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Neural, genetic, and cognitive signatures
of creativity
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Creativity is typically operationalized as divergent thinking (DT) ability, a form of higher-order cognition
which relies on memory, attention, and other component processes. Despite recent advances,
creativity neuroscience lacks a unified framework to model its complexity across neural, genetic, and
cognitive scales. Using task-based fMRI from two independent samples and MVPA, we identified a
neural pattern that predicts DT, validated through cognitive decoding, genetic data, and large-scale
resting-state fMRI. Our findings reveal that DT neural patterns span brain regions associated with
diverse cognitive functions, with positive weights in the default mode and frontoparietal control
networks and negative weights in the visual network. The high correlation with the primary gradient of
functional connectivity suggests that DT involves extensive integration from concrete sensory
information to abstract, higher-level cognition, distinguishing it from other advanced cognitive
functions. Moreover, neurobiological analyses show that the DT pattern is positively correlated with
dopamine-related neurotransmitters and genes influencing neurotransmitter release, advancing the
neurobiological understanding of creativity.

Creativity aids in the development of individual problem-solving skills and
is critical to the cultural and economic advancement of society. Divergent
thinking (DT), the ability to producemultiple ideas on an open-ended task,
plays an essential role in creativity; indeed, creative ability is typically
operationalized by performance on DT tasks1. DT may also help people to
develop an understanding of differences and an appreciation of different
perspectives2, have apositive impact onmood3, and can serve as an indicator
of representative potential4–7.

There are both consistent and inconsistent conclusions in task-related
functional magnetic resonance imaging (fMRI) studies of DT. The most
active brain regions are centered on the bilateral dorsolateral prefrontal
cortex (DLPFC), the ventrolateral prefrontal cortex (VLPFC) and right
anterior cingulate cortex (ACC)8–13. However, significant activation of other
brain regions has also been found in different studies, such as the right
angular gyrus (AG)10, the left fusiform gyrus (FG)8,10 and the left middle
temporal gyrus (MTG)9,13,14. This variability may be attributed to the fact
that creativity represents the highest level of advanced cognition, requiring
the coordination of multiple cognitive processes and the involvement of
corresponding brain regions during creative thinking. Benedek et al. 15–18,
Functional connectivity, in conjunction with the dual-process theory of
creativity, explains DT at the network level. The dual-process theory of
creativity posits that creative thinking involves both spontaneous and

unconscious processes of idea generation and connection supported by the
default model network (DMN), such as mind-wandering and free
association19,20, aswell as the conscious evaluation and selectionof generated
answers supported by the frontoparietal control network (FPCN)15,21. The
close collaboration between the DMN and FPCN networks facilitates the
emergence of creative thought and constitutes a core mechanism of this
complex cognitive process21–23. However, in addition to discretely dividing
brain regions based on function, morphology, and other attributes24, a
contemporary direction in neuroimaging research suggests that the mature
adult cerebral cortex is organized as a series of smoothly varying continuous
gradients. Notably, the primary gradient represents an organizational fra-
mework that transitions from sensory processing to abstract cognition25. As
a complex cognitive process involving multiple brain regions, the neural
representation of creative thinking is well-suited to be explained using a
continuous gradient approach, which we refer to in this study as the orga-
nizing principle of neural representation.

Cognitive decoding offers a powerful approach for elucidating the
complexity of DT. By leveraging quantitative reverse inference, cognitive
decodingmaps activation patterns in neuroimaging data onto psychological
concepts that characterize the higher-level mental processes engaged26. In
addition, human cognition is strongly influenced by genetics and
neurotransmitters27–29. Integrating this understanding with neuroimaging
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techniques can provide deeper insights into the neurobiological mechan-
isms that underlie complex behavioral traits30. However, systematic appli-
cations of these approaches to creativity research are still limited, as few
studies have attempted to integrate neuroimaging andgenetic approaches 31.

In the present study, we usedMVPA-based neural decoding techniques
to construct the neural representation of DT in two samples (sample 1
[n = 55] and sample 2 [n= 30]) and attempt to decipher the principles of its
neural organizations. MVPA allows for capturing information at a more
refined spatial scale32 and has been shown to yield larger effect sizes in brain-
outcome associations compared to univariate analysis33. Next, we explained
the neural representations of DT from a cognitive decoding as well as a
biogenetic perspective, by examining spatial correlations between the DT
neural pattern and previously collected, open-source brain data on cognition,
gene expression profiles, and neurotransmitter receptors and transporters.
Finally, to extend the analyses from the group-level, we predicted individual
DT scores from theDT brain pattern in the two task-based samples, and also
from functional connectivity between the regions of the DT pattern across
three large resting-state fMRI samples (SLIM= 410, GBB= 304, BBP = 600)
(Fig. 1b). This systematic evaluation collectively contributes to our under-
standing of the neurobiological foundations of creativity.

Results
Decoding the neural basis of divergent thinking
To identify the multivariate patterns of fMRI activation for DT, we applied
linear support vector machines (SVMs) to discriminate the novel use (NU)
condition (i.e., DT) versus the general use (GU) control condition with a
10 × 10-fold cross-validation in the sample1 (n = 55) and sample2 (n = 30)
respectively (see ‘Methods’ for details). In the classification of model1, the
accuracy was 80% ± 3.8% (mean ± SE, p < 0.00001) and area under the
receiver operating characteristic curve (AUC) was 0.90 with a sensitivity of
80.0% (95% CI: 70%–90%) and specificity of 80.0% (95% CI: 69%–89%) in
the test participants (Fig. 2a, b). In the classification ofmodel2, the accuracy
was 85% ± 4.6% (mean ± SE, p < 0.00001) and the AUC was 0.94 with a
sensitivity of 96% (95% CI: 89%–100%) and specificity of 73% (95% CI:
56%–89%) in the test participants (Fig. 2d, e).

To test whether a classification score was significant, we performed a
permutation analysis: we first randomly reassigned subject labels and then
performed tenfold cross-validation classification. Then, two samples were
used to as validation dataset for each other to further test the generalization
performance of twomodels, with no furthermodelfitting (see ‘Methods’ for
details). The results showed the accuracy of model1 when used sample2 as
the validationdatasetwas 70% ± 5.9%(mean ± SE, p = 0.0027) (Fig. 2c).The
accuracy of model2 when used sample1 as the validation dataset was
78% ± 3.9% (mean ± SE, p < 0.00001) (Fig. 2f). Altogether, the machine
learning models achieved good accuracy across both samples, indicating
reliable prediction of the DT (novel use) condition from multivariate pat-
terns of fMRI activation.

To identify significant features that reliably contribute to the classi-
fication of NU and GU in model1 and model2, we conducted bootstrap
tests with 10,000 iterations respectively (see ‘Methods’ for details). Then
we obtain the thresholdedmaps of the twomodels. To statistically compare
the two thresholded maps, we calculated Pearson correlation across
voxel weights. The two pattern classifiers were high correlated with
eachother (Fig. 3a, r = 0.838, p < 0.001). Thus, we averaged the thresholded
weight maps of the two models as the DT brain pattern (Fig. 3b, thre-
sholded at q < 0.05 with a false discovery rate [FDR] correction). We
found that NU versus GU was predicted by increased activity in bilateral
DLPFC, bilateral dorsomedial prefrontal cortex (DMPFC), left VLPFC,
bilateral ACC, bilateral orbitofrontal cortex (OFC), left AG, left MTG,
bilateral thalamus, and right cerebellum (warm colors in Fig. 3b), and was
predicted by decreased activity in right Superior Parietal Lobule, right
Precuneus, and right inferior Lateral Occipital Cortex (cool colors
in Fig. 3b).

To parse the cognitive processes involved in theDTbrain pattern from
a cognitive decoding perspective, we examined the spatial correlation
between this pattern andmeta-analytic fMRI activationmaps (NeuroSynth
datasets, see ‘Methods’). For positive weights, the decoding results focus on
Emotion, Cognitive, Memories, Judgments, Retrieval, and Reasoning; the
results for negative weights focus on Visual, Selective, Location, Perception
and Sensory (Fig. 3c) (see Supplementary Table 1). Thus, the DT brain

Fig. 1 | Experimental paradigms and analysis stages. a Sample 1 and sample 2
underwent two similar paradigms during fMRI acquisition. The task-based fMRI
contained two conditions, the control condition and the DT condition, requiring
subjects to generate a common or original use, respectively, for a given object. This
procedure consisted of 4 runs (6 runs in sample 2), each run included 20 trials,
comprised of 12 novel use prompts and 8 general use prompts. After the fMRI scan,
subjects were asked to recall and refine their responses, and then rate the originality
of their responses. b The analytic stages and datasets used in the present study.
Specifically, a whole-brainmultivariate pattern predictive of novel use vs general use
was trained on the sample 1 (N = 55) and sample 2 (N = 30) using support vector
machine and further evaluated in the two samples (via cross-validation and mutual
use as a validation sample for each other). After identifying the DT brain activity
pattern, we parsed the cognitive processes related to the brain pattern using meta-

analytic decoding on Neurosynth. Then, we explored the neural organizational
principle of theDTbrain pattern by examiningwhich brain networks theDT regions
belonged to, as well as the spatial correlation with functional connectivity gradient
maps. Next, to interpret the brain pattern from a biogenetic perspective, we explored
spatial correlations between the DT brain pattern and gene expression as well as
neurotransmitters. Finally, to extend from group-level findings to individual-level
predictions, we used the DT brain pattern to predict individual DT scores in the two
task-based fMRI samples and generalized the identified effects to resting-state
modalities (across three large resting-state fMRI samples [dataset 1,N = 410; dataset
2, N = 304; dataset 3, N = 600]). Figure 1 was created entirely by the authors for this
publication, without the use of any pre-existing elements or content from external
sources.
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Fig. 2 | Predictive performance of the SVM mod-
els. a The cross-validated distance from hyperplane
and the decision threshold of model1, the yellow
dots indicate correct classification, and the gray dots
indicate misclassification. b The receiver operating
characteristic (ROC) plot of model1. The accuracy
of the model1 was 80% ± 3.8%. c The ROC plot of
model1 when sample2 as validation dataset. The
accuracy of the model1 was 70% ± 5.9%. d The
cross-validated distance from hyperplane and the
decision threshold of model2. e The ROC plot of
model2. The accuracy of the model2 was
85% ± 4.6%. f The ROC plot of model2 when sam-
ple1 as validation dataset. The accuracy of the
model2 was 70% ± 5.9%. Source data are provided as
a Supplementary Data file.

Fig. 3 | Divergent thinking brain pattern and cognitive decoding. a Pearson
correlation between thresholdedweights of twomodels. bTheweightmap shows the
final predictive features after average the thresholded maps (significant feature
weights of SVMmodels by the bootstrap tests and thresholded at an FDR of q < 0.05)
of two models. cDecoding analysis based on a meta-analytic database. The bar plot

shows the functional terms obtained from the Neurosynth decoder applied to the
thresholded map. The pink bars represent the decoding results for positive weights,
and the blue bars represent the decoding results for negative weights. The sig-
nificance level is FDR-corrected p < 0.05. Source data are provided as a Supple-
mentary Data file.
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pattern was positively associated with the neural bases of higher-order
cognitive functions (e.g., memory and reasoning).

Mapping the neural signature of divergent thinking to functional
gradients
In order to better integrate the results of the neural representations, we
interpreted the distribution of brain regions for the DT brain pattern at the
network level. Specifically, we examined which resting-state functional
networks play important roles in the SVM model by calculating the pro-
portions of overlap between the DT brain pattern (predictive weights) and
each of the brain networks (see ‘Methods’ for details). The overlaps with the
positive predictive weights of the model were focused on Default Model,
Frontoparietal Control, and Limbic networks (Fig. 4a). The overlaps with
the negative predictive weights of the model were focused on dorsal
Attention, Visual and Somatomotor networks. These overlap results with
functional brain networks suggest that the positive brain activity pattern for
DT (i.e., the regions more involved in creative thinking) is concentrated in
the default and frontal-parietal control networks.

Next, we tested if these brain activity patterns for DT map to an
underlying organizing principle. Given the importance of gradients in
understanding organizing principles of the brain, we examined the spatial
correlation between the DT brain pattern and the first 10 gradients in the
brain (see ‘Methods’ for details). We found significant positive correlations
between the DT brain pattern and the principal gradient map (r = 0.66,
pfdr = 0.0005), the 9th gradient map (r = 0.47, pfdr = 0.0005), and a sig-
nificant negative correlation with the 8th gradient map (r = –0.40,
pfdr = 0.0007) (Fig. 4b, thresholded at q < 0.05 with FDR correction; for the
full list, see Supplementary table 2). Thus, by mapping the neural signature
of DT onto macroscale gradients, we situate creativity within the brain’s
primary system supporting complex psychological processes.

Linking the neural signature of divergent thinking to gene
expression and neurotransmission
We next explored potential gene expression profiles (from Allen Human
Brain Atlas datasets) that are associated with the DT brain pattern. First, we
preprocessed the micro-array data according to a recommended pipeline34

andobtained group-level gene expressionmaps thatwerenormalized across
samples and donors (15,633 genes). Second, we matched the gene expres-
sion maps to the DT brain pattern covering 574 regions (Fig. 5a). Then, we
conducted a Pearson’s correlation analysis to estimate the relationship
between the DT brain pattern and each gene expression map (Fig. 5b). The
significance of these correlations was obtained by permutation tests (10,000
times) in which spatial autocorrelations were preserved in the surrogate
maps35. Finally, we performed Gene Ontology enrichment analysis for

assessing the overrepresentation of gene sets in biological experiments to
derive meaningful insights. The significance of the GO enrichment terms
was further testedusing anullmodel,whichwas generatedbyperforming an
enrichment analysis using surrogate maps which preserved the empirically
observed spatial autocorrelations 35.

We found that genes within the gene set that showed significant
enrichment were those involved in the negative regulation of multicellular
organismal process, detoxification of copper ion and detoxification of
inorganic compound (FDR-corrected, all q < 0.05, Fig. 5c; for the full list, see
Supplementary Table 3). We also performed Gene Ontology enrichment
analysis on a gene set made up of the genes ranked in reverse order (i.e.,
starting with the most significant negative correlation and ending with the
most significant positive correlation), but did not find significant enrich-
ment of any genes in this set. Taken together, these results indicate that the
DT brain pattern is associated with the expression levels of genes that affect
the overall functioning of the organism by influencing the synthesis and
release of neurotransmitters and the transmission of information.

Furthermore, we assessed potential neurotransmitter receptors and
transporters that are associatedwith theDTbrain pattern. In this analysis, we
calculated the spatial Pearson’s correlation between theDTbrain pattern and
each receptors/transporters map (Fig. 5d), which were collected in previous
studies via PET (see “Methods” for details). The significance of these corre-
lations was obtained by permutation tests (10,000 times) in which spatial
autocorrelations were preserved in the surrogate maps. We found that the
neurotransmitter receptors/transporters that showed the most significant
positive correlationswereMOR(r = 0.67,pspin < 0.001),CB1 (omar) (r = 0.45,
pspin < 0.001),H3 (r = 0.41,pspin < 0.001),mGluR5 (r = 0.39,pspin < 0.001) (for
the full list, see Supplementary Table 4). Thus, theDT brain pattern is related
to neurotransmitters capable of promoting dopamine release.

Using the neural signature of DT to predict individual creativity
during task performance
To validate the effectiveness of the brain pattern as biomarker for predicting
DTweapplied relevance vector regression (RVR)with single-trial betamaps
(only NU condition for each subject) as feature to predict originality ratings
for DT responses with a 10 × 10-fold cross-validation in the sample1
(n = 55) and sample2 (n = 30) (see ‘Methods’ for details). The prediction
results of sample 1 are shown in Fig. 6a; the distribution of the correlation(r)
between the predicted value and the true value in 10 × 10-fold cross-
validations ranged from 0.21 to 0.39 (average r = 0.35, ppt < 0.001, mean
absolute error = 0.82). Figure 6b shows the prediction results of sample 2;
the distribution of the correlation(r) between the predicted value and the
true value in 10 × 10-fold cross-validations ranged from 0.09 to 0.17
(average r = 0.14, ppt < 0.001, mean absolute error = 1.82). Thus, the DT

Fig. 4 | Neural organizational principle of DT brain pattern. aOverlap with large-
scale resting-state functional networks. The radar chart depicts the posterior
probability of observing overlaps between the thresholded SVM model and the
resting-state functional networks. The pink chart represents the overlaps with the
positive predictive weights of the model, and the blue chart represents the overlaps

with the negative predictive weights of the model. b Correlation between gradient
and the thresholded map. c Principle gradient map of functional connectivity. ***
indicates FDR-corrected p < 0.001, * indicates FDR-corrected p < 0.05. Source data
are provided as a Supplementary Data file.
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brain pattern significantly and positively predicted individual DT ability
across both task-based fMRI samples.

Using the neural signature of DT to predict individual creativity
from resting-state fMRI
To extend the value of the brain pattern and further generalize its predictive
power at the individual level, we use data from resting-state modalities to
further extend this work. Resting-state functional connectivity is considered
a consistent message that measures the organization of intrinsic function
within an individual and varies over time and across individuals. Therefore,
we used three large-scale resting-state fMRI samples (SLIM,GBB, andBBP)
to predict individuals’DT (i.e., AUT) scores. First, we divided the DT brain
pattern in 6 clusters including left AG, right IFG, left MTG, left Precuneus,
right Thalamus, right cerebellum as 6 ROIs. Second, we constructed 6 × 6
symmetric Functional connectivity (FC) matrix with 15 unique edges per
participant (see ‘Methods’ for details). Then, we applied RVR with 15
unique edges as feature to predict creative ratings for each subject on
Southwest University Longitudinal Imaging Multimodal (SLIM) with a
10 × 10-fold cross-validation. The prediction results were shown in Fig. 7b.
The distribution of the correlation(r) between the predicted value and the
true value in 10 × 10-fold cross-validations ranged from 0.05 to 0.19
(average r = 0.15, ppt = 0.002, mean absolute error = 0.76). To identify sig-
nificant features that reliably contribute to the DT, we conducted bootstrap
tests with 10,000 iterations. The functional connectivity between the left AG
and left MTG, left AG and left Precuneus, left MTG and right cerebellum
significantly predicted individual DT scores (Fig. 7a).

Then, we conducted a validation analysis on Gene-Brain-Behavior
(GBB) and BBP samples. Specifically, we calculated the Pearson correlation
between functional connectivity (between leftAGand leftMTG, leftAGand
left Precuneus, left MTG and right cerebellum) and individual DT scores in
GBB and BBP. In the GBB sample, functional connectivity between left AG
and leftMTGwas positively correlated withDT (r = 0.14, p = 0.018) (Fig. 7c
top), whereas functional connectivity between left AG and left Precuneus
(r = 0.08, p = 0.16), as well as left MTG and right cerebellum (r = 0.02,
p = 0.74) were both not significantly correlatedwithDT. In the BBP sample,
we found that functional connectivity between left AG and left MTG was
positively correlated with DT (r = 0.10, p = 0.017) (Fig. 7c bottom), whereas
functional connectivity between left AG and left Precuneus (r = 0.04,
p = 0.38), as well as leftMTG and right cerebellum (r = –0.01, p = 0.73) were
both not significantly correlated with DT. Taken together, resting-state
functional connectivity of some, but not all, regions in the task-based DT
brain activity pattern was correlated with individual DT ability.

Discussion
The current study aimed to develop and validate a comprehensive brain
profile that captures the essence of DT. This profile demonstrates the
potential topredict individual scores ofDT, offeringpractical applications in
understanding individual creative thinking. Through the utilization of
MVPA, we examined the neural representation of DT across the entire
brain, comparing it to control conditions. Notably, these brain features were
found to be predominantly distributed within the default, frontoparietal,
and limbic networks. Further, through spatial correlation analysis with

Fig. 5 | Spatial correlation between gene/neurotransmitter map and thresholded
map and enrichment analysis. aNormalized gene expression levels in 579 regions.
b The correlation between the expression profile of each gene and the thresholded
map. One representative scatter plot was illustrated with positive correlations.

c Enrichment analysis. d The correlation between each neurotransmitter map and
thresholded map. One representative scatter plot was illustrated with positive cor-
relations. Source data are provided as a Supplementary Data file.
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resting-state functional connectivity gradients, we uncovered the organizing
principles of theDTbrainpattern.Wealso explained this brainpattern from
cognitive and biogenetic perspectives, respectively. The DT brain pattern
was associated with higher-order cognitive functions (such as memory,
judgment, and reasoning), increased expression levels of genes that influ-
ence neurotransmitter release, as well as increased release of neuro-
transmitters related to mood and reward such as dopamine, MOR, CB1.
Additionally, the features of the DT brain activity pattern were able to
predict DT scores at the individual level and demonstrate generalizability
across different modalities—task-based activity pattern and resting-state
functional connectivity. Collectively, these findings shed light on the neural
expression of creative thinking in the human brain, offering insights into its
cognitive functioning and biological underpinnings.

We observed that the DT brain pattern was distributed across a broad
range of regions, primarily includingbilateralDLPFC, bilateralDMPFC, left
VLPFC, bilateral ACC, bilateral OFC, left AG, and bilateral thalamus
regions. These brain regions are distributed across a wide range of brain
networks involved in different cognitive functions, and we first parsed such
representational patterns froma cognitive decoding perspective.Our results
suggest that DT brain patterns share partial commonalities with many
representationsof cognitive functions. For instance, free association refers to
the process by which an individual spontaneously links one thought,
memory, or concept to another related or unrelated thought, memory, or
concept without external constraints or control36, primarily involving the
activation of brain regions within DMN37. Working memory, as a form of
higher-order cognition, is a cognitive system responsible for the sustained
attention, monitoring, temporary storage, and manipulation of
information38, and it primarily involves widespread and consistent activa-
tion of regions such as theDLPFC, VLPFC, and parietal cortex39. Inhibitory
control refers to the ability of an individual to suppress or regulate responses
when faced with inappropriate or irrelevant distractions, which is a key
component of executive functions40. This function ismainly associated with
the DLPFC, inferior frontal cortex or OFC40–42, as well as the ACC and

posterior parietal cortex42. These cognitive abilities partially overlapwith the
brain patterns associated with DT. The spontaneous cognitive process (free
association) is related to enhanced internal connectivity within the DMN,
which facilitates associativefluency in creative processes, thereby improving
performance on creativity tasks43. Working memory contributes to DT
through attentional control mechanisms that manage and guide the com-
plex search processes44. The inhibitory control system of the prefrontal
cortex suppresses spontaneously generated solutions that are rapid/
unconscious, ultimately preserving only original ideas 45–47.

When overlapping with large resting-state brain networks, we found
that these regions mainly reside within the DMN, the FPCN, and a small
portion of the limbic network. The DMN consisting of the MPFC, pre-
cuneus, and AG is typically associated with spontaneous thinking, day-
dreaming, or associative processes48–50.During the generationof ideas inDT,
the DMN facilitates the production of ideas by supporting a series of
associative processes in semantic memory through spontaneous and
unconscious recall51–54. The FPCN, involving the DLPFC, VLPFC, and
dorsomedial thalamus, is typically associated with executive control
processes55–57. During DT, the FPCN is responsible for evaluating and
selecting the generated ideas, filtering out those that are insufficiently novel,
andultimately producing innovative thought18,58–60. Additionally, our results
indicate that the primary sensory and motor networks play an inhibitory
role in the brain’s production of DT. Therefore, both the DMN and FPCN
are crucial for DT, and their activity is accompanied by a reallocation of
resources within the visual network, reducing reliance on external visual
information while enhancing internal thinking and imagery 61,62.

However, beyond observing the representation of DT from the per-
spective of discrete networks, the emergence of resting-state functional
connectivity gradients provides a newperspective for understanding it from
a continuous standpoint. The principal gradient is generally considered to
reflect the global hierarchical structure of brain function,with theDMNthat
represents high-level/abstract cognitive processes, positioned at one end,
and the primary sensory and motor networks at the other25. Our findings

Fig. 6 | DT brain pattern predicts AUT self-
rating score. a The distribution of the correlation(r)
between the predicted value and the true value in
10 × 10-fold cross-validations on sample 1. One
representative scatter plot was illustrated. b The
distribution of the correlation(r) between the pre-
dicted value and the true value in 10 × 10-fold cross-
validations on sample 2. One representative scatter
plot was illustrated. Source data are provided as a
Supplementary Data file.
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reveal a strong positive correlationbetween the distributionof brain features
associated with DT and the principal gradient, which first highlights the
critical role of the DMN in DT. Moreover, this suggests that the neural
representation of DT is not distributed in a discrete and unstructured
manner across various brain regions but rather organized in a continuous
gradient that hierarchically structuresbrain regionswith different functions,
forming a unique neural organizational principle forDT.DT likely depends
on the dynamic integration of functional regions20,63, from basic sensory
input to high-level cognition. Additionally, DT requires flexible integration
andcooperation among thesedifferent networks, aligningwith research that
emphasizes the need for high cognitiveflexibility64–66, which involves rapidly
shifting from one idea to another. In summary, we propose that creative
thinking involves a broad integration from concrete sensory information to
abstract, high-level cognition. The core of creative thinking lies in the dis-
tinctive coordination and organizational framework that spans across brain
networks, distinguishing it from other high-level cognitive functions.

Next, we explained theDTbrain pattern from a biogenetic perspective.
We established links between theDTbrain pattern and enriched expression
of genes involved in the release of the neurotransmitters such as dopamine,
MOR, CB1, H3, and mGluR5, as well as the negative regulation of multi-
cellular organismal processes, and detoxification of copper ions and inor-
ganic compounds. Negative regulation of multicellular organismal
processes (https://www.yeastgenome.org/go/GO:0051241) refers to the
process of inhibiting/preventing or reducing the frequency/rate or extent of
various activities in multicellular organisms. Excessive accumulation of
copper ions with other inorganic compounds can lead to neurological
damage, affecting neurotransmitter synthesis/release and messaging
processes67–69. We, therefore, suggest that negative regulation of multi-
cellular organismal processes and the detoxification of copper ions and
other inorganic compounds may affect the overall functioning of the
organism, potentially influencing its ability to engage in DT activities or
problem-solving. Neurotransmitter release has been linked to creative
cognition, and creative drives such as motivation, emotional states, and
rewards can influence creative thinking through related neuromodulatory
systems70. It has been suggested that positive-activating moods with an

approachmotivation (e.g., happiness) promote creativity71,72. In addition to
this, many researchers have emphasized the close link between rewards and
creativity, as the promise of rewards may facilitate creative thinking and
original solutions 73,74.

The dopamine system is involved in various aspects of cognitive func-
tion related to reward, addiction, attention, and compulsion, and studies have
shown that interactions between the frontal and striatal dopamine pathways
can contribute to creative cognition by facilitating flexible processing and
sustained-driven creativity70,75. Kranz, Kasper, and Lanzenberger76 made the
argument that serotonin serves as an important mediator of the affective,
motivational, and cognitive elements of reward representations, and thus the
neurotransmitter serotonin has similar value to dopamine in reward
processing70. Similarly, opioids such as MOR are distributed in the reward
centers of thebrain andare associatedwith the regulationofpain, reward, and
addictive behaviors77–79. Moreover, other studies have mentioned that highly
potent cannabis which affects CB1 receptors may impair DT80; H3 receptors
are involved in various cognitive and motor processes81, play a role in the
central nervous system and have been explored as a potential target for
cognitive symptoms and impairments82; mGluR5 plays an important role in
memory and learning processes in the brain83. Thus, our findings are con-
sistent with previous studies and provide evidence supporting the link
betweendopamine release andDTbrainpatterns fromanovel perspective. In
addition to this, evidence was also obtained that other neurotransmitters and
related gene expression profiles are associated withDT, whichmay provide a
neurobiological explanation of the DT brain pattern.

Finally, the DT brain pattern also predicted individual-level creativity
scores well. Meanwhile, the predictive power of brain patterns was further
generalized across three large resting-state samples, in addition to the two
task-based samples. This suggests that brain pattern not only represents a
common basis for neural representations of DT but also captures individual
differences in generating creative ideas and problem-solving. Under-
standing individual differences in DT can help identify individuals who
excel in this area, and these assessments, used in the fields of psychology and
education, can also be used to develop effective interventions for students to
improve their learning experiences and outcomes.

Fig. 7 | Resting-state functional connectivity between DT brain regions predicts
AUT score. aThe connectivity map shows the feature weight for predicting DT (i.e.,
AUT score). bThe distribution of the correlation(r) between the predicted value and

the true value in 10 × 10-fold cross-validations on SLIM. One representative scatter
plot was illustrated. c Correlation between resting-state functional connectivity and
DT ability in GBB and BBP. Source data are provided as a Supplementary Data file.
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A limitation of the present study was the use of the AUT, although this
task is typically used to measure DT (thus better aligning our work with
prior DT studies). The traditional AUT suffers from poor reliability,
influenced by various factors. This study mitigated individual differences
associated with the task itself by making adaptations. With respect to
solution duration, participants were instructed to generate a response based
on the items provided, without the need to generate as many responses as
possible, thus addressing potential changes resulting from a longer solution
duration. Additionally, compared to previous AUT administrations, the
present study expanded the pool of stimulus words by selecting 80 specific
object words (e.g., “umbrella”) from an entity noun library as experimental
stimuli (K84). To ensure the suitability of each object word for idea gen-
eration, five trained raters evaluated their appropriateness85, thus mini-
mizing individual differences arising from the choice of stimulus words.

Although the present study integrated neural, cognitive, and genetic
approaches to comprehensively study verbal DT, future studies should
apply such integrated fMRI-based approaches to investigate other forms of
DT (e.g., visual), as well as convergent thinking which is also important for
creativity. Similarly, future studies should utilize such integratedmethods to
assess creativity across domains (e.g., music, art, science). Indeed, approa-
ches which integrate neuroimaging and biogenetic methods are needed for
holistic creativity neuroscience, yet such approaches remain rare in the
literature. Additionally, the current study’s sample was predominantly
female, we encourage future research to include a more balanced sample to
enhance generalizability.

In conclusion, the present study has identified a comprehensive neural
representation of DT and its organizational principle, which has been
validated and generalized across independent samples and various data
modalities. Additionally, the DT brain pattern was explained from both
cognitive decoding and neurobiological perspectives, as this pattern was
positively linked to cognitive abilities (e.g., memory and reasoning), and
neurotransmitter release (e.g., dopamine). Taken together, these findings
offer substantial evidence for the neural representation and deciphering of
DT, enhancing our comprehension of its cognitive significance and
underlying biological foundations.

Methods
Task-based fMRI samples
Participant. The task-based fMRI data employed in the current study
comes from two independent samples. A total of 57 subjects were
recruited in Sample 1 (43 females, mean age = 19.23 years, SD = 0.96,
range = 17–22 years). Two subjects were excluded from subsequent
analyses due to image abnormalities when normalized to standard space.
Thus, 55 subjects within sample 1 were include in the following analysis.
Sample 2 has a total 31 participants (20 females, mean age = 19.30 years,
SD = 2.49, range = 17–28 years). One subject was excluded from sub-
sequent analyses due to falling asleep during scanning. Thus, 30 subjects
were included in the following analyses. All subjects were college students
at Southwest University, all were healthy, met MRI safety criteria (e.g.,
they had no stents or metal implants), and had no history of neurological
or psychiatric problems. In accordance with the Declaration of Helsinki,
all subjects provided written informed consent prior to participation in
the study and were paid for their participation.

Stimuli and paradigm
Sample 1. Subjects performed an adjusted version of theAUTduring the
fMRI scan (Fig. 1a). The task contains two conditions, the control con-
dition is the general use (GU) condition, which requires subjects to
answer what is commonly used for the provided object (an entity), e.g., a
map is commonly used for navigation (map->navigation). The DT
condition is the novel use (NU) condition, which requires subjects to
generate original and unique uses for a given object, e.g., a map can be
used to make a necklace (map -> necklace). The procedure consists of
4 sessions, each session includes 20 trials, with 12 NU conditions and 8
GUconditions. Each trial starts with afixation screen for 2 s. Then the cue

for the experimental condition - “novel use” (or “general use”) appears on
the screen for 4 s, followed by the object (e.g., ring -> ?) and remains on
the screen for 12 s, (the “general use” condition has the object on the
screen for 4 s), which is called the idea generation period. In this phase,
subjectsmust think about possible responses to a given stimulus (original
usage of an everyday object or general use of a given noun). If response
comes tomind, the subject is asked to quickly press “1”with the left hand
and then write down the response on the paper as quickly as possible
(within 6 s), summarizing the response in one phrase (2–3 words). If no
response comes tomind, the subject cannot press a key and draws an “X”
on the paper when the writing prompt appears. Finally, the “rest”
appeared on the screen for 8 s and the subject was asked not to write, to
look at the screen and to remain calm. The experimental conditions are
presented in random order and total time for the task is about 40 min.
After the MRI scan, subjects were asked to recall and refine their
responses, and then rate the originality of their responses using a 5-point
scale that ranged from 1 (‘not original’) to 5 (‘highly original’). Collecting
individuals’ ratings of the originality of their answers based on personal
meaning can reflect their own creative processes and internal reward
mechanisms, revealing their self-perception of creative perfor-
mance (K86,87).

Sample 2. Sample 2 was obtained from85, in which two conditions NU
and GU, consistent with sample 1, were selected for subsequent analysis
in this study. The procedure consists of 6 sessions, total 40NU conditions
and 20 GU conditions. As with sample 1, after the MRI scan, subjects
were asked to recall and refine their responses, and then rate the ori-
ginality of their responses using a 5-point scale that ranged from 1 (‘not
original’) to 5 (‘highly original’).

MRI data acquisition and preprocessing
MRI data acquisition. Whole-brain imaging was acquired on a Siemens
3T Trio scanner (Siemens Medical Systems, Erlangen, Germany) at the
Brain Imaging Center, Southwest University. Task fMRI images were
acquired using Gradient Echo Type Echo Planar Imaging (GRE-EPI)
sequence (TR/TE = 2000 ms/30 ms, FA = 90°, resolution matrix = 64 ×
64, FOV = 220 × 220 mm2, thickness = 3 mm, slices = 32, interslice
gap = 1 mm, acquisition voxel size = 3.4 × 3.4 × 4 mm3). High-resolution
three-dimensional T1-weighted structure images were obtained using a
Magnetization Prepared Rapid Acquisition Gradient-echo (MPRAGE)
sequence (TR/TE = 1900 ms/2.52 ms, FA = 9°, FOV = 256 × 256 mm2,
slices = 176, thickness = 1.0 mm, voxel size = 1 × 1 × 1mm3).

MRI data preprocessing. For each of the 4 (6 in sample 2) BOLD (Blood
Oxygen Level-Dependent) runs found per subject (across all tasks and ses-
sions), the following preprocessingwas performed. First, a reference volume
and its skull-stripped versionwere generatedusing a custommethodologyof
fMRIPrep. Head-motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering using mcflirt
(FSL 6.0.5.1:57b01774, Jenkinson et al., 2002). BOLD runs were slice-time
corrected to 0.962 s (0.5 of slice acquisition range 0–1.93 s) using 3dTshift
from AFNI (Cox and Hyde 1997, RRID:SCR_005927). The BOLD time-
series (including slice-timing correctionwhen applied) were resampled onto
their original, native space by applying the transforms to correct for head-
motion. These resampled BOLD time-series will be referred to as pre-
processed BOLD in original space, or just preprocessed BOLD. The BOLD
reference was then co-registered to the T1w reference using mri_coreg
(FreeSurfer) followed by flirt (FSL 6.0.5.1:57b01774, Jenkinson and Smith
2001) with the boundary-based registration (Greve and Fischl 2009) cost-
function.Co-registrationwas configuredwith sixdegrees of freedom. Several
confounding time-series were calculated based on the preprocessed BOLD:
framewise displacement (FD),DVARS, and three region-wise global signals.
FDwas computed using two formulations following Power (absolute sumof
relative motions, Power et al. (2014)) and Jenkinson (relative root mean
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square displacement between affines, Jenkinson et al. (2002)). FD and
DVARS are calculated for each functional run, both using their imple-
mentations in Nipype (following the definitions by Power et al., 2014). The
three global signals are extracted within the CSF, the WM, and the whole-
brainmasks. Additionally, a set of physiological regressors were extracted to
allow for component-based noise correction (CompCor, Behzadi et al.
2007). Principal components are estimated after high-pass filtering the
preprocessed BOLD time-series (using a discrete cosine filter with 128 s cut-
off) for the two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components are then calculated from the top 2%
variable voxels within the brain mask. For aCompCor, three probabilistic
masks (CSF, WM and combined CSF+WM) are generated in anatomical
space. The implementation differs from that of Behzadi et al. in that instead
of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are
subtracted amask of pixels that likely contain a volume fraction ofGM.This
mask is obtained by thresholding the corresponding partial volume map at
0.05, and it ensures components are not extracted from voxels containing a
minimal fraction of GM. Finally, these masks are resampled into BOLD
space and binarized by thresholding at 0.99 (as in the original imple-
mentation). Components are also calculated separately within theWM and
CSFmasks. For each CompCor decomposition, the k components with the
largest singular values are retained, such that the retained components’ time
series are sufficient to explain 50 percent of variance across the nuisance
mask (CSF, WM, combined, or temporal). The remaining components are
dropped from consideration. The head-motion estimates calculated in the
correction step were also placed within the corresponding confounds file.
The confound time series derived from head motion estimates and global
signals were expanded with the inclusion of temporal derivatives and
quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a
threshold of 0.5mm FD or 1.5 standardised DVARS were annotated as
motion outliers. The BOLD time-series were resampled into standard space,
generating a preprocessed BOLD run in MNI152NLin2009cAsym space.
First, a reference volume and its skull-stripped version were generated using
a custommethodology of fMRIPrep. All resamplings can be performedwith
a single interpolation step by composing all the pertinent transformations
(i.e., head-motion transform matrices, susceptibility distortion correction
when available, and co-registrations to anatomical and output spaces).
Gridded (volumetric) resamplings were performed using antsApplyTrans-
forms (ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface)
resamplings were performed using mri_vol2surf (FreeSurfer).

First-level fMRI analysis
Weconducted two separateGLM(general linearmodel) analysis in SPM12:
subject-level analysis and single-trial analysis in two samples respectively.
Subject-level GLMwas used to obtain beta images for theMultivariate voxel
pattern analysis. The four runs of the stimulation taskwere concatenated for
each subject. The onset of the two conditions (NU and GU) was modeled
using a canonical hemodynamic response function. Single-trial analysis was
used to obtain beta images for the RVR analysis. To estimate single-trial
responses, we conducted a GLM design matrix with separate regressors for
each trialwith respectiveonset time. Sixheadmotionparameters (x, y, z, roll,
pitch and yaw) are included in the matrix as confounding variables and a
high pass filter of 128 s was applied to remove low-frequency drifts.

Multivariate voxel pattern analysis
We applied whole-brain (restricted to a gray matter mask) multivariate
machine-learning pattern analysis to obtain a brain activation pattern that
best-classified subjects in NU and GU.We used the SVM algorithm using a
linear kernel (C = 1) implemented in the Interpreting machine learning
models in neuroimaging toolbox (https://github.com/cocoanlab/interpret_
ml_neuroimaging) with individual beta maps (one condition for each sub-
ject) as feature to classify subjects inNUandGUwhileundergoing fMRI.We
performed the classification on sample 1 and sample 2, respectively. Neu-
roimaging studies are usually based on small number of subjects. Therefore,

we used cross-validation (CV) strategies to overcome the loss of general-
ization due to the small training and testing sample size in the neuroimaging
applications. To evaluate the performance, 10 × 10-fold CV procedure on
the sample1 and sample2 was conducted respectively. All subjects were
randomly assigned to 10 subsamples of 5 or 6 subjects (3 subjects in sample
2). The optimal hyperplanewas computed based on themultivariate pattern
about50participants (27 subjects in sample 2) (training set) andevaluatedby
the excluded 5 or 6 participants (3 subjects in sample 2) (test set). This
procedurewas repeated ten times, once for each subsample of the test set. To
avoid potential bias in the training-test split, the CVprocedure was repeated
ten times throughout the study, with each repetition producing a different
split, resulting in the prediction performance being averaged to produce a
convergent estimate. We evaluated the performance of the SVM models
from the following indices: accuracy, sensitivity, specificity, ROC, AUC and
the definitions is as follows. Accuracy was defined as the ratio of the correct
predictions to the total number of classifications: accuracy = (TP+TN)/
(TP+ FP+TN+ FN). TheROCwas also calculated by the one-versus-rest
approach, with the parameter sensitivity and specificity denoted by: sensi-
tivity = TP/(TP+ FN) and specificity = TN/(TN+ FP). Here, TP is the true
positive, FP is the false positive, TN is the true negative and FN is the false
negative for each label.We also performed a permutation test to estimate the
empirical distribution of the classifier accuracy under the null hypothesis. To
this end, we tested the SVM classifier with the random labeling and calcu-
lated the accuracy of SVM classifier in sample 1 and sample 2 respectively.
The permutation test was repeated 5000 times. Classifier performance
greater than 95% of the random permutations indicates above-chance
accuracy (given an alpha of p < 0.05). To test the generalization performance
of the two classification models, we performed validation using sample 2
(sample 1) as the validation set.We calculated the dot-product of vectorized
activation images in sample 2 (sample 1) with the threshold weights of the
model in sample 1 (sample 2). Then the average accuracy, sensitivity, spe-
cificity, positive predictively, and the AUC across this repetition were cal-
culated.Bootstrap testswere conducted toprovideP-values for voxelweights
to threshold the classifier weights for display and interpretation. We con-
structed 10,000 bootstrap sample sets (with replacement) and ran SVMs on
each bootstrap sample. Each bootstrap sample serves as training data for a
newmodel. Thehyper-parameters of themodelwere the sameas theoriginal
model. Then, two-tailed, 5000 permutation tests were conducted to calcu-
lation P-values for each voxel based on the proportion of weights above or
belowzero.ThenweperformedFDRmultiple comparison correction for the
results of permutation test.

DT brain pattern obtained by classifier weights of two samples
Since the model weights obtained on the two samples had a high positive
correlation, we combined the weights map of the two samples to obtain the
final brain activation pattern that could be classified as specific to novel idea
generation. First, we overlap the weights of the classification model trained
by two samples separately to gain the common region. Then, we averaged
theweight values of the voxels in the common region to obtain theDTbrain
pattern.

Evaluate the neurobiological validity of the model
To evaluate the neurobiological plausibility and validity of SVMmodel, we
conducted biology-level assessments. The first assessment is evaluating
overlaps of theMVPA-basedDTbrain patternwith large-scale resting-state
functional networks. We used the mask that had unique values for seven
resting-state functional networks88. Then, we calculated the posterior
probability of observing the DT brain pattern given each network. Specifi-
cally, we calculated the overlap-based similarity separately for positive and
negative predictive weights. The second assessment is using a large-scale
meta-analytic decoding framework provided by Neurosynth, we can iden-
tify the psychological terms associated with DT brain pattern of predictive
weights values. We used meta-analytic maps previously generated for var-
ious psychological terms and assessed their similarity to the DT brain pat-
tern, implemented in the Neurosynth Python package (https://github.com/
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neurosynth/neurosynth/blob/master/neurosynth/analysis/decode.py).
Then, it returns a list of the terms with correlation coefficients between the
DT brain pattern and the meta-analytic maps. Then, to explore the neural
organizational principle of theDTbrain pattern,we calculated thePearson’s
correlation coefficient between the weights in DT brain pattern (i.e., the β-
map) between previously-identified gradients. The group-level (averaged
across participants)first ten gradientsmapswas accessed via the neuromaps
(https://netneurolab.github.io/neuromaps/)89. Firstly, we assigned the DT
brain pattern to the gradient map. Then, the Pearson’s correlation between
the β values and the gradient values across the overlapping regions was
calculated.The statistical significance of associationwas assessedusing “spin
tests” (as detailed below in the “null model” section).

Spatial correlation between gene expression and DT brain
pattern
Microarray expression data were obtained from six post-mortem brains
provided by the Allen Human Brain Atlas (AHBA; http://human.brain-
map.org/90). Preprocessing was performed using the abagen toolbox
(https://github.com/netneurolab/abagen91). Each human brain tissue sam-
ple was preprocessed according to a recommended pipeline with default
settings. We assigned all tissue samples from Allen Human Brain Atlas to
DT brain pattern regions, resulting in expression levelmaps for 15,633 gene
covering 574 regions within DT brain pattern. Samples were assigned to
brain regions in the provided DT brain pattern region if their MNI coor-
dinates were within 2mm of a given parcel (the DT brain pattern native
space is 2 mm). Then, we normalized gene expression levels across probes
within the sample and across samples within a subject. This preprocessing
produced a group-level (averaged across donors) gene expression profile of
the 574 regions within DT brain pattern. To explore whether DT brain
pattern is associated with gene transcriptional profiles, we calculated the
Pearson’s correlation coefficient between the weights in DT brain pattern
(i.e., the β-map) and the preprocessed expression profile of each gene in the
microarray. Firstly, the DT brain pattern β-map was aligned to the 574
regions as described above. Then, the Pearson’s correlation between the β-
map values and the gene expression values across the 574 overlapping
regions was calculated. The statistical significance of association was
assessedusing “spin tests” (as detailed in thenext section).We thenarranged
all genes in descending order according to the significance level of the
correlation coefficients, starting with the genes with the most significant
positive correlation to those with the most significant negative correlation.
Subsequently, we uploaded the sequenced gene sets to the Gene Ontology
enrichment analysis and visualization tool (GOrilla, http://cbl-gorilla.cs.
technion.ac.il/)92: (i) a threshold of P < 10–5 in the advanced parameter
settings; and (ii) q-value < 0.05 in Benjamini–Hochberg FDR corrections.

Spatial correlation between neurotransmitter expression andDT
brain pattern
We used neuromaps (https://netneurolab.github.io/neuromaps/89); to access
volumetric PET images previously collected for 19 different neurotransmitter
receptors and transporters across 9 different neurotransmitter systems
(Bedard et al. 93–95, Ding et al. 96–109). To protect patient privacy, individual
subject maps were averaged across studies prior to sharing. Each study,
associated receptor/transporter, tracer, number of healthy subjects, age and
references, and complete methodological details can be found in ref.110. The
Pearson’s correlation between theDTbrain pattern β-map and the receptors/
transporters map was calculated. Then, the statistical significance of the
association is assessed using a “spin test” (as detailed in the next section).

Null model
Spatial autocorrelation-preserving permutation tests were used to assess the
statistical significance of associations across brain regions, called “spin tests”.
Specifically, we choose for each parcel the vertex closest to its center of mass
on the spherical projection of the fsaverage surface. We then rotate the
coordinates of these centers of mass and reassign the values of the closest
rotated parcels to each parcel. This procedure is repeated 10,000 times.

These processes were implemented in neuromaps (https://netneurolab.
github.io/neuromaps/89).

Relevance vector regression analysis within DT brain pattern
We applied RVR to examine the effectiveness of the DT brain pattern as a
brain activation pattern that is specific to original idea generation, imple-
mented in the Pattern_Regression_Matlab (https://github.com/ZaixuCui/
Pattern_Regression_Matlab). First, we use the positive activation region
within the DT brain pattern as ROI. Then, the single-trial beta maps (only
NU condition for each subject) as feature to predict originality ratings for
DT responses. RVR is a sparse kernel multivariate regression method that
uses Bayesian inference to obtain analytic solutions that generalize well and
provide inference at low computational cost. RVR has no specific algorithm
parameters and does not require additional computational resources to
estimate the best specific algorithmparameters. Sample 1 had a total of 2047
NU trials and sample 2 had a total of 846 NU trials. To evaluate the per-
formance, 10 × 10-fold CV procedure on the sapmle1 and sample2 was
conducted respectively. All trials were randomly assigned to 10 subsamples,
ninefolds were used as the training set, and the remaining fold was used as
the testing set. We included gender, age, and head movement as control
variables in the analysis. This procedure was repeated ten times, once for
each subsample of the test set. Pearson correlation coefficients and mean
absolute errors between predicted and actual scores were calculated to
provide a final estimate of prediction performance. Prediction performance
greater than 95% of the random permutations indicates above-chance
accuracy (given an alpha of p < 0.05).

Large-scale resting-state fMRI samples
Participants. The resting-state fMRIdata employed in current study comes
from three independent datasets. The main dataset comes from the SLIM
project. The validation datasets included data from the GBB project and
Behavioral BrainResearchProject of Chinese Personality (BBP). All projects
were approved by the Southwest University Brain Imaging Center Institu-
tional Review Board. In accordance with the Declaration of Helsinki, all
subjects provided written informed consent prior to participation in the
study. The recruiting program and exclusion procedures of participants in
SLIM andGBB have been described in detail elsewhere111,112. Aftermatching
with behavioral data, the present study included 410 undergraduates from
SLIM(233 females,mean age = 20.01 years, SD = 1.24, range = 17–27 years),
304 undergraduates from GBB (218 females, mean age = 19.70 years, SD =
1.73, range = 17–26years).A total of 804undergraduates fromtheBBPwere
recruited, after excluding 31 participants with excessive headmotion (mean
FD (Jenkinson) greater than ±0.2mm) and matching with behavioral data,
the present study included 600 undergraduates from BBP (412 females,
mean age = 20.7 years, SD = 0.99, range = 17–27 years).

MRI data acquisition and preprocessing
MRI data acquisition. The resting-state fMRI data sets were collected
using the same scanner at the Brain Imaging Center of Southwest Uni-
versity. The SLIM and GBB datasets used the same scanning sequence as
task-based fMRI data. The BBP imageswere acquired usingGradient Echo
TypeEchoPlanar Imaging (GRE-EPI) sequence (TR/TE = 2000ms/30ms,
FA = 90°, resolution matrix = 112 × 112, FOV = 224 × 224mm2, thick-
ness = 2mm, slices = 62, interslice gap = 0.3 mm, acquisition voxel
size = 2 × 2 × 2mm3). High-resolution three-dimensional T1-weighted
structure images were obtained using a MPRAGE sequence (TR/TE =
2530ms/2.98 ms, FA = 7°, FOV = 224 × 256mm2, resolution matrix =
448 × 512, slices = 192, thickness = 1.0 mm, inversion time = 1100ms,
voxel size = 0.5 × 0.5 × 1mm3).

MRI data preprocessing. Resting-state fMRI data from the different
data sets were preprocessed independently. The preprocessing per-
formed for SLIM and GBB datasets using the fMRIPrep default pipeline
that is same as task-based data preprocessing. BBPdatasets preprocessing
using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and the Data Processing
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&Analysis of Brain Imaging toolbox (DPABI)113. We firstly removed the
first 10 EPI scans to suppress the equilibration effect, and performed slice
timing correction and realignment of the remaining scans. The func-
tional images were then normalized to a standard template (Montreal
Neurological Institute) and resampled to 3 × 3 × 3mm3. A Friston 24-
parameter model was used to regress nuisance signals including white
matter, cerebrospinal fluid, head motion parameters, and their deriva-
tives to control for the potential influence of physiological artifacts. We
further implemented data scrubbing to better address head motion
concerns. Bad time points were regressed, defined as volumes with frame
displacement (FD) power > 0.2 mm, as well as the two succeeding
volumes and the one preceding volume to reduce the spillover effect of
head motion. In addition, since the BOLD signal exhibits low-frequency
drift, linear trends were also used as regressors. Next, we performed
spatial smoothing with a 4 mm full-width half-maximum Gaussian
kernel and band-pass temporal filtering (0.01–0.1 Hz). Finally, we did not
perform global signal regression (GSR) considering several issues: the use
of GSR has been controversial because the global signal also includes
BOLD fluctuations associated with neurons, especially when these fluc-
tuations are strong and widespread throughout the brain. If the global
signal is removed, these neuron-related fluctuations will be removed.
GSR introduces a negative bias in the estimated BOLD response, redu-
cing the positive BOLD response and artificially creating a negative
response or “deactivation”. Again, the overall effect of GSR in measuring
correlation is to force the average correlation across the brain to be zero.
GSR may artificially introduce anti-correlations between brain regions
that would otherwise not exhibit significant correlations.

Behavioral AUT
Tobe as consistent as possible with the task-based fMRI, we used behavioral
AUT to assess participants’ creativity. The AUT114 is a commonly used
measure of DT ability used to assess participants’ creativity. In this study,
two items commonly used or encountered by Chinese people were pro-
vided, namely a can and a brick. Participants were asked to imagine and
writedownanovel use for each item.The instructionswere as follows: “Cans
(or bricks) have many unusual USES. In the blanks below, write down the
interesting and unusual USES you can imagine. You can think of other
people’s unexpected uses; the more your ideas, the better; the more novel,
the better.”AUT scores measure three components: fluency, flexibility, and
originality. Fluency refers to the number of meaningful and relevant
responses, related to the ability to generate and consider other possibilities.
Flexibility refers to thenumberof responses indifferent categories, reflecting
an individual’s ability to switch between conceptual domains. Originality
refers to the originality of the answer, thereby providing an index of the
response’s creative quality, using a 1–5 scale (1 = not creative at all; 5 = very
creative)115,116. The assessmentprocesswas conducted separately bydifferent
raters in SLIM, GBB and BBP. In this study, we transformed the scores in
every dimension into Z scores within each sample, and the total score for
creativity (sumof fluency,flexibility, and originality scores)117,118 was used as
the final creativity score, for each dimension was highly correlated with the
total score for creativity, as well as with each other.

Functional network construction on SLIM
The DT brain pattern can be divided into six clusters by the peak values,
namely 1. left AG, 2. bilateral OFC, 3. left MTG/ITG, 4. left Precuneus, 5.
bilateral PFC/ACC/Thalamus, 6. right cerebellum. These six clusters were
treated as nodes in the analysis. A representative time series of each node for
everyone was obtained by averaging the time series of all voxels in it. The
Pearson correlation of the time courses between eachnodepairwas calculated
and then a Fisher Z-transformwas performed to improve normality, resulting
in a 6 × 6 symmetric FC matrix with 15 unique edges per participant.

Relevance vector regression analysis on SLIM
We applied RVR to examine the effectiveness of the MVPA-based DT
brain pattern as a brain activation pattern that is specific to original idea

generation, implemented in the Pattern_Regression_Matlab (https://
github.com/ZaixuCui/Pattern_Regression_Matlab) with functional con-
nectivity within biomarker (15 unique edges) as feature to predict indivi-
dual creativity ratings for each subject on SLIM. To evaluate the
performance, 10 × 10-fold CVprocedure was conducted. All subjects were
randomly assigned to 10 subsamples, ninefolds were used as the training
set, and the remaining foldwas used as the testing set.We included gender,
age, and head movement as control variables in the analysis. This proce-
dure was repeated ten times, once for each subsample of the test set.
Pearson correlation coefficients and mean absolute errors between pre-
dicted and actual scores were calculated to provide a final estimate of
prediction performance. Prediction performance greater than 95% of the
random permutations indicates above-chance accuracy (given an alpha of
p < 0.05). Bootstrap tests were conducted to provide P-values for edge
weights to threshold the predictive weights for display and interpretation.
We constructed 10,000 bootstrap sample sets (with replacement). Two-
tailed, 1000 permutation test were conducted to calculation P-values for
each voxel based on the proportion of weights above or below zero. Then
we performed FDR multiple comparison correction for the results of
permutation test.

Correlation analysis on GBB and BBP
We applied Pearson correlation to examine the effectiveness of the func-
tional connectivity within the DT brain pattern as feature that significantly
predicts individual creative ability. Specifically, we conducted the Pearson
correlationbetween functional connectivity (between leftAGand leftMTG/
ITG, left AG and left Precuneus, left MTG/ITG and right cerebellum) and
individual DT scores on GBB and BBP.

Statistics and reproducibility
All statistical tests used, sample sizes, and the number of replicates are
described in the corresponding methods.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data and material used in this study are available from the corre-
sponding author upon reasonable request. The source data behind the
figures in the paper can be found in Supplementary Data 1.
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