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There aremany challenges that face surgeons when attempting curative resection for gastrointestinal cancers.The ability to properly
delineate tumor margins for complete resection is of utmost importance in achieving cure and giving the patient the best chance of
prolonged survival. Targeted tumor imaging techniques have gained significant interest in recent years to enable better identification
of tumor lesions to improve diagnosis and treatment of cancer from preoperative staging modalities to optimizing the surgeon’s
ability to visualize tumor margins at the initial operation. Using unique characteristics of the tumor to fluorescently label the tissue
can delineate tumor margins from normal surrounding tissue, allowing improved precision of surgical resection. In this paper,
different methods of fluorescently labeling native tumor are discussed as well as the development of fluorescence laparoscopy and
the potential role for fluorescence-guided surgery in the treatment of gastrointestinal cancers.

1. Introduction

The primary treatment modality for most patients with solid
tumors is surgery. There are a multitude of factors that can
significantly alter a patient’s postoperative survival, such as
tumor size, histological tumor grade, and vessel invasion
[6, 7]. However, it is lymph node status and a complete
surgical resection (R0 resection) that provides the patient
with the most valuable prognostic information with regard
to postoperative survival [6, 8].

Targeted tumor imaging techniques have gained signifi-
cant interest in recent years to enable better identification of
tumor lesions to improve diagnosis and treatment of cancer,
frompreoperative stagingmodalities [9–12] to optimizing the
surgeon’s ability to visualize tumormargins at the initial oper-
ation [1, 2, 13–19].Using unique characteristics of the tumor to
fluorescently label the tissue can delineate a margin between
tumor and adjacent tissue, allowing improved precision of
surgical resection. One example is the use of activatable

probes that rely on high tumor tissue enzymatic activity
[17]. Other examples include using fluorophore-conjugated
antibodies to unique surface markers expressed by individual
tumor types [14, 16], or the use of replication-competent
viruses engineered to express the green fluorescent protein
(GFP) in the presence of activated telomerase [10, 15]. In this
review,wewill discuss the progression of fluorescence-guided
surgery and laparoscopy as well as its future directions and
its potential use in the clinical treatment of gastrointestinal
cancers.

2. Development of Fluorescence Imaging
Prototypes and Applications

Herpes simplex-1 virus, NV1066, a replication-competent
virus was engineered to infect and lyse cancer cells selec-
tively. In addition, the virus contained a transgene for green
fluorescent protein (GFP) that would result in fluorescent
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Figure 1: Comparative identification of tumor foci under brightfield and fluorescence laparoscopy. (a) OV100 open image from a
representativemouse. View of left upper quadrant in amouse specimen under FL (b–d) and BL (e–g).The green fluorescence of themetastatic
lesions are unmistakable under FL, whereas under BL the tumor foci resembled normal tissue and were not identifiable. BL: brightfield
laparoscopy; FL: fluorescence laparoscopy [1].

cells upon infection. In vivo infection of NV1066 resulted in
localized expression of GFP to the tumor, which could be
visualized endoscopically with the use of a laparoscope and
appropriate fluorescence filters. Furthermore, the NV1066
selectively infected and replicated within the esophageal
cancer cells, killing the cells in vitro and in vivo [20].

NV1066 was used to infect mouse models with lym-
phatic metastasis of human mesothelioma cancer cells.
NV1066 injected into primary tumors was able to locate and
infect lymph node metastases, producing GFP-expressing
metastases which were easily visualized under fluorescence
imaging. The fluorescence thoracoscopy model used in this
experiment [21] involved an excitation filter on the light
source set at 470 ± 20 nm and an emission filter on a camera
processor set at 510 nm.

Tumors were also selectively and accurately labeled with
GFP using a telomerase-dependent adenovirus (OBP-401)
containing the GFP gene [15, 22, 23] and subsequently
resected under fluorescence guidance. Recurring cancer
cells maintained GFP expression after fluorescence-guided
surgery, enabling the detection of recurrence and future
metastasis possible with OBP-401 GFP labeling [22]. Main-
tenance of label in recurrent tumors is not possible with
nongenetic probes.

3. Development of Fluorescence Laparoscopy

With new techniques emerging to fluorescently label tumors,
fluorescence laparoscopy is becoming an exciting field of
investigation. An optimal fluorescence laparoscopy model

shouldmaximize the fluorescence signal of the tumor for easy
and rapid imaging and also provide adequate background
illumination to visualize surrounding tissues to allow for
spatial orientation without compromising the tumor-to-
background contrast.

Our group developed a fluorescence laparoscopy model
with the use of a Xenon light source that permitted facile,
real-time imaging and localization of tumors labeled with
fluorescent proteins within the abdomen of a mouse [18]. A
standard laparoscopic system was easily modified by placing
a 480 nm short-pass excitation filter between the light cable
and the laparoscope. A 2mm-thick emission filter was placed
between the laparoscope and camera.The use of proper filters
enabled simultaneous visualization of fluorescent tumor and
non-fluorescent normal tissue and greatly enhanced the
diagnostic capabilities of staging laparoscopy (Figure 1) [1].

Fluorophore-conjugated antibodies directed at unique
tumor antigens were also used to fluorescently label
tumor [2]. Kaushal et al. [14, 16] used antibodies directed
against common tumor antigens to deliver fluorophores
for enhanced detection of tumors during laparotomy
in orthotopic mouse models of pancreatic and colon
cancer. Fluorescence laparoscopy significantly enhanced
the sensitivity and positive predictive value of diagnostic
laparoscopy. Tumor detection was quicker andmore accurate
with very few false positives (Figure 2).

However, due to the lack of intensity from the filtered
Xenon light, adjustments to exposure time and gain were
necessary. However, increasing the exposure time and gain
resulted in significant dynamic delay that impaired surgical
navigation. Replacing the Xenon light source with an LED
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Figure 2: (a) Fluorescence laparoscopy with fluorophore-conjugated antibodies. Images under fluorescence and bright field laparoscopy
visualized the primary tumor in the body of the pancreas. The two images on the left are positive control images taken with the Olympus
OV-100 small animal imaging system for comparisonwith laparoscopic images on the right under fluorescence (top) and bright field (bottom).
The primary pancreatic tumor was more easily detected under fluorescence laparoscopy (FL) compared to bright field laparoscopy (BL) [2].
(b) Use of fluorescence laparoscopy to identify primary and metastatic lesions. The center image is a positive control OV-100 image for
comparison with BL and FL. The surrounding images, labeled 1–6, are representative FL images of primary and metastatic pancreatic tumor
lesions. The numbers in the upper left corner of each picture correspond to the numbered lesion in the center OV-100 image [2].
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Figure 3: Stryker laparoscopic setup. A standard laparoscopic tower was slightlymodified to achieve a fluorescence lightmode that permitted
detection of fluorescence signals while still allowing visualization of the background. The LED light source (Stryker L9000 LED lamp) was
filtered through a glass emission filter (Schott GG495) that was placed between the laparoscope and the 1288 HD camera. With alterations to
red, blue, and green components of the light source, we were able to visualize tumors of different fluorescent wavelengths. A Stryker X8000
Xenon light source was used for bright field laparoscopy [3].

lamp virtually eliminated the need for an excitation filter
between the light cable and laparoscope (Figure 3) [3]. With
only the use of an 495 nm emission filter along with adjust-
ments to the red, blue, and green components of the LED,
no adjustments to exposure time or gain was necessary, and
rapid detection of fluorescent tumor was greatly improved
while also allowing visualization of surrounding tissue which
can enable surgical navigation (Figure 4). This new model
of fluorescence laparoscopy, with maximal blue light and
adjustments to red and green light, produced a spectrum
of light transmission that resulted in proper color balance
and adequate background illumination. This enhanced the
fluorescence signal-to-background ratio, enabling real-time
simultaneous detection of tumors with different fluorescent
colors (Figure 5).

The ability to visualize differently fluorescent tumors
simultaneously resulted in the identification of an opti-
mal fluorophore for fluorescence laparoscopy [3]. The
combination of dually labeling nonfluorescent tumor with
Alexa 488 and Alexa 555 greatly enhanced the fluorescence
signal allowing for better detection of sub-millimeter deposits

throughout the abdomen (Figure 6). The combination of red
and green fluorophores optimized the fluorescence signal
of tumor allowing accurate distinction of tumor margins
without compromising background illumination. This per-
mitted laparoscopic resection of tumors in mouse models of
pancreatic cancer.The improved visualization of surrounding
structures for surgical navigation without compromising
tumor detection further demonstrates the potential therapeu-
tic uses of fluorescence laparoscopy.

4. Fluorescently Labeling Native Tumors

In addition to using fluorophore-conjugated antibodies and
GFP-containing viruses, there have been a variety ofmethods
described to fluorescently label native tumor.

Activatable cell penetrating peptides (ACPPs) have been
used as targeting agents for cancer cells. Polycationic cell
penetrating peptides (CPPs) are connected via a cleavable
linker to a neutralizing polyanion whose adsorption and
uptake into cells are inhibited until the linker is proteolyzed.
With the upregulation of MMP-2 and MMP-9 in most solid
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Figure 4: (a) The spectrum of two possible light sources for fluorescence guided surgery. The solid line illustrates the spectrum of a filtered
Xenon lamp as used in Tran Cao et al. [1]. The dash line illustrates a typical blue LED spectrum. The color blocks mark the spectral range of
red, green, and blue channels on common RGB CCDs. (b) Overlapping emission and excitation spectra of GFP/Alexa-488 and RFP/Alexa-
555 fluorescent proteins and fluorophores. Blue and salmon color peaks represent the excitation and emission spectra of GFP/Alexa 488,
respectively. Pink and Red peaks represent excitation and emission spectra of RFP/Alexa 555, respectively. This graphic demonstrates
the utility of the overlapping spectra of these fluorophores in the spectral range of GFP in detecting tumor while maintaining adequate
visualization of surrounding structures for spatial orientation and surgical navigation. Filtering an LED light source through a 495 glass filter
creates the bandwidth by which tumors of different fluorescent colors are visualized simultaneously [3].

BxPC-3 Alexa 488 FG RFP MiaPaca-2 GFP

FG RFP + BxPC-3 488 BxPC-3 RFP + BxPC-3 488 MP2 GFP + BxPC-3 555

Figure 5: Laparoscopic images of the left upper quadrant in representative mouse models of human pancreatic cancer labeled with
fluorophores with different fluorescence wavelengths. Fluorescence laparoscopy with the LED light source allows identification and
localization of human pancreatic tumors of different fluorescence wavelengths simultaneously with improved accuracy. The combination
of RFP-expressing tumor labeled with AntiCEA Alexa 488 afforded the brightest signal [3].



6 Gastroenterology Research and Practice

i

iv

iii

ii

v

(a)

iii

ii

i

vi

v

iv

(b)

Figure 6: Orthotopic mouse model of BxPC-3 human pancreatic cancer dual labeled with anti-CEA Alexa 488 and 555. (a) Laparoscopic
images of representative mouse specimen with BxPC-3 dual labeled with anti-CEA Alexa 488 and 555. The combination of red and green
fluorophores creates a significantly brighter fluorescence signal without compromising background illumination. (i–iii) are laparoscopic
images of the left upper quadrant. (iv) and (v) are laparoscopic images of metastatic tumor deposits hidden within the mesentery of the
mouse. These deposits were virtually undetectable under BL. (b) (i–iii) are intravital OV-100 images of the same mouse specimen under (i)
GFPa filter (excitation 460–490; emission 510–550), (ii) RFP filter (excitation BP 535–555; emission 570–623), and (iii) GFP (excitation 460–
490; emission 510F) filters. The bottom image (iii) corresponds to GFP bandwidth through which fluorescence laparoscopy is viewed. (iv–vi)
are the corresponding intravital Maestro images. (iv) and (v) are spectral unmixing images of the (vi) compositive image obtained through
(iv) GFP and (v) RFP filter sets, respectively. These images confirm the dual labeling of BxPC-3 tumor with Alexa 488 and 555 [3].

tumors, exposure to these proteases results in cleavage and
dissociation of the inhibitory peptide, allowing the CPP
to bind to and enter cancer cells. Conjugating CPPs to
a fluorophore then enables improved visualization of the
tumor. Further conjugating dendrimers to ACPPs (ACPPDs)
results in a higher absolute tumor fluorescence and tumor-to-
background fluorescence contrast than free ACPPs [17].

5. Future Directions of Fluorescence-Guided
Surgery and Laparoscopy

Our recent work with fluorophore-conjugated antibodies
(FCAs) directed against the tumor antigen CEA has shown
to be a method of labeling, detecting and subsequently
resecting tumor to improve surgical outcomes in mouse
models of pancreatic and colon cancer [3, 14]. The significant
improvement in resection of primary tumor lesions achieved

under fluorescence-guided surgery significantly reduces the
postoperative tumor burden in mouse models of human
cancer (Figure 7). Furthermore, the greater incidence of
achieving an R0 resection in these mouse models results in
longer disease-free survival and overall survival.

The goal is to improve methods of fluorescently labeling
native tumor to permit better preoperative detection of
metastatic tumor and to further enhance the surgeon’s ability
to delineate tumor margins and allow more objective means
of identifying and resecting all tumor at the initial operation.
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Figure 7: Surgical resection after fluorescence-guided surgery (FGS). (a) The top row are representative pre- and postoperative images of a
mouse specimen from the bright-field surgery (BLS) group.The tumors were labeled with RFP. A tumor reduction of only 77% was achieved
in the BLS group. The bottom row images are representative pre- and postoperative images of a mouse specimen from the FGS group. A
significant improvement in tumor reduction was achieved in this group (98.9%, 𝑃 = 0.005). A complete surgical resection of pancreatic
tumor with negative surgical margins was achieved in this mouse without requiring significant resection of the pancreas. (b) Representative
pre- and postoperative images of amouse from the BLS group (top panel) and the FGS group (bottom panel).The enhanced ability to visualize
and identify tumor margins under fluorescence-guidance permitted a more complete resection. The tumors were labeled with GFP. All mice
in the FGS group underwent an R0 resection while only 58% of mice in the BLS group had no evidence of residual fluorescent tumor on
postoperative images (arrows in right upper panel) (𝑃 = 0.001) [4, 5].
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