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Abstract
Methyl CpG binding protein 2 (MeCP2) is a chromosomal protein of the brain, very abundant

especially in neurons, where it plays an important role in the regulation of gene expression.

Hence it has the potential to be affected by the mammalian circadian cycle. We performed

expression analyses of mice brain frontal cortices obtained at different time points and we

found that the levels of MeCP2 are altered circadianly, affecting overall organization of brain

chromatin and resulting in a circadian-dependent regulation of well-stablished MeCP2 target

genes. Furthermore, this data suggests that alterations of MeCP2 can be responsible for the

sleeping disorders arising from pathological stages, such as in autism and Rett syndrome.

Introduction
Many physiological aspects of a wide range of organisms, from cyanobacteria to mammals, dis-
play circadian oscillations as a mechanism to adapt to the 24 hours light-dark cycles [1–3].

In mammals, the central biological clock is found in the suprachiasmatic nucleus (SCN) of the
hypothalamus, light being the main environmental stimulus capable of resetting the clock. The ret-
ina receives the light signals and sends this information through the retinohypothalamic tract to
the SCN, which in turn synchronizes peripheral clocks present in most organs [2], reviewed in [4].

At the molecular level, the circadian cycle is regulated by positive and negative feedback
mechanisms [5, 6]. In mammals, the BMAL1 (Brain and muscle Arnt-like protein 1) and
CLOCK (Circadian locomotor output cycles kaput) proteins heterodimerize and act as tran-
scriptional activators of the Cry (Cryptochrome) and Per (Period) genes. When the oligomeric
CRY and PER proteins associate, they enter the nucleus and inhibit BMAL1 and CLOCK tran-
scriptional activity, thus repressing their own transcription [2, 7].
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An extra layer of epigenetic regulation adds to the traditional view of the molecular clock as
a result of transcriptional-translational feedback loops. Changes in chromatin structure are
necessary to allow or prevent expression of genes. Therefore, it is not surprising that the epige-
netic machinery plays an important role in circadian phase-shifting. Numerous studies have
demonstrated the recruitment of epigenetic proteins and rhythmic histone modifications at cir-
cadian gene promoters driving cyclic expression [8–11]. Indeed, CLOCK itself has histone ace-
tyl transferase activity [12], and PER proteins interact with several histone de-acetyl
transferases and methyltransferases [13]. Furthermore recent findings reported genome-wide
24-hour rhythms of DNA methylation, specially, near transcription start sites [14].

MeCP2 is a chromatin bound protein [15] that is very abundant in the brain. Particularly, it
is expressed at similar levels of those of H1 in neurons [16, 17], pointing towards a major func-
tion in chromatin regulation in these cells. MeCP2 was initially described as a global transcrip-
tional repressor [18], although a more complex behaviour has been recently identified,
showing that MeCP2 can act either as an activator or as a repressor, depending on genes and
the co-factors with which it is associated [19]. Mutations in MeCP2 cause Rett syndrome [20],
which is frequently associated with circadian disturbances and sleep-wake disorders [21]. Pre-
vious data supports these observations, and suggest that MeCP2 could be involved in the circa-
dian rhythm regulation [22].

Herein, we deepen in this possibility by demonstrating that not only is MeCP2 circadianly
regulated, but also, that it has important consequences on the chromatin structure and tran-
scription of MeCP2 dependent genes.

Materials and Methods

Animals
All animals used in this work were derived from C57BL/6 mice maintained under standard an-
imal house conditions (12 hour dark-light cycles on ad libitum food and water intake). Three
months mice were euthanized every 6 hours from first light stimulus on (Lights “ON” are des-
ignated as Zeitgeber time [ZT] 0) by exposure to CO2 and brains were rapidly removed, dis-
sected, and the different brain areas kept at -80°C until further use. The experimental
procedures were in agreement with all legislation defined by the European Union and ap-
proved by the local ethics committee (UB-IDIBELL).

Chromatin fractionation analysis
Nuclei from frontal cortices were isolated and diluted in micrococcal nuclease digestion buffer
(50 mM NaCl, 10 mM PIPES pH 6.8, 5 mMMgCl2 and 1 mMMgCl2). Nuclei were pre-
warmed at 37°C and MNase (Roche) digested (2 U/mg tissue). Reactions were stopped on ice
with 5 mM EDTA). Before fractionation, 5% of total volume was separated to use it as input
DNA. Afterwards nuclei were centrifuged at 8000 g for 10 minutes, and supernatant (euchro-
matin-enriched phase) was obtained. Pellets were re-suspended in 0.25 mM EDTA, vortexed,
incubated 1 hour at 4°C and centrifuged to obtain a supernatant which is substantially enriched
in facultative heterochromatin domains [23]. The remaining phase corresponds to constitutive
heterochromatin and the regions corresponding to transcriptionally active promoters that are
loaded with the largely insoluble basal transcriptional machinery complexes. DNA from each
of the aforementioned phases was purified by SDS-protein salt precipitation, and DNA concen-
tration normalized using the Qubit 2.0 Fluorimeter and dsDNA Broad Range Assay reagents
(Life Technologies, Carlsbad, CA, USA). Chromatin accessibility was analyzed by quantitative
PCR of genes of interest and expressed as a ratio between euchromatin and heterochromatin
(facultative + constitutive).
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Western blot analysis
Frozen frontal cortices were homogenized on Laemmli buffer (2% SDS, 10% glycerol, 0.002%
bromophenol blue and 62.5 mM Tris-HCl pH 6.8). Protein content was measured by the
Lowry method (Bio-Rad Hercules, CA, USA). Immediately after, 3% B-mercaptoethanol was
added; proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE), and transferred onto nitrocellulose membranes (GE Healthcare, Pittsburgh, PA,
USA). Nonspecific bindings were blocked by incubation in 5% skimmed milk in phosphate
buffered-saline pH 7.2 with 0.1% Tween 20. Membranes were incubated with specific antibod-
ies, either overnight at 4°C or for 1 hour at room temperature. Antibodies and dilutions used
were as follows: MeCP2 (Sigma-Aldrich, St Louis, MO, USA) 1:5000, Clock (Cell Signaling,
Beverly, MA, USA) 1:1000 and β-actin (Sigma-Aldrich, St Louis, MO, USA) 1:20000, horserad-
ish peroxidase-conjugated (HRP) secondary antibodies (GE Healthcare) 1:10000. Densitomet-
ric analyses were performed with Fiji software [24].

RNA extraction and reverse-transcription
Total RNA purification was performed by homogenizing frozen tissue in Ribozol (Amresco,
Solon, OH, USA) following manufacturer instructions. RNA was reverse-transcribed using the
Thermoscript RT-PCR system (Invitrogen, Carlsbad, CA, USA).

Real-time polymerase chain reaction
Each PCR was carried out in triplicate using SYBR Green PCRMaster Mix (Applied Biosys-
tems-Life Technologies) and 5 ng cDNA, or 2 ng in case of genomic DNA. PCR conditions
were 10 minutes at 95°C, then 40 cycles of 15 seconds at 95°C and 1 minute at 60°C. Fluores-
cent signals were acquired by the ABI Prism 7900HT Sequence Detection System (Applied Bio-
systems), and positive standard deviations were normalized using three housekeeping genes
(PPIA, RPL38 and TBP). PCR efficiencies were calculated using standard dilutions and LinReg
software [25]. The primers used were as follows; Clock (fwd: GAGGTCGTCCTTCAGCAGTC, rv:
CGCTGCTCTAGCTGGTCTTT),Mecp2 (fwd: GCTTCTGTAGACCAGCTCCAA, rv:
ATAATGGAGCGCCGCTGTTT), Bdnf (fwd: CTCCGCCATGCAATTTCCAC, rv:
GCCTTCATGCAACCGAAGTA), Sst (fwd: AACAGGAACTGGCCAAGTACT, rv:
GGGCTCCAGGGCATCATTCTC), Dlk1 (fwd: TCGGCAGCCGCACTTAGCAG, rv:
GGTTGCGGACCACGAAGGGG), Ppia (fwd: CAAATGCTGGACCAAACACAAACG, rv:
GTTCATGCCTTCTTTCACCTTCCC), Rpl38 (fwd: AGGATGCCAAGTCTGTCAAGA, rv:
TCCTTGTTGTGATAACCAGGG), Tbp (fwd: CCCCACAACTCTTCCATTCT, rv:
GCAGGAGTGATAGGGGTCAT), genomic_Bdnf (fwd: TGATCATCACTCACGACCACG, rv:
CAGCCTCTCTGAGCCAGTTACG), genomic_Sst (fwd: ATTTTGCGAGGCTAATGGTG, rv:
TATGGAGCTCTCCACGGTCT), genomic_Dlk1 (fwd: GCTTGGTTCCTGAGACTTGC, rv:
CGCACTCTTTGGCTAGACG).

Results

MeCP2 displays circadian oscillations
As we have mentioned, MeCP2 is an important player in neuronal chromatin structure [15–
17]. It has recently been suggested that MeCP2 might be influenced by circadian rhythms [22]
but, in spite of the importance of this aspect, the circadian regulation of MeCP2 has been poor-
ly investigated. To study this further, we decided to use C57BL6 wild type mice and to focus on
a specific brain region, the frontal cortex, because it is especially relevant for MeCP2 function
[26–28]. MeCP2 ablation in forebrain neurons is sufficient to induce several Rett-like
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behavioral impairments [26, 28], and MeCP2 levels in frontal cortex are particularly correlated
with the overall phenotypic severity of mice models of Rett syndrome [28]. Of note, frontal cor-
tex MeCP2 levels also correlate with the abnormal 24-hour electroencephalogram (EEGs) ac-
tivity observed in Rett syndrome [28] supporting the role of MeCP2 in sleep-wake regulation.
Four zeitgeber times (ZT0, ZT6, ZT12 and ZT18) and 10 animals per time-point were consid-
ered. As a result, 40 samples were analyzed. The results thus obtained unambiguously showed
circadian oscillations of the MeCP2 RNA and protein levels (P-val<0.1 and P-val<0.01 respec-
tively; Fig 1A) that resemble those observed for the well-known circadian gene CLOCK (Fig
1B). The highest and lowest levels of MeCP2 were observed at ZT 6 and 18 (Fig 1A and 1C),
corresponding to the sleep and wake phases of the circadian cycle respectively. By contrast, ZT
0 and 12 showed intermediate levels, suggesting that they correspond to transition stages be-
tween the ZT 6 and 18 phases. These data are in sharp contrast with previous observations sug-
gesting that MeCP2 protein levels are constant during 9 hours in wild-type cortical neurons
[29]. This discrepancy prompted us to further investigate the MeCP2 half-life by blocking de
novo protein synthesis using cycloheximide (CHX) in BJ fibroblasts overexpressing MeCP2
protein. In line with the circadian regulation of MeCP2, a fast decrease of MeCP2 levels was ob-
served within the first 6 hours, with a half-life of life of approximately 5.2 hours (S1 Fig), which
is in strong agreement with the observed 12 h-period MeCP2 oscillations.

MeCP2 oscillations result in global chromatin alterations
Once the circadian regulation of MeCP2 was established, we wondered how chromatin struc-
ture might be affected by MeCP2 oscillations. To address this issue, we investigated the MNase

Fig 1. Circadian oscillations of MeCP2 and CLOCK proteins in mouse frontal cortex. RT-qPCR results and densitometric analysis of WB experiments,
showing differences in (A)MeCP2 and (B) CLOCK expression. Mice were under constant 12 hour light-dark cycles (white and grey background represent
lights on and off, respectively) and were processed at the indicated ZTs (Zeitgeber times in hours) (n = 10/ time point, means ± SEM are represented). Both
MeCP2 and CLOCK levels are significantly different between ZTs 6 and 18. (C), (D) Representative MeCP2 and CLOCKWBs (white and black bars
represent, respectively, lights on and off). *P<0.05, **P<0.005, ***p<0.0005 in two-tailed Student’s t-tests.

doi:10.1371/journal.pone.0123693.g001
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accessibility to promoter regions of three known MeCP2 target genes, brain derived neuro-
trophic factor (Bdnf), delta-like 1 homolog (Dlk1), and somatostatin (Sst) [19, 30]. Similarly,
four ZT times and 3–5 samples per time were digested with micrococcal nuclease (MNase),
and the chromatin fragments thus obtained were analyzed by quantitative PCR.

In agreement with the circadian regulation of MeCP2, the MNase assay showed that pro-
moters of MeCP2 target genes display differences in accessibility following a circadian pattern
(P-val<0.05; Fig 2A). We found that ZT6 and ZT18 displayed the lowest and highest MNase
accessibility levels, showing intermediate values ZT0 and ZT12 (Fig 2A) indicating a higher
and lower promoter occupancy at ZT6 and ZT18, and intermediate levels at ZT0 and ZT12.

Interestingly, this pattern was inversely correlated with MeCP2 protein levels (P-val<0.001;
Fig 2B), suggesting that higher levels of MeCP2 are associated with a less accessible DNA
chromatin organization.

Changes in circadian cycle-dependent chromatin landscape affect the
expression of MeCP2-regulated genes
The results described in the previous section prompted us to investigate whether gene expres-
sion might also be affected. To this end, 3–5 samples for each of the four ZT were analyzed by
quantitative PCR.

The results showed that Bdnf as well as Dlk1 and Sst displayed in all instances circadian pat-
terns of expression (Fig 3A) in a similar way as the MeCP2 variation (Fig 1) and MNase

Fig 2. Changes in chromatin accessibility at the Bdnf,Dlk and Sst promoters correlate with MeCP2 levels. (A)MNase digestions, chromatin
fractionation, and following RT-qPCRs revealed in all three cases a progression from a less accessible status at ZT 6 to a transcriptionally permissive status
at ZT 18 (n = 3–5 mice/time point; graphs showmean ± SEM). (B) Correlation of promoter accessibility with MeCP2 levels. *P<0.05, **p<0.005 in two-tailed
Student’s t-tests. Correlation p-values correspond to the linear regression coefficient.

doi:10.1371/journal.pone.0123693.g002
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accessibility levels (Fig 2). The highest differences were observed between ZT 6 and ZT 18,
showing intermediate levels at ZT 0 and ZT 12 (Fig 3A). Curiously, RNA expression levels
were positively and negatively correlated with MNase and MeCP2 protein levels respectively in
Bdnf and Sst genes (P-val<0.001; Fig 3B and 3C), pointing towards a repressive role of MeCP2
in their regulation. On the contrary, the inverse relation was observed in the Dlk1 gene suggest-
ing, in this case, a positive role of MeCP2 in the expression of this gene in the frontal cortex (P-
val<0.05; Fig 3B and 3C). Supporting the involvement of MeCP2 in the circadian regulation of
these genes, a dampened pattern of oscillations was observed in MeCP2 KO mice (S2 Fig).

Discussion
Several lines of evidence point out the importance of epigenetic players in circadian regulation
[8–13], and MeCP2 is not an exception. In line with previous observations [22], our data

Fig 3. MeCP2-targets expression patterns also exhibit circadian changes. (A) RT qPCR analysis demonstrates gene expression changes along light-
dark cycles (n = 3–5 mice/time point; graphs showmean ± SEM). (B) Correlations between MeCP2-targets expression with MeCP2 protein levels as well as
(C) with the accessibility to the corresponding promoters. *P<0.05, **p<0.005 in two-tailed Student’s t-tests. Correlation p-values correspond to the linear
regression coefficient.

doi:10.1371/journal.pone.0123693.g003
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indicates that brain chromatin structure is subject to circadian cycle regulation in a process in
which MeCP2 is involved. To our knowledge, this is the first report providing direct evidence
of MeCP2 circadian regulation and its functional consequences. Furthermore, our findings
suggest a direct correlation between the circadian regulation of MeCP2 protein levels and the
accessibility and transcription of MeCP2 target genes. In the brain, this chromosomal protein
is highly abundant: in neurons it is present in about one molecule for every two nucleosomes
[16], and in the overall unfractionated brain it is present in one over three nucleosomes [17].
Such abundance implies a fairly ubiquitous distribution of MeCP2 along the brain chromatin
[16, 31]. Although the exact details of such a genome-wide distribution are not yet clearly un-
derstood, any disturbances in its global content may, unsurprisingly, affect the expression of
genes whose expression is directly regulated by this protein.

It is important to mention that the expression patterns of some of the MeCP2-regulated
genes analyzed here do not completely correlate with their previously described repressive-acti-
vating function of MeCP2. In this regard, while our data is in line with the extensively docu-
mented repressive role of MeCP2 in Bdnf transcription [32–34] reviewed in [35], it disagrees
with the limited prior information available on the expression of the Dlk1 and Sst genes [19,
30]. Dlk1 and Sst genes were found up and down regulated in MeCP2-KO mice [19, 30], point-
ing toward a repressive and activating role of MeCP2 respectively. In contrast, our data suggest
that MeCP2 is positively and negatively correlated with the expression of Dlk1 and Sst. Notice-
ably, our data refers to the circadian regulation and MeCP2 occupancy on gene promoter re-
gions, which can be subjected to different mechanisms of regulation that the overall MeCP2
genomic occupancy. In fact, MeCP2 recognizes DNAmethylation which exerts opposite effects
in gene expression in promoter regions and gene bodies [36]. Also, it is possible that these dis-
crepancies may be a consequence of different experimental approaches. In this regard, several
matters need to be taken into consideration: First of all, it should be taken into account that the
brain is a very heterogeneous system, in which every discrete region exhibits a different organi-
zation, cell content, and function [37, 38]. Therefore, the MeCP2 behaviour described for a
given region should not necessarily be similar in other regions. Because of this, different analy-
ses from different brain regions might produce contradictory results. Indeed, previous data
have provided evidence for the existence of distinct MeCP2-target genes in the cerebellum and
hypothalamus [39]. Second, a very important part of studies on MeCP2 function are based on
MeCP2-KO and MeCP2-Tg mice models, where the protein is either lacking or its levels of ex-
pression are increased, respectively. While informative, data obtained from these systems
should not necessarily be complementary or similar to those obtained with a more physiologi-
cally relevant system, such as the one used here. Third, it is noteworthy to point out the high
levels of discrepancy between the different reports on the MeCP2-related gene expression
changes, which do not always share the same directionality [19, 32, 39–41]. Finally—and signif-
icantly—the circadian dependence of some MeCP2-regulated genes, such as those analysed by
us, indicate that a significant part of the expression discrepancies might be a consequence of
the samples being analyzed during different windows of time. Therefore, any future studies
aimed at unravelling the MeCP2 function should not only carefully consider specific cell type
and brain region, but also consider the specific time frame at which the samples were collected.
This should help provide a more comprehensive view, and also enhance the reproducibility of
the results from different laboratories and studies.

Altogether, the data provided in Figs 1, 2, 3 suggest that brain chromatin is subject to circa-
dian cycle regulation in a process involving MeCP2. According to our data, we propose a
model (Fig 4) in which, through the circadian regulation of MeCP2, DNA accessibility and
gene expression are circadian cycle regulated. In this model, the increase in the MeCP2 levels
observed during the sleeping phase (Fig 4A) induces an increase in the overall genomic MeCP2
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Fig 4. Cartoon representation of the transitions observed during the mouse circadian cycle. (A) The circadian variation of CLOCK and MeCP2 are
accompanied by changes in the overall accessibility of brain chromatin to Mnase digestion. (B) Schematic representation of the MeCP2 changes observed
during the circadian cycle. The overall increase in the MeCP2 level results in changes in its binding to the chromatin substrate, resulting in global changes in
micrococcal nuclease accessibility (green scissors). (C) Additional MeCP2 binding to 5-hydroxymethylcytosines or 5-methylcytosines of certain chromatin
domains and its possible association with different protein partners, results in the enhancement of its dual transcriptional activity, leading to either activation
or repression of gene expression. In this representation, nucleosomes are in white, DNA is indicated as a black line, CpG dinucleotides are represented as
lollipop structures black colored when methylated, grey when hydroximethylated and white when unmodified; MeCP2 partners are depicted as ovals or
circles with question marks.

doi:10.1371/journal.pone.0123693.g004
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occupancy and the corresponding decrease in MNase accessibility (Fig 4B). These global
MeCP2 and chromatin changes cause circadian cycle-dependent alterations in MeCP2-regu-
lated genes, showing different states at sleep and wake phases, surrounded by two intermediate
states at ZT 0 and ZT 12 (i.e. a decrease in the expression of Bdnf and Sst genes and an increase
in the expression of Dlk1 which are correlated with the increase in MeCP2 during the sleeping
phase of the circadian transition). It is interesting to note that, conversely, mis-timed sleep has
been shown to disrupt the circadian regulation of the human transcriptome [42].

The transcriptional changes associated with the circadian-cycle dependent MeCP2 oscilla-
tions in the genes—described here—are very relevant to normal brain physiology. Bdnf is in-
volved in cognitive functions [43] which are modulated by circadian rhythms [44].
Somastotatin signaling pathways are very important for the adaptive stress response [45] and
have been shown to play an important role in the circadian modulation of anxiety [46]. Dlk1 is
an important player in the determination of fast motor neurons [47]. All in all, the MeCP2 os-
cillations described here may play an important role in the sleeping disturbances that, in autis-
tic diseases including Rett syndrome, involve alterations of the MeCP2 function [48, 49] and
appear to also be frequent in other neurologic diseases such as Parkinson’s, Alzheimer’s, and
schizophrenia or anxiety-related disorders [50].

Supporting Information
S1 Fig. MeCP2 half-life is in agreement with MeCP2 circadian oscillations.MeCP2 half-life
assayed in BJ cells (human normal fibroblasts) transduced with a pLVX-IRES-zsGreen-MeCP2
construct. (A)Western-blot of cells treated with 75 μg/mL cycloheximide de novo protein syn-
thesis blocking reagent at different times. (B) Representation of the raw data of MeCP2 levels
normalized with actin. (C)MeCP2 half-life (t½) determined according to the linear regression
of logarithmic transformed MeCP2 values and time.
(PDF)

S2 Fig. MeCP2 absence impairs MeCP2-target genes circadian expression.MeCP2-target
genes expression in wild-type andMeCP2-KOmice. 3–5 samples per group/time point were
analyzed and mean ± SEM represented as a fold change in relation with the lowest value of the
group. ��P<0.005, ���P<0.0005 in two-tailed Student’s t-tests.
(PDF)
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