility Index 5 , 6 , and PHSMs, were used to contextualize

he epidemiological data curves and national public health decisions. 

esults 

Our model was simulated using COVID-19 pandemic data collected

rom Senegal (for both linear and non-linear kinetic models) and from

unisia and Madagascar (for linear kinetic models) between March 2020

nd September 2022. We used antibody levels against S/RBD as a proxy

or SARS-CoV-2 immunity acquired after natural infection or vaccina-

ion. 

The model exhibited a close match to the data on daily cases and

aily deaths ( Figures 2 a-c). Additionally, the simulated density of im-

une individuals, r ( t, 𝜏), in the pool of recovered individuals closely ap-

roximated the data from the first national seroprevalence surveys in
3 https://covid19.who.int 
4 https://www.bsg.ox.ac.uk/research/covid- 19- government- response- tracker 
5 https://www.google.com/covid19/mobility 
6 https://ourworldindata.org/covid- google- mobility- trends 
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adagascar and Senegal ( Figures 3 g and h). The analysis of the epidemic

n three countries enabled us to differentiate between the situations in

enegal and Tunisia, as well as the unique case of Madagascar. 

In Senegal and Tunisia, based on the mobility index, VOC distribu-

ion, and stringency index ( Figure 2 ), the epidemic was divided into

hree successive phases. The first epidemic phase, Ep1 , corresponded to

pidemic wave 1 ( WE 
1 ) caused by the historical virus entering the two

ountries through infected visitors. As the diffusion of the virus was con-

trained locally by strong public health measures and limited to early

ase contacts, WE 
1 was inconspicuous. The second phase, Ep2 , corre-

ponded to the epidemic WE 
2 wave in Senegal and Tunisia ( Figures 2 a

nd c) caused by diverse lineages of the ancestral virus, but it was

uch more severe than Ep1 [12] . The resumption of the epidemic in

p2 could be ascribed to a relaxation of PHSMs, borders reopening

uring the tourism season, and the geographic extension of the epi-

emic to previously unaffected regions. The third phase, Ep3 , corre-

ponded to WE 
3 , WE 

4 , and WE 
5 waves, characterized by the successive

mergence of 𝛼, 𝛿, and Omicron VOCs in Tunisia and Senegal [3,13] .

hese VOCs had a selective advantage over the preceding lineages (i.e.
𝑛𝑒𝑤 
0 > 𝑅𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 

0 ) and almost completely displaced them. This period also

oincided with an almost complete drop in PHSMs, as indicated by a

obility index close to zero or positive ( Figures 2 a and c). As expected

and Omicron waves were characterized by a faster virus spread and

ore deaths ( Figure 2 ). We observed that the seroimmune waves r ( t, 𝜏)

nded with a subsequent epidemic wave ( Figures 3 d and f). For instance,

he second and third seroimmune waves ( WSE 
2 and WSE 

3 , and WSE 
3 

nd WSE 
4 , respectively) intersected to a certain degree ( Figures 3 g and

). In Tunisia, an inconspicuous initial epidemic wave led to a barely

erceptible initial seroimmune wave. The seroimmune waves resulting

rom the second and third epidemic waves completely overlapped and

erged into a unique seroimmune wave, WSE 
1 , 208 days in duration

 Figure 3 f). 

Finally, two phases are identified in the recovered ( R ) curve

 Figures 4 a and c). The first phase lasted from the start of the epidemic

o months 9/10 of 2021, during which R increased in a stepwise manner,

p to 45% and 55.65% respectively. The increase in R resulted from the

verlap of successive seroimmune waves and accumulation of immune

https://covid19.who.int
https://www.bsg.ox.ac.uk/research/covid-19-government-response-tracker
https://www.google.com/covid19/mobility
https://ourworldindata.org/covid-google-mobility-trends
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Figure 3. Figures 3 a-c represent the simulation data of the density of recovered individuals at time t with seroimmune level 𝜏, r ( t, 𝜏), from the start of the epidemic 

to September 2022 ( ∼2 . 5 years), with 𝜏 levels of concentration of antibodies to S/RBD. The values of r ( t, 𝜏) are represented per 100 , 000 individuals. Figures 3 d-f 

represent the cross-section of r ( t, 𝜏) for 𝜏 = 𝜏max ( R input class) and 𝜏 = 𝜏min ( S input class) as well as the epidemic curve based on daily cases by time (in days) with 

daily cases according to field data (vertical blue bars). Figures 3 g and h compare r ( t, 𝜏) at the time of the national seroprevalence survey with data from the survey on 

antibodies against S/RBD (note that Tunisia did not measure antibodies against RBD during its national seroprevalence survey). The simulated data for the density 

of immune individuals ( r ( t, 𝜏)) fit both the daily cases of SARS-CoV-2 and the reported data from national seroprevalence surveys. Seroimmune waves are generated 

by epidemiological waves. The subsequent epidemiological wave ended in Tunisia and Senegal. In Senegal, WSE 
2 and WSE 

3 intersected slightly ( Figures 3 d-f). In 

Madagascar, the seroimmune wave ended before the epidemiological wave ( Figure 3 e). In Madagascar, a succession of independent seroimmune waves of a duration 

of 160 to180 days was observed. 

RBD, receptor binding domain. 

103 
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Figure 4. Top: Number of naive susceptibles, susceptibles infected at least once, total susceptibles, and recovered individuals per 100 , 000 individuals. Bottom: Same 

figure as above but in proportion. From left to right: Senegal, Madagascar, and Tunisia. For the three countries, the susceptible naive curve decreases and approaches 

zero after the third wave. Hence, the infected individuals during waves 1 and 2 are essentially naive. Meanwhile, those infected during waves 3 and 4 are naive and 

reinfected individuals, respectively. The infected population in wave 4 mostly comprised reinfected individuals. We observed a fluctuation in the curve of susceptible 

individuals for all waves in Madagascar. 

Figure 5. Summary of different epidemiological and seroimmune waves with their intensities and VOCs. The percentiles of the pool of susceptible, S1 and S2 , 

recovered, R , and infected and died, I + D , individuals at the beginning of each wave are also presented. The annotation below of the epidemiological waves represents 

the reason for the wave: PHSM, wave regulated by PHSM; PHSM relaxing, wave caused by PHSM relaxing; and VOC, wave caused by the introduction of a new 

VOC. Senegal, Tunisia, and Madagascar experienced six epidemiological waves caused by the same event and VOC. However, the appearance of these waves creates 

different seroimmune responses. They intersect in Senegal, are very close to each other in Tunisia, and are very distinct in Madagascar. This spacing makes the 

number of recoveries and susceptibility periodic in Madagascar, which implies that the waves can be considered independent. This was not the case in Senegal or 

Tunisia. 

PHSM, public health and social measures; VOC, variant of concern. 
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ndividuals. During this first phase, the pool of susceptible individuals,

 , was mainly composed of individuals naive to SARS-CoV-2 (S2 ), while

ndividuals who had previously been infected but lost their immunity

nd become susceptible again (S1 ) were relatively fewer. Thus, S1 and

2 were 13.59% and 40.84%, respectively, in Tunisia and 16.86% and

5.86%, respectively, in Senegal ( Figure 5 ). The second phase in the

 curve encompassed epidemic waves 5 and 6 caused by the Omicron,

haracterized by a steep decrease in R due to a significant immunity
104 
oss in the population. This decrease was more rapid in Senegal than

t was in Tunisia, with some observed oscillations in the latter. Dur-

ng the second phase, a radical change was observed in the distribution

f individuals within the susceptible population, S . The number of sus-

eptible/naive individuals, S2 , steeply declined until reaching 25% in

unisia and 19% in Senegal, approaching zero, whereas the proportion

f susceptible/previously infected individuals, S1 increased to 63% in

unisia and 77% in Senegal ( Figures 4 a, c, and 5 ). 
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In Madagascar, the main feature observed was that the time interval

etween successive epidemic waves (estimated between 257 and 330

ays) was consistently longer than the time duration of the seroimmune

aves (estimated between 160 , and 173 days). Hence, a new epidemic

ave begins when the majority of the individuals who recovered from

he preceding epidemic wave have lost their antibodies against SARS-

oV-2. This allowed almost complete reconstitution of the susceptible

ool before each new wave ( Figures 3 b and e). In Senegal and Tunisia,

he pool of susceptible individuals gradually comprised predominantly

hose who had been infected at least once, i.e. primarily composed of

ndividuals in S1 category ( Figures 4 b and 5 ). 

In Senegal, we also computed the protection probability (i.e. 1−
robability of reinfection) for epidemic waves 2–5, WE 

i with i in

2 , 3 , 4 , 5}, which corresponded to the ancestral virus, VOC 𝛼, VOC 𝛿, and

micron (Appendix Figure 11). We observed that this probability varied

ver time during the epidemic wave, with an average of 0.24 ( 𝜎 = 0.09)

or the ancestral virus, 0.38 ( 𝜎 = 0.15) for VOC 𝛼, 0.36 ( 𝜎 = 0.15) for

OC 𝛿, and 0.37 ( 𝜎 = 0.17) for the VOC Omicron. The probability of

einfection varied based on the number of individuals who have been

reviously infected with the virus (S1 ) and the duration of their immune

esponse, which in turn depends on the epidemic waves. Recovered in-

ividuals may still come into contact with the virus, especially when

he epidemic and seroimmune waves intersect or almost intersect, as

bserved in Senegal and Tunisia. Hence, they can potentially become

einfected, which increases the time spent in the recovered class ( R )

nd the probability of reinfection. 

Finally, the impact of vaccination on the epidemic curve was as-

essed by comparing the simulations with and without vaccination in

enegal and Tunisia. Madagascar was not included in the study because

accine coverage in this country is low (5.75% of the population) [14] .

n Tunisia, a massive vaccination campaign began on July 22, 2021, and

y February 22, 2022, > 12 million doses were administered (58% of the

opulation received at least one dose). This important effort boosted the

opulation’s immunity to SARS-CoV-2, as featured in model simulations.

iscussion 

Modeling the SARS-CoV-2 epidemic in Africa has been difficult ow-

ng to limited testing, incomplete data, and varying PHSMs across the

ontinent. To the best of our knowledge, this is the first data-driven

EIR model that incorporates immunological data and has been devel-

ped using African data. This model simulates the epidemiology of the

irus while considering the seroimmune status of the pool of recovered

ndividuals (R) by distinguishing between those who have recovered and

aintained a “protective ” level of immunity and those who after recov-

ry, have lost this “protection due to the natural antibody decay, thereby

hifting back to the pool of susceptibles. This approach had generated

urves that accurately depict the onset and amplitude of consecutive

pidemic waves, providing valuable insights into the spread of the virus

n different African countries. 

Previous models have primarily focused on forecasting the impact

f interventions [15–17] , but only a few have incorporated immunity

oss; those that have assumed a uniform loss of immunity across the

opulation [18] were unable to evaluate the impact of immune boosting

aused by reinfection or vaccination. 

The simulation of COVID-19 dynamics in a population structured by

ntibodies to the S and N virus antigens revealed that anti-N antibodies

re mainly indicators of contact with the virus, whereas antibodies to

/RBD can neutralize the virus. Individuals who are positive for these

ntibodies seem less susceptible to infection or severe disease. The wan-

ng of antibodies over time makes individuals more susceptible to new

nfections, particularly when new variants emerge. The natural decay

f antibodies to S or N antigens after infection was used as a proxy for

he decay of immunity against the pandemic virus and its variants. How-

ver, this assumption may have limitations, as immunity to SARS-CoV-2

nvolves diverse mechanisms beyond humoral antibody response. 
105 
In our model, the resumption of a new epidemic wave may have been

aused by various factors, including (i) re-emergence of the same virus

fter the reconstitution of a sufficient pool of individuals susceptible to

his virus, (ii) loss of immunity or relaxation of PHSMs with an increase

n human-to-human contact, or (iii) epidemic spread in previously non-

xposed populations. Alternatively, a new epidemic wave could also be

riggered by a new viral variant that has a competitive advantage over

ther strains, resulting from mutations that increase its fitness or allow

t to escape the immunological response. 

The fate of COVID-19 as a pandemic will ultimately be determined

y the extent to which the immunity induced by the primary infection

onfers significant protection against reinfection. Stein et al . [19] have

ssessed this point through a large meta-analysis and observed high

evels of protection ( > 82%) against reinfection from ancestral, 𝛼 and

VOCs; however, significantly lower protection (45%) was conferred

gainst reinfection from the Omicron BA.1 VOC because of the high im-

une escape features of this VOC. In the early stages of an epidemic,

hen a virus emerges within a naive population, the host’s immune re-

ponses are not yet constraining, and no selective pressure can yet foster

he virus to evolve. Thus, the new virus variants tend to exhibit an in-

rease in the basic reproduction number (R0 ). This was evident during

he early stages of the pandemic, when the 𝛼 or 𝛽 VOCs of SARS-CoV-2

nfected mostly naive populations. These VOCs replicate rapidly in the

ost and cause serious pathology, with the climax reaching the delta

OC. 

However, the increase in R0 alone cannot account for the intensity of

 new wave. The intensity is fueled by the size of the pool of susceptible

ndividuals (S), which is continuously replenished by individuals who

ave lost their immunity after a primary infection and become suscepti-

le to reinfection (S1 ). Accordingly, in the three countries examined in

he study, the new epidemic waves amplified the emerging VOCs pre-

isely before the seroimmune wave induced by the preceding epidemic

ave reached a nadir due to natural antibody decay (in Senegal and

unisia) or after a longer time interval (in Madagascar). 

Starting with the emergence of 𝛿 VOC, we noted a significant change

n the structure of the pool of susceptible. In fact, the ratio of the sus-

eptible still naive to the virus (S2 ) to the whole pool of susceptible ( S )

ecreased to only 13.5% in Tunisia and 18% in Senegal. At this stage,

he virus needs to invest in escaping the immune responses mounted by

ast infections to support its spread. It also needed to balance its high

ate of replication to keep the host sufficiently healthy to infect new

nes. This is how the Omicron VOC emerged. In these three countries,

he Omicron VOC triggered additional waves with a periodicity vary-

ng between 180 and 200 days, i.e. the time lapse for immunity loss

20–24] . It is noted that we structured the compartments of recovered

atients based on the levels of anti-S antibodies detected by enzyme-

inked immunoassay; this threshold observed may be higher than the

ffectiveness threshold. This difference may slightly underestimate the

umber of individuals already infected (S1 ). 

Factors responsible for the clinical severity of COVID-19 remain elu-

ive and most probably result from a complex interplay of innate and

daptive immune responses as well as population comorbidities. Cell im-

unity to SARS-CoV-2 acquired after primary infection and reinfection

lays an important role as it is more cross-reactive between the differ-

nt VOCs and attenuates the clinical severity of COVID-19. It would be

nteresting to extend this work to a model that considers the cellular

omponents of immune responses in order to develop a general model

hat also predicts the number of severe cases. 

Our study demonstrated that the first modest epidemic waves in

unisia and Senegal possibly resulted from the implementation of strin-

ent PHSMs by health authorities. These significant efforts included

idespread testing, contact tracing, and isolation, as well as unprece-

ented restrictive social measures including closure of businesses, wor-

hip and meeting places, ban on public events, intense public informa-

ion campaigns, and 3-week confinement. In our model, the impact of

uch measures was monitored in each country using the Oxford SARS-
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oV-2 Government Response Stringency Index and the Google Mobility

ndex. 

In developing countries, the implementation of PHSMs had a heavy

ocioeconomic impact, particularly on the impoverished. Therefore, the

ecreasing compliance of the population with PHSM has led to the re-

mergence of the COVID-19 epidemic. Tunisia experienced a deadlier

pidemic with 2365 deaths per 100 , 000 population than those in Sene-

al and Madagascar reporting 113 and 47 deaths, respectively. The fac-

ors that may account for these disparities include demographics and

ndividual resistance to severe forms of the disease. However, further

tudies are required to fully elucidate these factors. 

Several surveys in Africa estimated the seroprevalence of SARS-CoV-

 resulting from the successive epidemic waves [3,9,25–27] . In Senegal,

 national survey performed in November 2021 had revealed that 28.4%

f the population have SARS-CoV-2 antibodies [9,11] while in Tunisia,

t the start of the third epidemic wave (March–April 2021) the sero-

revalence to SARS-CoV-2 in the general population was 38%. In An-

ananarivo, Madagascar, SARS-CoV-2 antibody seroprevalence among

lood donors was approximately 50% in June 2021 and 70% in Oc-

ober 2021 [25,26] . These figures indicated the intensity of the first

pidemic wave and rapid decay of SARS-CoV-2 antibodies in Madagas-

ar. During these two periods, the percentage recovery increased from

pproximately 40% in June to 50% in October ( Figure 5 ). 

Finally, we demonstrated that the introduction of anti-SARS-CoV-2

accination had a significant effect in Tunisia, but a very modest effect

n Senegal, reflecting the respective intensity of the vaccination effort

n each country. 

onclusion 

This study provides valuable insights into the dynamics of the SARS-

oV-2 pandemic in African countries, with a focus on the impact of

mmunity loss. Utilizing a SEIR/DS mathematical model, we monitored

he seroimmune status of individuals over a 3-year period in Tunisia,

enegal, and Madagascar, representing diverse African contexts. These

ndings shed light on the evolving nature of the epidemic and its asso-

iation with immune dynamics. 

In the present study, we observed in Senegal and Tunisia. The epi-

emic followed a pattern characterized by three distinct periods, with

ecurring waves attributed to immunity loss against emerging VOCs. In

ontrast, in Madagascar, the interval between successive waves was con-

istently longer than the time required for immunity loss. By the end of

he 𝛿 and Omicron epidemic waves, a substantial proportion of the pop-

lation in all three countries had been infected by SARS-CoV-2. These

ndings are particularly significant when considered alongside recent

esearch demonstrating that previous infections provide a high level of

rotection against severe diseases caused by VOCs 𝛼, 𝛽, and 𝛿, as well as

micron BA.1, for up to 40 weeks. This optimistic outlook, coupled with

he widespread infection rates observed in the study countries, suggests

 potentially favorable trajectory for future waves of the pandemic in

frica. 
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