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ABSTRACT Staphylococcus aureus is a leading cause of a wide range of clinical
infections. Here, we announce the complete genome sequence of S. aureus si-
phophage Lorac, a phiETA-like temperate phage that is similar at the nucleotide
level to the previously described S. aureus prophage phiNM2.

Staphylococcus aureus is a Gram-positive skin-associated bacterium and is the caus-
ative agent for a wide range of clinical infections, including bacteremia, infective

endocarditis, and pleuropulmonary and other device-related infections (1). Temperate
phages, such as phiETA, are able to move between S. aureus strains and can encode
virulence factors or toxins (2).

Siphophage Lorac was isolated from the wastewater treatment plant in Tuscaloosa,
Alabama, in August 2015 using the host strain S. aureus strain RN4220. Host bacteria
were cultured on tryptic soy broth or agar (Difco) at 37°C with aeration. Phages were
cultured and propagated by the soft agar overlay method (3). It was identified as a
siphophage using negative-stain transmission electron microscopy performed at the
University of Alabama Optical Analysis Facility, as described previously (4). Phage
genomic DNA was prepared using a modified Promega Wizard DNA cleanup kit
protocol as described previously (4). Pooled indexed DNA libraries were prepared using
the Illumina TruSeq Nano low-throughput (LT) kit, and the sequence was obtained from
the Illumina MiSeq platform using the MiSeq v2 500-cycle reagent kit following the
manufacturer’s instructions, producing 631,646 reads for the index containing the
phage genome. FastQC 0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) was used to quality control reads. The reads were trimmed with FastX-Toolkit
0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/download.html) before being assem-
bled using SPAdes 3.5.0 (5). Contig completion was confirmed by PCR using primers
(5=-GTCCCTATCAAACCGAGAATCC-3= and 5=-ACATGGGTGTAATCGACAAAGA-3=) facing
off the ends of the assembled contig and Sanger sequencing of the resulting product,
with the contig sequence manually corrected to match the resulting Sanger sequenc-
ing read. GLIMMER 3.0 (6) and MetaGeneAnnotator 1.0 (7) were used to predict
protein-coding genes with manual correction for appropriate gene starts, and tRNA
genes were predicted with ARAGORN 2.36 (8). Rho-independent termination sites were
identified via TransTerm (http://transterm.cbcb.umd.edu/). Sequence similarity searches
were performed by BLASTp 2.2.28 (9) against the NCBI nonredundant (nr), UniProt
Swiss-Prot (10), and TrEMBL databases. InterProScan 5.15-54.0 (11), LipoP (12), and
TMHMM v2.0 (13) were used to predict protein function. All analyses were conducted
at default settings via the CPT Galaxy (14) and WebApollo (15) interfaces (https://cpt
.tamu.edu/galaxy-pub).

Lorac was assembled as a complete genome with 43,147 bp and 1,371-fold cover-
age. It has a G�C content of 34%, which is similar to that of its host (16). Lorac is
probably a temperate phage since it belongs to the Phietavirus genus and is 99.18%
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similar at the nucleotide level to phiNM2 (GenBank accession no. DQ530360), a pro-
phage identified in S. aureus strain Newman (17). Morphogenesis genes coding for the
major capsid protein, scaffolding protein, TerL, TerS, tail proteins, tail-head connector
protein, portal protein, tape measure protein, and tape measure chaperone were
annotated. Lysogeny-associated proteins, including Cro-like and cI-like regulators, ex-
cisionase, and integrase, were identified, as was a lysis cassette consisting of a class II
holin and an amidase-type endolysin.

Data availability. The genome sequence of phage Lorac was submitted to GenBank
under accession no. MH321492. Associated BioProject, SRA, and BioSample accession
numbers are PRJNA222858, SRR8788599, and SAMN11260821, respectively.
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