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 Abstract 
  Background:  Dysfunctions of the ubiquitin proteasome system (UPS), including the highly 
abundant neuronal enzyme ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), and autoph-
agy-related changes (lysosomal degradation) are implicated in several neurodegenerative 
disorders including Alzheimer’s disease (AD).  Method:  This study evaluated cerebrospinal 
fluid (CSF) levels of UCH-L1, protein deglycase (DJ-1), neuron-specific enolase (NSE), and tau 
phosphorylated at threonine 231 (P-tau 231 ) in two independent patient and control cohorts. 
Cohort 1 included CSF samples from subjects having an AD biomarker profile (n = 10) or a 
control biomarker profile (n = 31), while cohort 2 was a monocenter clinical study including 
patients with AD (n = 32), mild cognitive impairment (n = 13), other dementias (n = 15), as well 
as cognitively healthy controls (n = 20).  Results:  UCH-L1 and P-tau 231  were elevated in AD 
patients compared to controls in both cohorts. CSF levels of DJ-1 and NSE were unchanged 
in the AD group, whereas they were decreased in the group of other dementia compared to 
controls in the clinical study.  Conclusion:  Our main findings support that the UPS pathway 
may be impaired in AD, and UCH-L1 may serve as an additional CSF biomarker for AD. 
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 Background 

 The ubiquitin proteasome system (UPS) selectively degrades proteins targeted for degra-
dation by covalent conjugation to ubiquitin  [1] . When these proteins have been linked to the 
ubiquitin chain, they are directed to degradation via the UPS  [1]  or in the lysosome  [2] . 
Alzheimer’s disease (AD) is a protein-misfolding disease characterized by accumulation of 
amyloid β (Aβ) peptides and hyperphosphorylated tau protein into plaques and neurofi-
brillary tangles, respectively  [3] . The ubiquitin protein is also accumulated in these structural 
AD changes  [4–7] . This suggests that dysfunction of the quality control mechanisms regu-
lating protein breakdown, including both the UPS and the lysosome, might be directly or indi-
rectly involved in the pathogenesis of AD.

  Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1; also called neuron cytoplasmic 
protein 9.5 and PGP 9.5) is a highly abundant neuron-specific cytoplasmic enzyme  [8–10] . It 
modifies the activity of the UPS by acting as a deubiquitinating hydrolase  [10] , ubiquitin 
ligase  [11] , and a monoubiquitin stabilizer  [12] . UCH-L1  [13]  and ubiquitin  [4–7]  are found 
in Aβ plaques and neurofibrillary tangles in the AD brain, supporting evidence for UPS 
dysfunction in AD. Furthermore, in an animal model, dysfunction of UCH-L1 affected the 
biological function of the tau protein as well as phosphorylation of tau  [14] . Genetic studies 
demonstrate a link between the UCH-L1  (PARK5)  gene and rare familiar forms of Parkinson’s 
disease (PD)  [15] , and most previous studies have shown a protective effect of the S18Y poly-
morphism (rs id 5030732) against sporadic PD  [16, 17] . There are only a few reports 
regarding the implications of genetic variation in UCH-L1 in AD  [18, 19] , and there are 
conflicting results in terms of the role of the UCH-L1 polymorphism in AD patients  [20–22] . 
UCH-L1 levels in the cerebrospinal fluid (CSF) of AD patients have, to our knowledge, not 
been reported, whereas several studies have found an increased CSF ubiquitin level in AD 
 [23–26] .

  In the CSF, the fluid that surrounds the central nervous system, the AD core biomarkers 
total-tau (T-tau), tau phosphorylated at threonine 181 (P-tau 181 ), and Aβ 1–42  are thought to 
reflect neurodegeneration, neurofibrillary tangles, and aggregation of Aβ into plaques, respec-
tively  [27] . Most studies confirm a typical AD biomarker signature in AD with elevated T-tau 
and P-tau in addition to reduced levels of Aβ 1–42 . Recently, the AD core CSF biomarkers have 
been included in the research criteria for the diagnosis of both early and manifest AD by the 
International Working Group  [28]  and in the diagnostic guidelines from the National Institute 
on Aging-Alzheimer’s Association  [29] , respectively. However, the diagnostic performance of 
CSF tau phosphorylated at threonine 231 (P-tau 231 ) compared to that of CSF P-tau 181  is not 
well known, although in a recent study P-tau 231  displayed a greater overall specificity for AD 
than P-tau 181   [30] .

  The protein deglycase (DJ-1)  (PARK7)  gene is linked to PD  [31] . Although the role of DJ-1 
has not fully been evaluated, it could provide protection from oxidative stress  [32] . In previous 
studies, CSF DJ-1 levels were unchanged in AD  [33, 34] . Neuron-specific enolase (NSE) is a 
glycolytic enzyme present in neuronal and neuroendocrine cells and might be a marker of 
damage to cortical nonmyelinated neurons  [27, 35] . Several previous studies have shown 
conflicting results with reduced  [36] , increased  [35, 37, 38] , or unchanged  [39, 40]  CSF levels 
in AD patients compared to controls.

  In this study, a commercially available magnetic bead panel for neurological disorders 
was initially evaluated using CSF samples from subjects having an AD core biomarker 
profile or a control core biomarker profile, respectively. The neurological panel was then 
used to assess the CSF levels of UCH-L1, P-tau 231 , DJ-1, and NSE in a well-characterized 
monocenter cohort of patients with cognitive impairment and matched healthy controls 
 [41] .
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  Materials and Methods 

 CSF Samples of the Pilot Study 
 An initial pilot study was performed using decoded human CSF samples supplied by the 

Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal. Patients were 
designated as control or AD according to CSF AD core biomarker levels using in-house opti-
mized cutoff levels of >90% specific for AD  [42] : T-tau >400 ng/l, P-tau 181  >80 ng/l, and 
Aβ 1–42  <550 ng/l. The age-matched test material included 10 patients with an AD biomarker 
profile and 31 subjects with a control biomarker profile ( table 1 ).

  CSF Samples of the Clinical Study 
 All CSF samples in the clinical study were collected by lumbar puncture in the L3/L4 or 

L4/L5 interspace at the standardized time point 8:   30 to 9:   00 a.m. The first 12 ml of CSF was 
collected in a polypropylene tube and immediately transported to the local laboratory for 
centrifugation at 2,000  g  at +4   °   C for 10 min. The supernatant was pipetted off, gently mixed 
to avoid possible gradient effects, and aliquoted in polypropylene tubes that were stored at 
–80   °   C pending biochemical analyses, without being thawed and refrozen.

  The study participants as well as the AD CSF biomarker data in the clinical study have 
been reported previously  [41, 43–46] . The study consisted of 60 patients (30 men and 30 
women, all of Caucasian origin) admitted by their general practitioner for evaluation of 
cognitive impairment to a memory clinic in the region of Västra Götaland, Sweden. The 
patients were examined by a single specialized physician (P.J.) in 2000–2008. Inclusion 
criteria, besides being referred for evaluation of suspected dementia, were age 65–80 years, 
a body mass index (BMI) of 20–26, and a waist:hip ratio of 0.65–0.90 in women and 0.70–0.95 
in men. Exclusion criteria were serum creatinine >175 m M , diabetes mellitus, previous 
myocardial infarction, malignancy including brain tumor, subdural hematoma, ongoing 
alcohol abuse, medication with cortisone, and previous or present medication with acetyl-
choline esterase inhibitors. The study also included age-matched healthy controls (10 men 
and 10 women) recruited contemporaneously from the same geographical area among 
spouses of the included patients and by advertisements in local newspapers. The control 
subjects had no subjective symptoms of cognitive dysfunction and had similar exclusion 
criteria as the patients.

Control biomarker
profile

AD biomarker
profile

Subjects (men/women), n 31 (16/15) 10 (3/7)
Age, years 72 (70 – 79) 79 (73 – 85)
Aβ1 – 42, ng/l 779 (636 – 991) 354 (320 – 414)b

T-tau, ng/l 276 (170 – 332) 1,040 (665 – 1,110)b

P-tau181, ng/l 43 (28 – 49) 101 (85 – 147)b

UCH-L1, μg/l 4.5 (3.8 – 5 .3) 12 (7.6 – 14)b

P-tau231, pM 406 (314 – 495) 3,810 (2,870 – 5,070)b

DJ-1, μg/l 17 (9.3 – 31) 37 (26 – 52)a

NSE, μg/l 23 (16 – 29) 42 (38 – 56)b

 Data are given as median (interquartile range) unless otherwise 
indicated. Statistical differences were determined using nonparametric 
tests. a p < 0.01, b p < 0.0001 vs. control.

 Table 1.  Demographic data and 
biomarker levels from the pilot 
study for the patients with AD 
and controls based on the 
biomarker profile
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  All diagnoses were assessed by an independent specialized physician, as previously 
described  [41] . The presence or absence of dementia was diagnosed according to the Diag-
nostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), criteria. Patients 
with dementia were classified as suffering from AD  [47]  or vascular dementia (VaD) according 
to the requirements by NINDS-AIREN  [48]  or the guidelines by Erkinjuntti et al.  [49]  for the 
subcortical type of VaD. Frontotemporal dementia, PD dementia, and dementia with Lewy 
bodies (DLB) were diagnosed as described previously  [41] .

  Mild cognitive impairment (MCI) was diagnosed in the clinical setting in patients with 
cognitive impairment who did not fulfill the criteria for dementia  [50] . Patients with MCI 
were followed at least annually for a median of 3 (range 1–7) years to evaluate whether they 
later developed dementia. During the follow-up visits, 13 MCI patients remained in stable 
cognitive function (sMCI). Others progressed to dementia during the follow-up period and 
were diagnosed with AD (n = 7), VaD (n = 3), or frontotemporal lobe dementia (n = 1). MCI 
patients diagnosed with AD on follow-up visits did not differ in CSF levels of Aβ 1–42 , T-tau, or 
P-tau from patients with established AD at baseline. In total, the study population consisted 
of patients with AD dementia or with MCI diagnosed with AD dementia upon follow-up (n = 
32), patients with sMCI (n = 13), patients with other dementias (n = 15), and healthy controls 
(n = 20). The distribution of diagnoses in the other dementia group were VaD or MCI diag-
nosed with VaD upon follow-up (n = 10), DLB (n = 4), and MCI that later converted to fronto-
temporal lobe dementia (n = 1). Before the test day, a mini-mental state examination (MMSE) 
 [51]  was performed. 

  CSF Analyses 
 Measurements of the core AD biomarkers (Aβ 1–42 , T-tau, and P-tau 181 ) were performed 

using commercially available assays from Fujirebio, Ghent, Belgium [INNOTEST ®  
β-AMYLOID(1–42), INNOTEST ®  hTAU Ag, and INNOTEST ®  PHOSPHO-TAU(181P)]. For the 
clinical study, the core AD biomarkers were analyzed on one occasion using the same batch 
of reagents, which has previously been reported  [41, 43–46] . Furthermore, for the clinical 
study, CSF hemoglobin concentrations were measured using a human hemoglobin ELISA kit 
(Bethyl Laboratories, Inc.) according to the manufacturer’s protocol. For the clinical study, 
red blood cells (RBCs) were counted in most of the samples. Hemoglobin levels above 1,000 
ng/l  [52]  and/or more than 500 erythrocytes per μl were indicative of significant blood 
contamination. Only two of the 80 CSF samples in the clinical study fulfilled these criteria. 
However, these two samples were not excluded from the study since statistical analyses 
showed that our results were not affected by these two samples (data not shown).

  MILLIPLEX MAP Human Neurological Disorders Magnetic Bead Panel 1 HND1MAG-39K 
(Merck Millipore) was used for quantification of UCH-L1  (PARK5) , DJ-1  (PARK7) , NSE, P-tau 231 , 
NGF-β, and α-synuclein in accordance with the protocol provided by the manufacturer, and 
25 μl neat CSF was analyzed. DJ-1 levels <4.8 μg/l and levels of NSE >60 μg/l were set to 4.8 
and 60 μg/l, respectively. Samples were analyzed on a MAGPIX ®  system (Merck Millipore). 
Quality control (QC) samples (QC1 and QC2) analyzed in duplicate supplied by the manufac-
turer fulfilled the specified concentration levels. Coefficients of variation were <8% for all 
analytes. The levels of NGF-β and α-synuclein are not reported since they were below the 
detection limit in all CSF samples of both the pilot study and the clinical study.

  Statistical Analysis 
 Because the distribution of most analytes was skewed (Shapiro-Wilk test, p < 0.05), 

nonparametric statistics were used for the statistical analysis using SPSS version 20.0 statis-
tical software (SPSS Inc., Chicago, Ill., USA). Data are given, if not otherwise stated, as the 
median (interquartile range). Differences between more than two groups were assessed with 
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the Kruskal-Wallis test. If statistically significant (p < 0.05), the Mann-Whitney U test was 
then used for pairwise comparisons. The diagnostic value of each biomarker was assessed 
using receiver operating characteristic (ROC) curves with values of the area under the curve 
(AUC) and a 95% confidence interval (CI) calculated using GraphPad Prism 5 (GraphPad 
Software Inc., La Jolla, Calif., USA). The correlation coefficients (ρ) were calculated using the 
Spearman two-tailed correlation test. Significance was obtained if the two-tailed p value was 
<0.05.

  Statement of Ethics 
 The study was approved by the ethical committee of the University of Gothenburg, and 

informed consent was obtained from all participants. The study was conducted according to 
the Declaration of Helsinki.

  Results 

 Pilot Study 
 In the pilot study, CSF levels of all the analytes (UCH-L1, DJ-1, NSE, and P-tau 231 ) were 

significantly higher in the group with an AD biomarker profile (n = 10) than in the group with 
a control biomarker profile (n = 31) ( table 1 ).

  Clinical Samples 
 Demographic Results and CSF AD Biomarkers 
  Table 2  shows the demographic characteristics of the groups. In the clinical cohort, 

patients and controls were comparable in terms of age, gender, BMI, and waist:hip ratio. 
Patients with AD and other dementia had both significantly lower MMSE scores compared 
to controls. The core AD biomarkers for the clinical study have previously been reported  [41, 
43–45] . The AD group showed significantly higher CSF levels of T-tau and P-tau 181  than the 
control group, while the Aβ 1–42  concentration was significantly decreased ( table 2 ). CSF 
levels of P-tau 181  and Aβ 1–42  were also significantly altered in the other dementia group 
( table 2 ).

 Table 2. Demographic data and biomarker levels for the clinical study

Controls sMCI AD Other dementia

Subjects (men/women), n 20 (10/10) 13 (5/8) 32 (15/17) 15 (10/5)
Age, years 75 (70 – 78) 72 (69 – 74) 75 (71 – 77) 74 (72 – 77)
MMSE 29 (27 – 29)f 29 (27 – 29)f 23 (19 – 25)c 24 (20 – 26)c

Aβ1 – 42, ng/l 992 (786 – 1,038)f 671 (544 – 833)a, f 420 (336 – 493)c 404 (354 – 816)a

T-tau, ng/l 327 (223 – 398)f 270 (230 – 390)f 584 (434 – 747)c 311 (260 – 380)f

P-tau181, ng/l 65 (50 – 79)f 60 (38 – 74)f 98 (78 – 113)c 47 (36 – 63)a, f

UCH-L1, μg/l 7.2 (6.2 – 8.9)f 7.4 (5.1 – 8.9)e 11 (8.7 – 13)c 7.2 (5.8 – 9)f

P-tau231, pM 1,000 (900 – 1,200)f 1,200 (700 – 1,700)f 3,400 (2,700 – 3,850)c 1,500 (1,100 – 1,800)f

DJ-1, μg/l 19 (16 – 20) 14 (12 – 16) 17 (13 – 19) 7.1 (6.3 – 18)b, d

NSE, μg/l 40 (33 – 60) 33 (31 – 60) 50 (34 – 60) 30 (26 – 34)a, d

Data are given as median (interquartile range) unless otherwise indicated. Statistical differences were determined using 
nonparametric tests. The demographic data and the core AD biomarkers have previously been reported [41, 43 – 46]. a p ≤ 0.05, 
b p ≤ 0.001, c p ≤ 0.0001 vs. control; d p ≤0.05, e p ≤ 0.001, f p ≤ 0.0001 vs. AD. 
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  CSF Concentrations of UCH-L1, P-Tau 231 , DJ-1, and NSE 
 The CSF levels of UCH-L1 and P-tau 231  were significantly increased in patients with AD 

compared to controls, while these biomarkers were unaltered in other dementia and sMCI 
( fig. 1 a, b;  table 2 ). The CSF levels of DJ-1 and NSE were unchanged in the AD group, whereas 
they were significantly decreased in the group of other dementia compared to controls ( fig. 1 c, 
d;  table 2 ).

  ROC Curve Analysis 
 UCH-L1 and P-tau 231  could differentiate AD from controls with an AUC of 0.854 (95% CI 

0.746–0.963; p < 0.0001) and 0.915 (95% CI 0.813–1.018; p < 0.0001), respectively ( fig. 2 ). 
The AUC for the core AD biomarkers Aβ 1–42 , T-tau, and P-tau 181  were 0.938 (95% CI 0.865–
1.010; p < 0.0001), 0.909 (95% CI 0.833–0.986; p < 0.0001), and 0.844 (95% CI 0.736–0.954; 
p < 0.0001), respectively ( fig. 2 ). DJ-1 and NSE could differentiate other dementia from 
controls with an AUC of 0.835 (95% CI 0.679–0.990; p = 0.001) and 0.744 (95% CI 0.562–
0.927; p = 0.02), respectively.

  Correlation Analysis 
 None of the investigated CSF biomarkers correlated with age, MMSE score, or hemo-

globin concentration in either the control group or in patients with AD ( table 3 ). The levels of 
UCH-L1 correlated positively with the levels of P-tau 181 , P-tau 231 , DJ-1, and NSE in both the 
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  Fig. 1.  Individual values for UCH-L1 ( a ), P-tau 231  ( b ), DJ-1 ( c ), and NSE ( d ) in CSF samples from healthy con-
trols (cont) and patients with sMCI, AD, and other dementias (other). The lower, upper, and middle lines of 
the error bars correspond to the 25th and 75th percentiles and the medians, respectively. 
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control group and in AD patients ( table 3 ). Moreover, UCH-L1 levels correlated positively 
with T-tau in the AD group but not in the control group ( table 3 ). The levels of P-tau 231  corre-
lated positively with the CSF levels DJ-1 and NSE in AD patients but not in controls ( table 3 ). 
Finally, the CSF levels of P-tau 231  correlated positively with P-tau 181  and T-tau both in the 
control group and in patients with AD ( table 3 ).
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  Fig. 2.  ROC curve analysis for 
UCH-L1 (black), P-tau 231  (purple), 
Aβ 1–42  (blue), T-tau (yellow), and 
P-tau 181  (orange) in CSF samples 
for differentiation of AD patients 
(n = 32) from controls (n = 20) in 
the clinical study. AUC were 0.854 
(95% CI 0.746–0.963; p < 0.0001), 
0.915 (95% CI 0.813–1.018; p < 
0.0001), 0.938 (95% CI 0.865–
1.010; p < 0.0001), 0.909 (95% CI 
0.833–0.986; p < 0.0001), and 
0.844 (95% CI 0.736–0.954; p < 
0.0001), respectively.  

UCH-L1 P-tau231 DJ-1 NSE

Controls (n = 20)
Age n.s. n.s. n.s. n.s.
MMSE n.s. n.s. n.s. n.s.
Hemoglobin n.s. n.s. n.s. n.s.
Aβ1 – 42 n.s. n.s. n.s. n.s.
T-tau n.s. 0.792c n.s. n.s.
P-tau181 0.698c 0.835c 0.580b n.s.
UCH-L1 0.588b 0.506a 0.617b

P-tau231 n.s. n.s.
DJ-1 n.s.

AD (n = 32)
Age n.s. n.s. n.s. n.s.
MMSE n.s. n.s. n.s. n.s.
Hemoglobin n.s. n.s. n.s. n.s.
Aβ1 – 42 n.s. n.s. 0.383a n.s.
T-tau 0.588c 0.894c 0.673c 0.652c

P-tau181 0.526b 0.921c 0.636c 0.618c

UCH-L1 0.491b 0.658c 0.522b

P-tau231 0.597c 0.512b

DJ-1 0.400a

Correlations presented by the Spearman’s rank correlation 
coefficient (ρ). Nonsignificant (n.s.; p > 0.05) correlations were not 
reported. a p ≤ 0.05, b p ≤ 0.01, c p ≤ 0.001.

 Table 3. Correlation between 
age, MMSE, hemoglobin, and 
biomarker levels for the clinical 
study
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  Discussion 

 In both investigated CSF materials, we found that the levels of UCH-L1 and P-tau 231  were 
significantly increased in AD patients compared to controls, while these biomarkers were 
unaltered in other dementias and sMCI. Moreover, the separation of AD from controls was of 
similar magnitude when using these markers as when using the CSF core AD biomarkers 
(Aβ 1–42 , T-tau, and P-tau 181 ). In the clinical study, CSF levels of DJ-1 and NSE were unchanged 
in the AD group, whereas they were decreased in the group of other dementias compared to 
the controls.

  To our knowledge, this is the first study to assess the potential of UCH-L1 as a CSF 
biomarker for AD. UCH-L1, a neuronal-specific enzyme that is highly abundant in the brain 
 [8–10] , is one of the enzymes involved in the regulation of proteosomal degradation. During 
this process, normal proteins with short half-life or misfolded proteins are conjugated with 
ubiquitin, which destines them for proteosomal  [1, 10–12]  and/or lysosomal degradation  [2] . 
The UPS has previously been implicated in the pathogenesis of AD, and UCH-L1 is present in 
neurofibrillary tangles in the AD brain  [13, 53] . Several previous studies have reported 
increased CSF ubiquitin levels in AD patients  [23–26] , but little has previously been known 
of the CSF UCH-L1 level in AD. Our results show that the CSF UCH-L1 level is increased in AD 
and that CSF UCH-L1 can separate AD patients from controls with high diagnostic accuracy in 
a ROC curve analysis.

  The CSF UCH-L1 level did not only correlate with CSF levels of T-tau and P-tau, but there 
was also a positive correlation between CSF levels of UCH-L1 and NSE both in the AD group 
and in the controls. Both T-tau and NSE have previously been suggested to be general markers 
of damage to cortical nonmyelinated neurons  [27, 35] , which might indicate that our finding 
of an elevated CSF UCH-L1 level in AD to some extent reflects neurodegeneration. Recent 
reports suggest that UCH-L1 is released after brain damage caused by acute neurological 
insults such as traumatic brain injury and subarachnoid hemorrhage  [54, 55] . Therefore, the 
diagnostic accuracy of CSF UCH-L1 to separate AD from brain damage of other causes needs 
to be investigated in further studies. In contrast, P-tau might be a more specific marker for 
AD  [27] , since high CSF levels of P-tau have been found to correlate with the accumulation of 
cortical neurofibrillary tangles  [56, 57] . Thus, the positive correlation between CSF UCH-L1 
and CSF P-tau found in our study combined with previous findings that neurofibrillary tangles 
in AD are ubiquitinated  [4–7] , and that the numbers of neurofibrillary tangles in AD brains 
relate negatively to the level of soluble UCH-L1  [18] , support the hypothesis that the elevated 
UCH-L1 levels in AD could reflect a higher expression of UPS enzymes to compensate for a 
higher load of misfolded proteins. Furthermore, dysfunction of UCH-L1 in an animal model 
affected the biological function of tau as well as the phosphorylation of tau  [14] .

  The elevated P-tau 231  level in the AD group is in concordance with previous reports that 
both P-tau 231  and P-tau 181  are increased in AD  [58–60] . We also confirm that CSF levels of 
P-tau 231  and P-tau 181  correlate tightly  [58] , suggesting that these P-tau epitopes reflect the 
same pathogenic process and may be used interchangeably to measure brain neurofibrillary 
tangle load  [56, 57] . The results of a recent study suggested that P-tau 231  has a greater overall 
specificity for AD compared to P-tau 181   [30] . However, another study found a similar perfor-
mance for P-tau 231  and P-tau 181  in differentiating AD patients from controls, while P-tau 181  
performed better in differentiating AD from Lewy body dementia and P-tau 231  performed 
better in differentiating AD from frontotemporal dementia  [58] . Further studies are warranted 
to settle whether there is a difference in the diagnostic performance of P-tau 231  and P-tau 181  
to identify AD and other neurodegenerative disorders.

  DJ-1  (PARK7)  is genetically linked to PD  [31] . Even though the physiological function of 
DJ-1 has not fully been evaluated, it is thought to play a protective role during oxidative stress 
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 [32] . In accordance with previous reports, we found that the DJ-1 level was not changed in AD 
compared to controls  [33, 34] . NSE is a glycolytic enzyme present in neuronal and neuroen-
docrine cells and is associated with neurodegeneration  [27, 35] . Previous studies have shown 
conflicting results with reduced  [36] , increased  [35, 37, 38] , or unchanged  [39, 40]  CSF NSE 
levels in AD compared to controls. In the present study, CSF levels of NSE were unaltered in 
AD, whereas in patients with other dementias CSF levels of NSE as well as of DJ-1 were 
reduced. However, the other dementia group was heterogeneous with relatively few cases of 
each specific diagnosis such as VaD and DLB. Therefore, further studies are needed to explore 
the roles of NSE and DJ-1 in dementias other than AD.

  The present study represents the monocenter design of the clinical study with strictly 
defined procedures regarding lumbar puncture and laboratory assays. Patients and controls 
were matched in terms of age, gender, BMI, and waist:hip ratio, and none of the participants 
had diabetes mellitus or received treatment with acetylcholine esterase inhibitors or gluco-
corticoids. One limitation of the clinical study is the cross-sectional design, and changes over 
time could therefore not be studied. Furthermore, the lack of separation between AD patients 
and controls in terms of CSF NSE levels might be explained by NSE levels exceeding the highest 
allowed level being set to the highest standard concentration. Moreover, since both DJ-1 and 
NSE are abundant in RBCs, their CSF levels could be falsely elevated due to blood contami-
nation  [33, 61] . We investigated RBC contamination by assessment of the hemoglobin levels 
and RBC counting and found that only two samples were confounded by RBC contamination. 
These two samples were not excluded from the study since additional statistical analyses 
showed that these samples did not affect the final CSF result of DJ-1 and NSE. In addition, 
neither DJ-1 nor NSE correlated with CSF hemoglobin. Finally, the evaluated magnetic bead 
panel was not able to measure NGF-β or α-synuclein in any of the analyzed CSF samples. The 
QC samples provided by the manufacturer fulfilled the specified concentration levels, 
suggesting that the multiassay was not sufficiently sensitive to measure NGF-β and α-synuclein 
in our CSF samples.

  Conclusions 

 In this study, we evaluated a magnetic bead panel for neurological disorders. CSF UCH-L1 
and P-tau 231  levels were elevated in patients with AD compared to healthy controls. The 
elevated CSF levels of UCH-L1 might indirectly reflect disturbed proteosomal degradation or 
that it is released in response to general neurodegeneration in AD. In addition, the clinical 
study suggests UCH-L1 to be an additional CSF biomarker for AD and that CSF P-tau 231  has a 
high diagnostic accuracy for AD, suggesting that CSF P-tau 231  is a valid alternative to CSF 
P-tau 181 . CSF levels of DJ-1 and NSE were decreased in the other dementia group, but this 
group was relatively small, and further studies are needed to clarify the role of DJ-1 and NSE 
in dementing disorders other than AD.
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