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Purpose: To develop a diagnostic model for histological subtypes in lung cancer
combined CT and FDG PET.

Methods: Machine learning binary and four class classification of a cohort of 445 lung
cancer patients who have CT and PET simultaneously. The outcomes to be predicted
were primary, metastases (Mts), adenocarcinoma (Adc), and squamous cell carcinoma
(Sqc). The classification method is a combination of machine learning and feature
selection that is a Partition-Membership . The performance metrics include accuracy
(Acc), precision (Pre), area under curve (AUC) and kappa statistics.

Results: The combination of CT and PET radiomics (CPR) binary model showed more
than 98% Acc and AUC on predicting Adc, Sqc, primary, and metastases, CPR four-
class classification model showed 91% Acc and 0.89 Kappa.

Conclusion: The proposed CPR models can be used to obtain valid predictions of
histological subtypes in lung cancer patients, assisting in diagnosis and shortening the
time to diagnostic.
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INTRODUCTION

Differentiation of histological types of lung cancer is the base for its treatment. Biopsy is the most
important part of diagnostic pathology. It can make clear histopathological diagnosis for the vast
majority of cases, which is regarded as the final clinical diagnosis (1), but it is traumatic and costly.
Radiomics is a cost-effective method to predict histological subtypes in lung cancer by using images
features as the markers (2–5).

The workflow of radiomics includes image acquisition, image preprocessing, volume of interest
segmentation, feature extraction, feature selection, model building and validation. Sollini et al. has
comprehensively and clearly reported the methodological aspects of the radiomics workflow and
possible pitfalls (2, 3). In particular, for image types, different types of medical images have different
advantages. For example, CT image has higher density resolution, PET has high sensitivity and
specificity, it can show the lesion when it is in the early stage of molecular level changes.
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This paper tests the hypothesis that the combination of CT
and PET radiomics (CPR) features has a better classification
ability than CT-based radiomics (CTR) or PET-based radiomics
(PETR). To invest the evidence of that, we built 24 classifiers
to compare the performance of CTR, PETR, and CPR. This
study is the first radiomics study combining CT and PET, it
is also the first radiomics study to predict adenocarcinoma
(Adc), squamous cell carcinoma (Sqc), and metastases (Mts)
simultaneously (four-class classification).

MATERIALS AND METHODS

This study was approved by the institutional Ethics Committee.
The tool used for statistical analysis was WEKA (Frank E. et al.,
presented at the 2009 Data mining and knowledge discovery
handbook) (Weka v3.8.3, Hamilton, New Zealand).

Patients
We used a public data set of radiomics features, consists of 534
patients with lung cancer (5). We selected 445 patients who
have both CT and PET images, including 168 Adc, 129 Sqc, 81
Mts, and 67 other primary lung cancer types (Oth). For this
data set, the patient characteristics and radiomics features are
available. The inclusion criteria were: (a) age >18 years and
(b) histological diagnosis of either primary or metastatic tumor
obtained from CT-guided biopsy, endobronchial ultrasound-
guided biopsy, videothoracoscopy or surgical removal of a
lung lesion (5). The exclusion criteria were: (a) inconclusive
histology from an inadequate biopsy sample, (b) diagnosis of
non-malignancy, and (c) FDG uptake below or comparable
to background activity within the parenchyma of the healthy
lung (5).

Image Acquisition, Segmentation, and
Texture Computation
Imaging protocol and image processing approaches have
been described in detail, according to the Image Biomarker
Standardisation Initiative (IBSI) reporting guidelines (5). FDG
PET/CT images were collected by PET/CT scanner 60 ± 5 min
after injection of FDG, the fixed dose ranged from 350
to 550 MBq. PET image reconstruction methods included
iterative and time of flight. The PET resolutions were
5.3 mm × 5.3 mm × 2.0 mm and 2.7 × 2.7 × 3.27,
CT resolutions were 0.98 mm × 0.98 mm × 4.0 mm and
1.37 mm × 1.37 mm × 3.27 mm. PET images were corrected for
attenuation using the acquired CT data, The volume of interest
(VOI) of lung lesion was automatically defined on PET images,
and the threshold value is 40% of the maximum standard uptake
value (SUVmax) (5).

The texture features of CT and PET images under the same
VOI are calculated by lifex software package[], 43 features were
extracted from PET image and 41 from CT image, LIFEx package
calculates texture features for VOIs of at least 64 voxels, the CT-
based radiomics features were studied within 534 patients (CT
datasets), the PET data set consisted of 482 patients. The average
size of the lesions was 1.64 ± 0.78 cm (range 0.49–5.23 cm)
(5). There are 37 features in CTR features, which are the same

TABLE 1 | Training set and test set of CT, or PET for binary and four-class
classification.

Training set Test set

*Binary classification

Adc vs. NAdc 131 vs. 221 37 vs. 56

Sqc vs. NSqc 103 vs. 249 26 vs. 67

Primary vs. Mts 287 vs. 65 77 vs. 16

Four-class classification

Adc vs. Sqc vs. Mts vs. Oth 131 vs. 103 vs. 65 vs. 53 37 vs. 26 vs. 16 vs. 14

*Adc, Adenocarcinoma,Sqc, squamous cell carcinoma,Mts, metastases, NAdc,
not adenocarcinoma, NSqc, not squamous cell carcinoma.

TABLE 2 | Binary classification results on test set*.

Performance 1CTR (RF) 2PETR (RF) 3CPR (SMO)

(a) Adc vs. NAdc

Accuracy 81.6 85.0 100.0

True positive rate 0.81 0.89 1.00

True negative rate 0.82 0.80 1.00

Mean of precision 0.88 0.85 1.00

AUC 0.90 0.95 1.00

Performance CTR PETR CPR

(b) Sqc vs. NSqc

Accuracy 76.3 83.4 98.5

True positive rate 0.94 0.90 0.97

True negative rate 0.57 0.77 1.00

Mean of precision 0.80 0.84 0.99

AUC 0.89 0.94 0.99

(c) Primary vs. Mts

Accuracy 86.6 80.9 98.0

True positive rate 0.96 0.92 0.96

True negative rate 0.75 0.69 1.00

Mean of precision 0.88 0.82 0.98

AUC 0.98 0.94 0.98

*Adc, Adenocarcinoma, Sqc, squamous cell carcinoma, Mts, metastases, NAdc,
not adenocarcinoma, NSqc, not squamous cell carcinoma. 1CT-based radiomics
(with Random Forest classification). 2PET-based radiomics (with Random Forest
classification). 3The combination of CT- and PET-based radiomics (with Sequential
minimal optimization classification). The best performance metrics for each
classification are highlighted in bold.

as PETR features. The same features include volume, geometry-
based and histogram-based features, gray level co-occurrence
matrix, neighborhood gray level difference matrix, gray level run
length matrix, and gray level zone length matrix. CTR and PETR
have different basic features.

Analysis
Feature Selection and Normalization
In order to select features with good repeatability and
reproducibility, and to avoid over fitting. We studied the related
researches about the stability of radiomics features. According to
the study results of stability and reproducibility of the radiomics
features (6, 7), we selected 2 CTR features, Skewness and Kurtosis
based on histogram, 2 PETR features, SUVmean and SUVmax.
The 2 CTR features were assessed by compatibility ratios (>80%)

Frontiers in Oncology | www.frontiersin.org 2 September 2020 | Volume 10 | Article 555514

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-555514 September 12, 2020 Time: 19:23 # 3

Yan and Wang Diagnose Lung Cancer Types Noninvasively

FIGURE 1 | ROC curves obtained by binary classification models. The black
diagonal line in the diagram is the random line which is the worst possible
performance a model can achieve. CTR is CT-based radiomics, PETR is
PET-based radiomics, CPR is the combination CTR and PETR. (A) Predicting
lung adenocarcinoma from lung cancer patients. (B) Predicting squamous cell
carcinoma from lung cancer patients. (C) The distinction between metastatic
lung cancer and primary lung cancer.

TABLE 3 | Four-class classification on test set.

Performance 1CTR (RF) 2PETR (RF) 3CPR (SMO)

Accuracy (%) 62.9 79.1 91.2

True rate for:

Adc 0.73 0.89 0.89

Sqc 0.46 0.62 0.85

Mts 0.75 0.81 1.00
4Oth 0.57 0.71 0.93

Precision for:

Adc 0.57 0.79 0.90

Sqc 0.50 0.67 0.94

Mts 0.73 0.79 1.00

Oth 0.76 0.91 0.94

Kappa 0.50 0.71 0.89

1CT-based radiomics (with Random Forest classification). 2PET-based radiomics
(with Random Forest classification). 3The combination of CT- and PET-based
radiomics (with Sequential minimal optimization classification). 4Other primary lung
cancer types. The best performance metrics for each classification are highlighted
in bold.

based on t-test, which have a good reproducibility against slice
thickness. And the 2 PETR features were assessed by meta-
analysis of 21 studies, which also have a good reproducibility
against slice thickness.

The selected radiomics features were normalized to a Z-score.

Model Building and Performance Evaluation
Firstly, the study is divided into binary classification and four-
class classification experiments. Binary classification experiments
include the prediction of lung adenocarcinoma from lung
cancer patients (T1), the prediction of squamous cell carcinoma
from lung cancer patients (T2), and the distinction between
metastatic lung cancer and primary lung cancer (T3). Four-
class classification experiment is used to predict the lung cancer
histological type (T4), including lung adenocarcinoma, lung
squamous cell carcinoma, metastatic lung cancer, and other
histological types of lung cancer. Each experiment randomly
divided the data set into training set and test set by 8:2, repeatedly
dividing the whole data set until the distribution of the data sets
is the same. Finally, set the two data sets as training set and
test set. Table 1 shows the size of training set and test set for
each experiment.

Secondly, in order to maximize the use of existing data, the
data set classes should be balanced before model building. We
reweighed the instances in the data so that each class has the same
total weight (Classbalancer in Weka). This method can keep data
balance without deleting cases.

Then the partition-Membership filter (PMF,
PartitionMembershipFilter with option Random Committee in
Weka) used to transform the normalized 2 PETR and 2 CTR
features into sparse instances to improve the model performance
(34, 35).

Finally, the transformed features were input into two machine
learning classifiers, ensemble learning classifier Random Forest
(RandomForest with options -K 0 -M 1.0 -V 0.001 -S 1 in Weka)
and Sequential Minimal Optimization (SMO with options -C 1.0
-L 0.001 -P 1.0E-12 -N 1 -V-1 -W 1 -K in Weka) with 10-folds
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cross validation. The performance metrics of the classification
model include accuracy (Acc), precision (Pre), area under curve
(AUC) and kappa statistics.

RESULTS

Data Size
Table 1 shows the data size for each model. Each classification
experiment consists of 445 patients and no one deleted. NAdc
(not Adc), consists of Sqc, Mts and others primary lung cancer
types. NSqc (not Sqc), consists of Adc, Mts and others primary
lung cancer types.

Binary Classification Models
Table 2 and Figure 1 show the results of binary Classification
models on the test set. CPR has the performance on Adc/NAdc,
Sqc/NSqc, and Primary/Mts. It is because the combination of CT
and PET have more information than using CT or PET only.
Tables 2(a) and (b) show the performance of PETR is better
than CPR on Adc/NAdc and Sqc/NSqc. it can be inferred that
PETR features can differentiate Adc and Sqc well (AUC >the
0.94). Table 2(c) shows CTR is better than PETR on Adc/Sqc,
it can be inferred that CTR features have better performance on
differentiating Pre from Mts (AUC = 0.98).

However, it is important to diagnose primary from Mts, Adc
from NAdc, and Sqc from NSqc so that the patients will get
treatment earlier. Table 2 shows our CPR models achieved an
Acc ratio of 100% on Adc/NAdc, 97% on Sqc/NSqc, 96% on
primary/Mts, which are acceptable to apply to clinical diagnosis.

Four-Class Classification Models
Table 3 shows the model performance of predicting Adc, Sqc,
and Mts simultaneously. CPR has the best performance, followed
by PETR. Kappa coefficient is used to evaluate the model
classification ability comprehensively, CPR performs almost
perfect with the 0.89 kappa. The four-class CPR model performs
well in identifying Adc, Sqc, and Mts since its true rate and
precision are both high (more than 85%). Especially the Acc and
primary for Mts are 100% which means all of our predictions as
Mts are true Mts, and among all true Mts, our four-class model
successfully predicted 100% of them. The Acc and primary of
CPR are higher than that of CTR and PETR, it is reasonable since
CPR combines the Identification ability CTR and PETR. Table 3
also shows PETR can show more information on expressing lung
cancer Histological types.

DISCUSSION

The CPR models, both binary and four-class classifiers, are
reliable to diagnose Pre, Mts, Adc, and Sqc according to the model
performance on the test set. In practical application, in order
to improve accuracy and reduce run time, we suggest using the
four-class CPR model for initial identification and then using the
binary models for confirmation. This model can not only help
non-invasive diagnosis and support individualized treatment but
also can be used as household equipment as long as there are
CT and PET images.

Standardized uptake values (SUV) can quantify the differences
between repeated measurements, between different scanners, as
well as between centers in multicenter trials of PET images
(7). It also has good repeatability and reproducibility for
radiomics analysis. Kurtosis reflects the shape of the gray-level
distribution (peaked or flat) relative to a normal distribution, and
Skewness is the asymmetry of the gray-level distribution in the
histogram. The four features not only have good repeatability and
reproducibility but also have a great classification ability for lung
cancer histological subtypes.

Many studies have shown that radiomics features have great
potential to be the maker for tumor phenotype (8–17), and
found Adc can be differentiated from Sqc by radiomics (17–23).
However, The data sets of those studies only included Adc and
Sqc, that is to say, the accuracy of those models will be affected by
other histological subtypes of lung cancer.

In this study, lung cancer patients with various histological
subtypes were included in the patient cohorts. We used stratified
random sampling to balance the covariates. In feature selection,
we selected 2 CTR features, Skewness and Kurtosis (6) based on
histogram, and 2 PETR features, SUVmean and SUVmax (7),
with high reproducibility for slice thickness condition changes.
The study of stability and reproducibility of the radiomics
features (6, 7, 24–31) shows multiple parameter changes (e.g.,
slice thickness) in general produces greater measurement errors.
In this case, the selected 4 features only have good reproducibility
against slice thickness. This is also consistent with the studies of
Meyer et al. (32) and Sosna (33), who found fewer reproducible
radiomic features mean better reproducibility within the same
patient. In model selection, both RF and SMO have good
robustness and generalization ability.

There are some limitations. First, applying the proposed CPR
models should follow the same imaging parameters. Second, CPR
models need external validation. Last, the data set we used was
from public data sets, so we can not accurately estimate the size
and direction of systematic bias.

In conclusion, the proposed CPR models can be used to obtain
valid predictions of histological subtypes in lung cancer patients,
assisting in diagnosis and shortening the time to diagnostic.
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