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Abstract

Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of
multi-functional enzymes are critical for communication and cooperation between different functions and pathways within
a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional
enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four
physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for
characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random
forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified
from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species,
and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis
indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from
S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well
preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and
amino acids. What’s more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme
prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.
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Introduction

In general concepts, multifunctional enzymes (MFEs) are

enzymes that play multiple physiological roles. Sometimes, they

are further specified as moonlighting enzymes or promiscuous

enzymes [1,2,3,4]. Moonlighting enzymes are acknowledged to

have at least a single catalytic domain and an additional non-

catalytic domain. Both domains execute independent functions,

and inactivation of either domain (e.g. by mutation) will not affect

another domain [4]. Unlike moonlighting enzymes, promiscuous

enzymes are characterized as enzymes of catalytic domains

executing several functions, which can be further classified into

three subtypes according to mechanisms of enzyme promiscuity:

condition promiscuous enzymes, substrate promiscuous enzymes

and catalytic promiscuous enzymes. Condition promiscuous

enzymes switch their catalytic activities under different reaction

conditions, such as various solvent, extreme temperature or altered

pH. Substrate promiscuous enzymes are defined as enzymes with

relaxed or broad substrate specificity. Catalytic promiscuous

enzymes can use the same active site to catalyze different bio-

transformations [5]. Normally promiscuous enzymes are annotat-

ed with more than one Enzyme Commission (EC) number,

however, some promiscuous enzymes have only one given EC

number but perform different activities [1].

MFEs are beneficial to living systems by providing competitive

survival edges in a variety of ways. They are able to employ

alternative approaches to coordinate multiple activities and

regulate their own expression [2], which demonstrates an

evolutionary advantage as part of a clever strategy for generating

complexity from existing proteins without expansion of genome

[6,7,8]. Moreover, combination of multiple functions enables an

enzyme to act as a switch point in biochemical or signaling

pathways so that a cell can rapidly respond to changes in

surrounding environment [9]. Multi-functionality seems to be a

common mechanism of communication and cooperation between

different functions and pathways within a complex cellular system

or between cells [3].

In recent years, more and more novel multifunctional enzymes

are being discovered. Identification of MFEs and subsequent

investigation of their mechanistic and structural basis of multi-

functionality become an shortcut important for studying biological

roles of enzymes, their multiple activities in protein engineering

[10] and inhibitor design [11] . As a complementary solution to

experimental methods, current sequence analysis algorithms

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38979



(alignment, clustering and motif approaches) have shown their

distinct capabilities in disclosing individual functions of MFEs [12].

Algorithms based on remote homology, e.g. PSI-BLAST (Position

Specific Iterative-Basic Local Alignment Search Tool) [13] , have

been found to give good performance in finding alternative

functions of MFEs [12]. However, in some cases, it is difficult to

determine whether the predicted multiple functions by these

methods are due to true multi-functionality or false identification

[3,7,14]. It is acknowledged that active sites of MFEs with multiple

catalytic activities are inherently reactive environments packed

with nucleophiles, electrophiles, acids, bases and cofactors.

Sometimes, common structural and physicochemical features are

presented when MFEs execute similar functions regardless of their

high diversities in sequence. Therefore, proper characterization of

these features will be helpful for mechanistic understanding of

enzyme multi-functionality, and furthermore can provide clues to

characterize novel MFEs when they can’t be properly identified by

homology-based approaches.

Materials and Methods

Search of MFEs and Classification
In this study, a keyword search of ‘‘multifunctional enzyme’’

against the UniProt Knowledgebase (UniProtKB, release-2011-08)

[15] was demonstrated to maximally collect MFEs. This was

followed by manual validation that each MFE performs at least

two distinct physiological functions, including one catalytic activity

and one or more additional catalytic/regulatory/binding actives.

Finally, a total of 6,799 MFEs were collected and validated. These

MFEs cover typical moonlighting enzymes, promiscuous enzymes

and MFEs that are difficult to be classified into above two groups.

According to the number of functional domains (Pfam domain) in

protein, they were further divided into two classes: 1,235 MFEs

with single multi-activity domain (SMAD-MFEs) and 5,564 MFEs

with multiple catalytic/functional domains (MCD-MFEs) respec-

tively. Roughly, many SMAD-MFEs are promiscuous enzymes

and many MCD-MFEs are moonlighting enzymes. Such classifi-

cation would be helpful for later characterization and discovery of

MFEs.

Identification of MFEs
Dataset preparation. A total of 6,782 known MFEs whose

amino acids length are more than 100 were chosen as positive

dataset for model construction. The non-MFE proteins (negative

data) were selected from seeds in the Pfam database [16] as

following: Each Pfam protein family represents a cluster of

proteins with similar domain architecture. The negative protein

families were achieved by excluding those Pfam domain families

that contain at least one MFE member, so that all proteins that

have similar domain architecture as known MFEs were maximally

removed. The negative dataset were then generated by randomly

picked up one protein seed (amino acids length are more than 100

as well) from these negative Pfam protein families. In this way, the

coverage (different domain architectures) of negative dataset was

enhanced and, at the same time, the possible bias in negative data

selection was reduced to the most extent. Finally, 10,714 non-

MFE proteins were assigned into the negative data pool.

To be eligible for model construction, every protein sequence

was represented by specific feature vector assembled from encoded

representations of nine tabulated residue properties including

amino acid composition, hydrophobicity, normalized Van der

Waals volume, polarity, polarizability, charge, surface tension,

secondary structure and solvent accessibility for each residue in the

sequence. Three descriptors, composition, transition and distribu-

tion, were used to describe global composition of each property.

Composition is the number of amino acids of a particular property

(such as hydrophobicity) divided by the total number of amino

acids. Transition characterizes the percent frequency with which

amino acids of a particular property is followed by amino acids of

a different property. Distribution measures the chain length within

which the first, 25, 50, 75 and 100% of the amino acids of a

particular property is located respectively. All descriptors for each

property were computed and combined to form the feature vector

as described in previous literatures [17]. Finally, a feature vector of

188 elements was generated to represent a protein sequence.

Construction of SVM model. Support vector machine

(SVM) is based on the structural risk minimization principle of

statistical learning theory. The detailed methodology of the SVM

training and classification has been well described in the literature

[18,19]. In principle, the proteins, represented as feature vectors,

were mapped into a multi-dimensional (here, 188 dimensions)

feature space. A hypothetical hyper plane was used to classify these

proteins into one of two classes: MFEs (the positive class) or non-

MFE proteins (the negative class). This hyper plane was

determined by finding a vector w and a parameter b that

minimized wk k2
to satisfy the following conditions:

w:x izb§z1,for yi~z1 (positive class) and w:x izbƒz1,for

yi~{1 (negative class). Here xi is a feature vector, yi is the class

index, w is a vector normal to the hyper plane, and wk k2
is the

Euclidean norm of w. In this study, we adopted the build-in libsvm

algorithm in the WEKA program for model construction.

Construction of RF model. Random forest (RF) is a

classifying algorithm of ensemble learning. It is called as ‘‘forest’’

because it consists of several decision trees. The algorithm has

been properly described in previous application [20]. There are

two major ideas of RF, bagging and random feature selection. In

bagging, classifiers are trained on a bootstrap training data and the

prediction is voted by these classifiers. RF selects some features

randomly and splits them at each node when constructing decision

trees. Each tree in the forest is constructed to the largest extent

possible without any pruning. This procedure will be iterated over

all trees in the ensemble, and the average vote of all trees is

reported as RF prediction. In this study, we adopted the

embedded RF algorithm in the WEKA program for prediction.

Evaluation of model. As a discriminative method, the

performances of SVM classification and RF classification were

measured by the quantity of true positive TP, false negative FN,

true negative TN, and false positive FP. In addition, the specificity

SP = TN/(TN+FP), the sensitivity SE = TP/(TP+FN), the

positive prediction value PPV = TP/ (TP + FP) and the overall

prediction accuracy P = (TP + TN)/ (TP+FN+TN+FP) were also

evaluated.

Results and Discussion

Sequential and Structural Preference of MFEs
Physiochemical propensities. In most cases, sequence

conservation can properly explain similar functions of different

enzymes. However, exceptions were reported that some functional

groups are un-conserved in sequence composition but mediate

same enzymatic mechanistic role due to their structural flexibility

at the active site [21]. The structural flexibility however still

maintained the similar conformation changes at the active site so

that these functional groups were able to execute same enzymatic

function. It seems that such functional plasticity may not be

sufficiently described by commonly used homology-based ap-

proaches. Therefore, recognition of structural and physicochem-

ical features that can properly describe this plasticity may be

Global Characterization and Identification of MFEs
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helpful for identification of MFEs by non-homology-based

methods like SVM and RF. In this work, total of nine feature

properties were used to describe structural and physicochemical

characteristics of each protein. These properties have been

routinely used for classification of proteins of different structural

and functional classes [17,19,22]. It was acknowledged that not all

these features contribute equally to protein classification; some

have been found to play relatively more prominent role than

others [22]. It is thus of interest to examine which feature

properties are dominant in classification of MFEs.

Previously, contribution of individual feature property to

protein classification was investigated [22]. Similar approach was

also employed in present study. It was found that the charge,

polarizability, hydrophobicity, and solvent accessibility play more

prominent role than other feature properties. This is agreed with

previous studies that some MFEs, e.g. ADP-ribosyl cyclase and

CD38, can switch functions at different pH, indicating the

importance of polarity, charge distribution and solvent accessibility

in determining their multi-functionality [23]. Multiple protein-

interacting modules of some MFEs, e.g. High-voltage-activated

Ca2+ channels, involve in hydrophobic interactions [24]. Some

MFEs, e.g. neuronal nitric oxide synthase, have large solvent-

exposed hydrophobic surface that contains a cavity rimmed with

charges [25]. These sequential features are useful to identify novel

MFEs.

Identification of novel MFEs. Identification of novel MFEs

may be one of the best ways in understanding multiple

functionalities of enzymes. In present study, a combinational

model of support vector machine and a random RF model was

trained and optimized as described in the methodology section.

According to our previous analyses on the physiochemical and

structural preference of known MFEs, nine sequential and

structural features were adopted. These two models were

optimized by five-fold cross validation and the performances were

given in Table 1.

The optimized models were then applied to screen the

ENZYME database [26] for identification of novel MFEs. A

probability value ranging from 0 to 1.0 (or 0 to 100%) was given to

evaluate each model prediction. A value close to 100% indicates

the higher possibility of prediction. Satisfying both SVM model

(probability .90%) and RF model (probability .80%), totally

6,956 novel MFEs and 6,071 known MFEs were identified with

from 205,173 enzymes (amino acids length are more than 100) in

the ENZYME database (Release of 21-Mar-12). Among the 6,782

currently known MFEs collected from UniProt knowledgebase,

6,071 were successfully identified from the ENZYME database, 50

were excluded because of low prediction probability, and 661

haven’t been recorded by the ENZYME database yet but

annotated in the UniProtKB. The complete list of both known

and predicted MFEs can be acquired from a novel MFE database

at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.

The database was curated on Red Hat Linux release 9

operating system. The data were managed by the RDBMS

Oracle 10 g. Interactive user interfaces and search engines were

coded by PHP and JavaScript. Three methods were developed for

rapid access of the MFEs database. They are briefly described as

follows: The database offers a quick search method to retrieve

information via keyword query forms. To initiate a search, user is

required to type a partial or full keyword in the text field of query

form. Wild-card characters like "*, &, ?" are not supported. Once a

query is submitted, a list of protein names that meet the query

criteria will be responded in alphabet order respectively. Clicking

on a protein will lead to the detailed information page, where the

detailed information of enzyme is presented in three sections of

General Information, Features and MFEs Type. Besides, an ID

search method is available for accurate access of database by just

providing a UniProtKB AC, EC number, or Pfam ID. The

database also offers an alternative browse method for direct

retrieval of MFE information by selecting an enzyme from the

species list, EC number list or enzyme name list.

Additionally, an on-line classification system for novel MFEs

was also constructed for public access http://jing.cz3.nus.edu.sg/

cgi-bin/sime.cgi. The prediction is based on the pre-established

and refined machine learning models of SVM, RF or their

combination. Combination of these two different algorithms, to a

large extent, reduces the false positives. However, several factors

may more or less affect its performance. One is the diversity of

protein samples used for developing classification systems. It is

likely that not all possible types of MFEs and non-MFEs were

adequately represented in the training set. This can be improved

with the availability of more diverse protein sequences and

improved knowledge about MFEs. A broad spectrum of MFEs of

diverse functions may also affect the performance of our SVM and

RF models to some extent.

Structural preference. Knowledge of domain composition

provides valuable insights into the mechanism of MFEs. The top

10 Pfam domains in two classes of MFEs were listed in Figure 1 a
& b respectively. One of the most frequent domain in SMAD-

MFEs (Figure 1b) is ArgJ (Pfam ID: PF01960), which plays key

role in both N-acetylglutamate synthase (EC 2.3.1.1) and ornithine

acetyltransferase (EC 2.3.1.35) activities in the cyclic version of

arginine biosynthesis [27]. Structural analysis of ArgJ domain

indicates that its complete active-site is defined by some

disconnected residues, potentially the protein C-terminus. The

coming out and going in movement of C-terminus at the active site

likely enables ArgJ to execute two different substrates-specific

bindings [28]. The flexibility of structure at the active sites might

be a common mechanism for SMAD-MFEs perform their multi-

functionality. Just like some scaffold proteins having intrinsic

disorder regions, SMAD-MFEs may change their conformations

under different conditions, thus play different physiological roles.

For example, a SMAD-MFE, human apurinic/apyrimidinic

endonuclease (APE), switches its role of either base excision or

nucleotide incision repair by conformational changing of substrate

binding domain before the chemical cleavage step [29]. Unlike the

SMAD-MFEs, MCD-MFEs realize their multi-functionality via

Table 1. The performances of SVM model and RF model in classification of MFEs.

Positives Negatives TP FP TN FN SP (%) SE (%) PPV (%) Q (%)

SVM 6,782 10,714 5,642 1,435 9,279 1,140 86.6 83.2 79.7 85.3

RF 6,782 10,714 6,368 632 10,082 414 94.1 93.9 91.0 94.0

The prediction were evaluated by parameters of TP (true positive), FN (false negative), TN (true negative), FP (false positive), specificity SP = TN/(TN+FP), sensitivity SE =
TP/(TP+FN), positive prediction value PPV = TP/ (TP+FP) and overall accuracy Q = (TP+TN)/ (TP+FN+TN+FP).
doi:10.1371/journal.pone.0038979.t001
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domain combination. It is interesting that some of the frequently-

used domains of MCD-MFEs appear in pairs. For instance, a

number of eukaryotes enzymes contain both tetrahydrofolate

dehydrogenase/cyclohydrolase NAD(P)-binding domain,

(THF_DHG_CYH_C, Pfam ID: PF02882) and catalytic domain,

(THF_DHG_CYH, Pfam ID: PF00763), which present separately

in many prokaryotes as single-function enzymes. This might be the

clues of gene fusion in the process of protein specificity (Figure 2).

To have an overview of MFEs’ structural propensities, the

distribution of several protein groups in Structural Classification of

Proteins (SCOP) database [30] was investigated. The analysis covers

140 known MCD-MFEs, 29 known SMAD-MFEs, 2,155 enzymes

and total 38,221 Protein Data Bank (PDB) Entries included in the

SCOP 1.75 release database (June 2009). As illustrated in Figure 3,

about 38.57% of MCD-MFEs and 44.83% of SMAD-MFEs belong

to alpha and beta proteins (a/b); while only about 24.85% of total

proteins in SCOP database are in a/b topology. It seems that MFEs

have a structural propensity in alpha and beta topology. The

propensity of a/b topology would be a general characteristic of

enzyme.. Be aware that these results were achieved subject to current

availability of protein structures in SCOP, which is limited and bias

due to the difficulty in structure determination. However, some

recent studies proposed that alpha and beta topology was common

for moonlighting proteins [31,32], which would be a good case to

support our finding.

Physiological Roles of MFEs
Biological pathways are networks of molecular interactions,

which provide valuable information of complex cellular reactions

in molecular level. Herein, the physiological roles of MFEs were

investigated via searching against Kyoto Encyclopedia of Genes

and Genomes (KEGG) database [33]. Among the 4,935 currently

known MFEs with KEGG Ontology (KO) annotation and

pathway information, about 91.31% of total MCD-MFEs and

96.31% of total SMAD-MFEs were involved in one or two distinct

cellular processes (Table 2).

According to KO annotation, the MCD-MFEs participate in 6

level one, 35 level two, and 140 level three pathways; while SMAD-

Figure 1. The top 10 frequently used Pfam domain families for known MFEs. It is noted that about 17% of SMAD-MFEs contain ArgJ. It plays
key role in both N-acetylglutamate synthase and ornithine acetyltransferase activities in the cyclic version of arginine biosynthesis.
doi:10.1371/journal.pone.0038979.g001

Global Characterization and Identification of MFEs
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Figure 2. The evolution path of C-1-tetrahydrofolate synthase in eukaryotic representatives including M. extorquens, S. aureus,
S. cerevisiae, D. melanogaster, D. rerio, X. laevis, M. musculus, H. sapiens. It illustrated how three independent proteins (domains) fused and
mutated during the evolutionary path, which resulted in the gain and loss of multiple-functionality. The THF_DHG_CYH and THF_DHG_CYH_C
domains of human and mouse Mthfd1L proteins illustrated in dark block of net pattern were mutated and lost tetrahydrofolate dehydrogenase/
cyclohydrolase activities.
doi:10.1371/journal.pone.0038979.g002

Global Characterization and Identification of MFEs
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MFEs were involved in 6 level one, 29 level two and 92 level three

pathways. The distributions were illustrated in Figure S1 & S2
respectively. It looks that majority of MFEs (81.2% and 97.2% for

MCD-MFEs and SMAD-MFEs respectively) were involved in

metabolism pathways, over 80% of which were carbohydrate

metabolism (CAR, KEGG: map01110), lipid metabolism (LIP,

KEGG: map01130), nucleotide metabolism (NUC, KEGG:

map01140), amino acid metabolism (AAC, KEGG: map01150)

and metabolism of cofactors and vitamins (COF, KEGG:

map01190). Moreover, about 50% of MCD-MFEs were involved

in pathways of CAR and COF, which can be, to some extent,

explained by a large number of the tetrahydrofolate dehydroge-

nase/cyclohydrolase family members. Considering the very con-

servation of metabolic enzyme in three life domains [34], the

enrichment of MFEs in several metabolism processes indicates that

they could be the early enzymes, and their multi-functionality could

be an efficient solution for early life forms to preserve as many basic

metabolic activities as possible in small genome size. This inference is

agreed with a recent study that promiscuous enzymes are mainly

involved in amino acid and lipid metabolisms, which might be

associated with the earliest form of biochemical reactions [1].

Gain and Loss of Multiple Functionalities
According to our analyses, bacteria have more MFEs than

archaebacteria and eukaryotes in both total and average content of

MFEs (Table 3). This result was achieved under the circumstance

that, relatively, bacteria were more studied than archaebacteria and

eukaryotes. It is also noticed that the content of MFEs in bacteria are

very unbalanced. Some bacterial organisms have many MFEs, while

some have few. Similar unbalance was also observed in lower

eukaryotes. In this study, a close statistics of known MFEs in seven

representative eukaryotic model organisms was demonstrated as

well, including S. cerevisiae, C. elegans, D. melanogaster, D. rerio, X. laevis,

M. musculus, H. sapiens. They were roughly arranged and compared

in an ascent evolutionary order according to their first appearance in

geological time. It showed that the MFEs experienced a fluctuation

of enzyme gain and loss: decrease from S. cerevisiae to D. rerio and then

increase from X. laevis to H. sapiens (Table 4). For early simple life

forms (e.g. S. cerevisiae), comparatively small genome limited their

protein-coding capacity. As an alternative solution, ancient enzymes

have to broaden their substrate specificity or adopt multiple

functions, which may be achieved by gene duplication in tandem

accompanying with mutational modifications [6]. With the emer-

Figure 3. The structural distribution of protein groups in the SCOP database. It is noted that about 38.57% of MCD-MFEs, 44.83% of SMAD-
MFEs, 48.84% of esterases and 42.09% of enzymes belong to alpha and beta proteins (a/b); comparatively, only 24.85% of SCOP proteins belong to a/
b topology. In this analysis, 140 known MCD-MFEs, 29 known SMAD-MFEs, 69 lipases, 43 esterases, 2155 enzymes, and 38,221 proteins were included.
doi:10.1371/journal.pone.0038979.g003

Table 2. The statistics of MFEs by number of KEGG biological pathways they are involved in.

Num# of Pathways MCD-MFEs SMAD-MFEs MFEs of Archaea MFEs of Bacteria MFEs of Eukaryota

Num# PCT*(%) Num# PCT*(%) Num# PCT*(%) Num# PCT*(%) Num# PCT*(%)

1 2,377 57.65 729 89.78 24 22.02 2,764 63.64 317 65.63

2 1,388 33.66 53 6.53 78 71.56 1,277 29.40 86 17.81

3 89 2.16 7 0.86 0 0 56 1.29 40 8.28

4 37 0.90 13 1.60 0 0 39 0.90 11 2.28

5 and more 232 5.63 10 1.23 7 6.42 206 4.74 29 6.00

Num#: Number; PCT*: Percentage.
Totally, 4,123 known MCD-MFEs and 812 known SMAD-MFEs were included in this statistics, covering 109, 4,343, and 483 known MFEs were respectively in Archaea,
Bacteria and Eukaryota respectively.
doi:10.1371/journal.pone.0038979.t002
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gence of multi-cell eukaryotic organisms, complex intra-cellular and

inter-cellular interactions required more accurate and diverse

enzymatic activities. On one hand, multi-functional enzymes might

be specialized so as to execute a definite catalytic function. For

instance, an early multifunctional enzyme catalyzing consecutive

steps might diversify into two more specific and efficient enzymes

today, each of which catalyzes only one step in the pathway [35]. On

the other hand, novel multi-functional enzymes emerged when

broader substrates and reaction specificities are subsequently

captured by adaptive evolution [36]. For example, the last two

steps of de novo biosynthesis of CoA are catalyzed by two

independent enzymes, phosphopantetheine adenylyltransferase

(EC 2.7.7.3; PPAT) and dephosphocoenzyme A kinase (EC

2.7.1.24; DPCK), in bacteria and before metazoan, however, these

two steps are now accomplished by a bifunctional CoA synthetase

containing both PPAT and DPCK domains in metazoan [37].

The multiple functionalities of MFEs were inherited in most

cases during species evolutionary. Several rounds of genome

duplication during species evolution expanded the gene number in

an explosive manner, which enabled the rapid specification of

MFEs by generating paralogs. Some of these MFE paralogs lost

part of or even all (the pseudo-gene) their functions by means of

gene mutation, alternative splicing, nonsynonymous substitution,

exon recombination and etc. A typical example is the tetrahydro-

folate dehydrogenase/cyclohydrolase family. Most tetrahydrofo-

late dehydrogenase/cyclohydrolase family members (768 out of all

1,180 species except viruses) are well conserved in possessing both

methenyltetrahydrofolate cyclohydrolase and methylenetetrahy-

drofolate dehydrogenase activities. In Eukaryota, these two

activities usually present together. As shown in Figure 2, four

Mthfd paralogs contain the THF_DHG_CYH and

THF_DHG_CYH_C domains. They all perform these two

activities except human mitochondrial monofunctional C1-tetra-

hydrofolate (C1-THF) synthase encoded by gene MTHFD1L. The

human mitochondrial C1-THF synthase is 61% identical to its

human cytoplasmic isozyme Mthfd1, however, lacks amino acids

that are critical for the binding of NADP+ and folate [38,39]. The

loss of multiple functionalities of MFEs in some species may

suggest a potential mechanism of novel protein generation or

functional regulation of biological pathways.

On the other side, interacting proteins (direct interaction or

upstream-downstream proteins in a pathway) however integrated

their functions to achieve more effective cell device via mecha-

nisms like gene fusion. In this study, we compared the domain

structures of 25 enzymes containing either of methylenetetrahy-

drofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase

or formyltetrahydrofolate synthetase from eight representative

organisms including two prokaryotes and six eukaryotes

(Figure 2). It was observed that, in most cases, Mthfd enzyme

families gained their multiple functions in a way of gene fusion. In

prokaryotes, e.g. M. extorquens, methylenetetrahydrofolate dehy-

drogenase activity, methenyltetrahydrofolate cyclohydrolase activ-

ity and formyltetrahydrofolate synthetase activity are realized by

three independent monofunctional proteins, except for a bifunc-

tional cyclohydrolase/dehydrogenase in E. coli, C. thermoaceticum,

and etc. However, in eukaryotes, these three activities are normally

Table 3. The distribution of MFEs in four life domains of Archaea, Bacteria, Virus and Eukaryota.

Domains Organism Num# Enzyme Num# Average enzyme Num# in each organism

MCD-MFEs SMAD-MFEs MCD-MFEs SMAD-MFEs MCD-MFEs SMAD-MFEs

Archaea 40 36 71 66 1.78 (60.81) 1.83 (61.81)

Bacteria 590 380 4413 754 7.48 (66.18) 1.98 (61.21)

Eukaryota 143 120 633 270 4.43 (65.00) 2.25 (61.74)

Virus 156 77 446 145 2.86 (62.50) 1.88 (61.26)

Num#: Number.
Totally, 5,554 known MFEs of multiple catalytic/functional domains (MCD-MFEs) and 1,274 known MFEs of single multi-activity domain (SMAD-MFEs) were included in
the statistics. It was noted bacteria are superior in both total number and average number of known MCD-MFEs and SMAD-MFEs than other three domains.
doi:10.1371/journal.pone.0038979.t003

Table 4. The statistics of known MFEs in seven eukaryotic model organisms.

Organisms MCD-MFEs Num# SMAD-MFEs Num# Total MFEs Num#
Total Enzymes
Num# * PCT# (%)

S. cerevisiae 90 15 105 1,568 6.70

C. elegans 11 0 11 661 1.66

D. melanogaster 13 1 14 607 2.31

D. rerio 3 1 4 372 1.08

X. laevis 6 0 6 477 1.26

M. musculus 59 13 72 2,789 2.58

H. sapiens 83 22 105 2,795 3.76

*: Currently known enzymes in the ENZYME database.
#Num: Number; PCT: Percentage.
It showed that the MFEs experienced a fluctuation of MFE gain and loss in 7 eukaryotic model organisms including S. cerevisiae, C. elegans, D. melanogaster, D. rerio, X.
laevis, M. musculus, H. sapiens. The average number of MFEs decreased from S. cerevisiae to D. rerio, and then increased from X. laevis to mammal animals.
doi:10.1371/journal.pone.0038979.t004
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executed by a single trifunctional protein, C1-THF synthase [40].

Similar phenomena can be observed in the multifunctional protein

17b-HSD4 [41].

Conclusion
In present study, we globally analyzed MFEs on different

aspects of structure, function and evolution. Some common

patterns of MFEs were identified, and for the first time, a

combinational model of SVM and RF was constructed for novel

MFE prediction. It is noticed that many results presented in this

study were achieved in basis of current availability of MFEs, which

were affected by bias of data availability. For this reason, some

conclusions might not be well agreed with previous findings which

were also inferred from current knowledge of MFEs. Nevertheless,

our findings will to some extent help systematic understanding of

MFEs and their roles in crosstalk between various cellular

processes.

Supporting Information

Figure S1 The KEGG ontology analysis of known MCD-
MFEs. Total 4,123 known multifunctional enzymes of multiple

catalytic/functional domains (MCD-MFEs) were included in the

analysis.

(TIF)

Figure S2 The KEGG ontology analysis of known SMAD-
MFEs. Total 812 known multifunctional enzymes of single multi-

activity domain (SMAD-MFEs) were included in the analysis.

(TIF)
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