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The role of the Pseudomonas
aeruginosa hypermutator
phenotype on the shift from
acute to chronic virulence
during respiratory infection

Kalen M. Hall1,2, Zachary F. Pursell2 and Lisa A. Morici1*

1Department of Microbiology and Immunology, Tulane University School of Medicine, New
Orleans, LA, United States, 2Department of Biochemistry and Molecular Biology, Tulane University
School of Medicine, New Orleans, LA, United States
Chronic respiratory infection (CRI) with Pseudomonas aeruginosa (Pa) presents

many unique challenges that complicate treatment. One notable challenge is

the hypermutator phenotype which is present in up to 60% of sampled CRI

patient isolates. Hypermutation can be caused by deactivating mutations in

DNAmismatch repair (MMR) genes includingmutS,mutL, and uvrD. In vitro and

in vivo studies have demonstrated hypermutator strains to be less virulent than

wild-type Pa. However, patients colonized with hypermutators display poorer

lung function and a higher incidence of treatment failure. Hypermutation and

MMR-deficiency create increased genetic diversity and population

heterogeneity due to elevated mutation rates. MMR-deficient strains

demonstrate higher rates of mucoidy, a hallmark virulence determinant of Pa

during CRI in cystic fibrosis patients. The mucoid phenotype results from

simple sequence repeat mutations in the mucA gene made in the absence of

functional MMR. Mutations in Pa are further increased in the absence of MMR,

leading to microcolony biofilm formation, further lineage diversification, and

population heterogeneity which enhance bacterial persistence and host

immune evasion. Hypermutation facilitates the adaptation to the lung

microenvironment, enabling survival among nutritional complexity and

microaerobic or anaerobic conditions. Mutations in key acute-to-chronic

virulence “switch” genes, such as retS, bfmS, and ampR, are also catalyzed by

hypermutation. Consequently, strong positive selection for many loss-of-

function pathoadaptive mutations is seen in hypermutators and enriched in

genes such as lasR. This results in the characteristic loss of Pa acute infection

virulence factors, including quorum sensing, flagellar motility, and type III

secretion. Further study of the role of hypermutation on Pa chronic infection

is needed to better inform treatment regimens against CRI with

hypermutator strains.
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Introduction

Pseudomonas aeruginosa (Pa) is a ubiquitous Gram-negative

bacterium known to cause a wide range of opportunistic

infections, including respiratory, wound, urinary tract, surgical

site, and bloodstream infections. Pa has been designated a global

threat due to increasing rates of multidrug resistant nosocomial

infections, but it has long been known as the primary cause of

morbidity and mortality in cystic fibrosis (CF) patients (Rajan,

2002). CF is an autosomal recessive disorder caused by over 2,000

documented variants in the CF transmembrane conductance

regulator (CFTR) gene, leading to multisystem pathology

(Bergeron and Cantin, 2019). The disease affects over 30,000

people in the United States and has a poor prognosis with a

median age of death of 34 (Cystic Fibrosis Foundation, 2021). In

the lungs, altered CFTR function leads to thick mucosal secretions

which create a unique hospitable environment for microbes

(Ciofu et al., 2013). Patients become colonized in the respiratory

tract in ages as early as 1 with bacteria such as Pa, Staphylococcus

aureus, Haemophilus influenzae, and Stenotrophomonas

maltophilia, but Pa predominates by age 18 (Rajan, 2002; Cystic

Fibrosis Foundation, 2021). Chronic respiratory infection (CRI)

with Pa leads to excessive inflammation and eventual tissue

necrosis and lung failure (Ciofu et al., 2013).
CRI with Pa in the context of the CF lung poses many unique

challenges for treatment. The infection is characterized by the Pa

mucoid phenotype, high levels of drug resistance, persistence, and a

shift from an acute to a chronic virulence state resulting in treatment

failure. During CRI, Pa downregulates the virulence factors needed

for establishment of acute infection, including LasR-mediated

quorum sensing, type III secretion, twitching motility and adhesion

mediated by flagella and pili. Instead, Pa expresses factors that favor

persistence in the CF lung such as alginate overproduction, biofilm

formation, and alternate metabolic pathways (Smith et al., 2006;

Bragonzi et al., 2009). In the chronic virulence state, alginate

overproduction, or “mucoidy”, in particular leads to greater

regional lung inflammation and impairs both host immune

defenses and therapeutic treatments (Malhotra et al., 2019).

Another challenge is the high prevalence (up to 60% of

sampled patients) of hypermutator (defined as having 20-fold

higher mutants per total viable cells than wild-type) strains in

chronic Pa CF lung infections, which are overwhelmingly caused

by deactivating mutations in the DNA mismatch repair (MMR)

genes such as mutS, mutL, and uvrD (Table 1) (Oliver et al.,
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2000; Oliver et al., 2002a; Hogardt et al., 2006). Hypermutator

isolates deficient in the GO system are very rarely observed, but

most isolates to be complemented with GO system genes such as

mutT or mutM (Oliver et al., 2002b) The bacterial DNA MMR

system is responsible for repairing replicative insertion or

slippage errors that were not corrected by DNA polymerase

proof-reading activity (Kunkel and Erie, 2005; Iyer et al., 2006).

In the absence of MMR, mutations are biased towards T>C and

C>T transitions and insertion-deletions (indels) in

homopolymers, implicating genes containing these sequences

as mutational hotspots in hypermutators (Lee et al., 2012;

Marvig et al., 2013). Hypermutators are thought to be so

prevalent in CRI because of the positive co-selection of the

resulting adaptive mutations consequent of MMR-deficiency

(Gutié rrez et al., 2004). Induction of the hypermutator

phenotype has been associated with chronic oxidative stress

and with chronic antibiotic treatment (Ciofu et al., 2005;

Dößelmann et al., 2017). Hypermutators appear to be

associated with chronicity of infection, as none were found

until 5 years after the onset of infection in a sample of CF

isolates and are incredibly rare in acute infection isolates (<1%)

(Gutié rrez et al., 2004; Ciofu et al., 2005). In addition, patients

colonized with hypermutators are reported to have poorer

patient lung function measured via percent forced expiratory

volume and mean forced expiratory volume per forced vital

capacity (Waine et al., 2008; Ferroni et al., 2009). Colonization

with hypermutators is also associated with greater instance of

multidrug resistance and treatment failure (Macıá et al., 2005).

Despite these trends in clinical data, mutS-knockout strains

of Pa are outcompeted by wild-type in vitro and in vivo murine

models. Strains deficient in MutS also display attenuated

virulence and reduced capacity for colonization (Mena et al.,

2007; Montanari et al., 2007). Clinical data has long suggested

the independent emergence of hypermutators in CF patients, but

recent phylogenetic analyses of widespread clonal lineages of Pa

CF isolates demonstrated evidence for interpatient transmission

(Oliver and Mena, 2010; López-Causapé et al., 2017). The

discrepancy between clinical and experimental observations

suggests that the hypermutator phenotype may be critical for

bacterial adaption or survival during CRI. High mutation rates

have been shown to be beneficial in early colonization and

mutator alleles can become fixed in a fraction of the

population due to their evolutionary advantage, even though

randomly occurring deleterious mutations at secondary sites can
TABLE 1 Pa MMR genes and their respective functions, along with common point mutation positions resulting in protein inactivation (Oliver
et al., 2002a; Hogardt et al., 2006; On and Welch, 2021).

Gene Product function Conserved residues resulting in loss-of-function

mutS DNA mismatch/short indel recognition A187, F653, R842, K852

mutL Endonuclease, nicks daughter strand (methylation-independent) K307

uvrD DNA helicase, unwinds double helix to allow for damage removal A31, G32, G36
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be disadvantageous (Taddei et al., 1997; Giraud et al., 2001).

Hypermutation has also been observed in S. aureus, H.

influenzae, Escherichia coli, Salmonella enterica and Neisseria

meningitidis, possibly implicating it as a conserved mechanism

for rapid adaptation (LeClerc et al., 1996; Matic et al., 1997;

Sniegowski et al., 1997; Richardson et al., 2002; Prunier et al.,

2003; Román et al., 2004).

In this review, we examine the role of the Pa hypermutator

phenotype (caused by MMR-deficiency) found in CRI in the

shift from the acute to chronic virulence state (summarized in

Figure 1). We will describe how hypermutation allows for

genetic population heterogeneity and phenotypic diversity and

how MMR-deficiency catalyzes the establishment of the most

common mutantmucA22 allele causing mucoidy (Moyano et al.,

2007). Hypermutation allows for the rapid adaptation to the CF

lung microenvironment via mutations in metabolic pathways

allowing for survival in the high amino acid content and

microaerobic conditions. In addition, mutations in master

transcriptional regulators act as ‘switches’ that shift Pa from

the acute to the chronic virulence state. Hypermutators are

strongly associated with pathoadaptive loss-of-function

mutations in acute virulence genes that contribute to the

transition of virulence state as well.

Hypermutation creating population
heterogeneity and
phenotypic diversity

A hallmark of Pa CRI is a phenomenon known as adaptive

radiation that contributes to Pa persistence in the CF lung. Due
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to its large genome size (>6 Mb) and sophisticated networks of

transcriptional regulation, a single parent Pa strain has the

capacity to occupy specific environmental niches via

divergence into adapted sublineages (Stover et al., 2000;

Klockgether et al., 2011; Markussen et al., 2014). These

sublineages differ at the genomic and phenotypic levels but

coexist creating a heterogenous population (Chung et al., 2012;

la Rosa et al., 2018). Nutritional complexity and high mucin

levels in CF airways alone are sufficient to drive Pa’s divergence

into sublineages and phenotypic diversity, but this

diversification is even further enhanced by host immune

pressure and competitor microbial species (Schick and Kassen,

2018; la Rosa et al., 2019). Whole genome sequencing of isolates

derived from CF patients has revealed that an initial colonizing

strain of Pa undergoes a period of rapid adaptation followed by a

long period of genetic drift with minor changes. This is seen in

non-mutator Pa populations in CF airways with a reported

mutation rate of 7.2 x 10-11 single nucleotide polymorphisms

(SNPs) per base pair (bp) per generation (Yang et al., 2011).

Hypermutation creates greater genetic diversity in a Pa

population, allowing for further phenotypic diversity and

driving evolution (Mena et al., 2008). Laboratory evolution

experiments with a MutS-deficient Pa strain showed

significantly greater diversification of colony morphology that

demonstrate increased antibiotic resistance and decreased

cytotoxicity similar to CF isolates (Smania et al., 2004).

Hypermutation affecting genetic and phenotypic diversity is

observed extensively in clinical isolates. MutS-deficient paired

isolates differed by 344 SNPs and 93 indels, compared to 54

SNPs/38 indels and 1 SNP/8 indels of two pairs of wild-type
FIGURE 1

MMR-deficiency catalyzes the shift from an acute to chronic P. aeruginosa virulence state. Once MMR is lost in the initial colonizing strain, many
adaptive pathways can be exploited by Pa via high mutation rates. The variants with mutations favoring the chronic virulence state confer
advantages for long-term survival and persistence under the strong selective pressures of the CF lung.
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isolates from different patients (Chung et al., 2012). A

longitudinal genetic analysis of 13 isolates from an

Argentinian patient and 14 isolates from a Danish patient

revealed sublineages with extensive intra-patient genomic

diversity (Feliziani et al., 2014). Hypermutators comprised

90% of the heterogenous population of isolates from both the

Argentinian and Danish patient, indicating that they dominate

and outcompete non-mutator isolates under CF airway selective

pressures. The reported in vivo mutation rate of the populations

was 100 SNPs/year, which is 40-fold higher than non-mutator

isolates. Characteristic of adaptive radiation, genomic variation

showed coexistence of equally fit subpopulations that arose from

multiple evolutionary events. Parallel convergent evolution

across sublineages and patient populations indicate

hypermutation can target genes that optimize fitness in the CF

airway independent of geography (Feliziani et al., 2014). A

retrospective study of the DK2 clone type (a lineage of Pa

strains causing chronic infection in Danish CF patients) and

its transmission events and subsequent divergence into intra-

patient sublineages also demonstrated parallel evolution in genes

related to antibiotic resistance, regulatory functions, and the cell

envelope, which is thought to play a role in immune evasion.

Many of these genes contained homopolymers, which are known

MMR-deficiency mutation hotspots, and the number of

mutations accumulated correlated with homopolymer run

length (Marvig et al., 2013). This has been expanded upon

with another analysis of longitudinally collected CF isolates

containing many hypermutators that showed parallel

convergent evolution in genes involved in central metabolism

and virulence factors (Marvig et al., 2015).
The shift to mucoidy and
biofilm development

Mucoidy is a unique characteristic of CRIs with Pa and is

caused by the overproduction of the exopolysaccharide alginate.

Pa’s conversion to mucoidy during CRI is mostly caused by

inactivating mutations in mucA (~85%), a negative regulator of

sigma factor algU. Disruption of MucA leads to constitutive

expression of AlgU and alginate biosynthesis (Martin et al., 1993;

Boucher et al., 1997). The mucoid phenotype is highly virulent

and is associated with chronic infections, increased

inflammation, and increased patient mortality (Malhotra et al.,

2019). Alginate overproduction aids Pa in evading macrophage

killing via scavenging of free radicals (Simpson et al., 1989).

Alginate also interferes with antibody-independent opsonic

killing and Th1-mediated killing (Pier et al., 2001). Alginate

expression is associated with increased pro-inflammatory

cytokines that exacerbate tissue damage and pathology (Song

et al., 2003).

Pa mucoid isolates are more likely to be hypermutators than

non-mucoid isolates, demonstrating an association between the
Frontiers in Cellular and Infection Microbiology 04
two phenotypes (Waine et al., 2008). This could be because both

phenotypes are associated with chronic infection. However, in

vitro data suggests that hypermutation could be driving mucoid

conversion. A MutS-deficient Pa strain showed significantly

increased emergence of mucoid mutants when cultured in

vitro compared to wild-type. This was associated with a single

base deletion in a run of five consecutive guanines (G5-SSR426).

This deletion causes a frameshift and results in an inactivated

mutant allele (mucA22), which is observed in up to 40% of

mucoid CF isolates (Bragonzi et al., 2006; Moyano et al., 2007).

A forward mutation model of mucA demonstrated a critical role

of G5-SSR426 in mucoid conversion in MMR-deficient cells and

emphasized homopolymers as a main target for hypermutators

(Moyano and Smania, 2009). It is important to note that mucA

mutations have been found to occur prior to MMR-inactivating

mutations, and that no statistically significant link could be

established between hypermutability and mucA mutations in

two studies: one assessing 70 samples from 10 CF patients and

another with 38 isolates from 26 CF patients (Ciofu et al., 2010;

Feliziani et al., 2010). Together, these data suggest that

hypermutation is not a prerequisite for mucoidy but may drive

conversion when present.

Alginate overproduction also plays a key role in Pa biofilm

formation and architecture (Nivens et al., 2001; Ghafoor et al.,

2011). In addition to mucoid conversion, hypermutators also

show high rates of missense mutations in bfmS, a sensor

histidine kinase that negatively regulates bfmR which is

responsible for biofilm maturation (Cao et al., 2020). Biofilms

display increased resistance to antibiotics and phagocytosis and

worsen inflammation during CRI. Biofilms also display

increased mutagenesis, promoting adaptation to the CF lung

(Høiby et al., 2010). However, sequencing of 12 isolates of the

DK2 lineage, all deemed to be non-mutators, showed no increase

in mutation rate in biofilms (Yang et al., 2011). Mutagenesis data

obtained in situ with biofilms implicates the importance of

microcolonies. MMR-deficient Pa showed enhanced

microcolony formation and growth, and the mutation rates in

the microcolonies were elevated compared to planktonic forms

(Conibear et al., 2009). This implicates hypermutability in Pa’s

exceptional capacity to adapt as a biofilm.
The adaptation to the CF
lung microenvironment

Hypermutation aids in survival in
complex nutritional environment

The CF lung poses a unique and complex environment in

terms of bacterial nutrient uptake and survival as it is comprised

of high amounts of mucin, lipids, and amino acids (Thomas

et al., 2000). Thick mucosal secretions also create pockets of

hypoxia within the airways, creating unusual microaerobic to
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anaerobic bacterial growth conditions (Worlitzsch et al., 2002).

A longitudinal study of sequential isolates of the DK2 clone

family revealed oxygen metabolism as a hotspot for adaptive

evolution (la Rosa et al., 2018). A transcriptomic and proteomic

analysis of 13 sequential isolates including both MMR-deficient

hypermutators and MMR-intact non-mutators revealed key

metabolic adaptation catalyzed by hypermutation. Transcripts

of genes involved in the anaerobic arginine deaminase pathway,

such as oprF, azu, ccpR, aotJ, and braC, were increased in

mutators. This pathway allows for production of adenine

triphosphate using amino acid arginine under low oxygen

conditions, suggesting the hypermutators were well adapted to

the rich amino acid content and hypoxia in the CF lung.

Interestingly, OprF has been implicated in biofilm viability in

anaerobic environments, and Azu and CcpR protect against

reactive nitrogen species released as byproducts of anaerobic

respiration (Foote et al., 1992; Hassett et al., 2002; Yoon et al.,

2002). Expression of genes in the arginine succinyltransferase

pathway, which converts arginine into TCA cycle intermediates,

was also increased in hypermutators. Genes needed for lipid

metabolism (PA2886-93, foaAB, acpP, accB, and fabI) were also

highly up-regulated in hypermutators. Gene expression profiles

differed between hypermutators but showed a signature of

convergent parallel evolution on these gene sets, suggesting

adaptive evolution (Hoboth et al., 2009). Adaptive laboratory

evolution of a hypermutator CF isolate showed overexpression

of nos, nor, and nir operons due to RpoN overexpression which

can mitigate toxic effects of anaerobic respiration as a vital

adaptive event. Reversion to acute phenotype during

laboratory evolution also showed upregulation in cioA and

cioB needed for aerobic respiration (la Rosa et al., 2021).

Genomic analysis of longitudinal hypermutator isolates

showed parallel reductive evolution in catabolism pathways,

resulting in a high number of auxotrophies, thought to serve

as an energy conservation mechanism due to the rich amino acid

environment in the CF airway (Feliziani et al., 2014).
Hypermutation catalyzes mutagenesis in
master transcriptional regulators

Pa employs a large arsenal of virulence factors that are

tightly controlled by a complex network of transcription

factors to minimize unnecessary energy expenditure

(Balasubramanian et al., 2013). Transcriptional plasticity has

been implicated in the flexibility of Pa to occupy many

environmental niches and to persist in chronic CF lung

infections (Rossi et al., 2018). Hypermutator strains have been

documented to have many nonsynonymous mutations in master

transcription regulators that mediate the switch from an acute to

chronic virulence state. Inactivating mutations in lasR (a master

quorum sensing regulator) are highly correlated with

hypermutability in CF isolates (Whiteley et al., 1999;
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Bjarnsholt et al., 2010). LasR mutants are associated with

chronic infection and poorer patient outcome similar to

hypermutability (Hoffman et al., 2009). MutS-deficient Pa

displayed significant emergence of LasR-mutants caused by

indel frameshifts compared to wild-type in vitro (Luján et al.,

2007). It is important to note that, like MucA, LasR mutants

have been observed before MMR-deficiency, so it is not a

requirement (Ciofu et al., 2010).

Additional common loci for mutation in hypermutator

strains are gacS and retS that regulate the Gac/Rsm signaling

pathway. GacS negatively regulates the pathway and promotes

expression of type VI secretion and Pel polysaccharides.

Through upregulation of small regulatory RNAs RsmY and

RsmZ, GacS activity also downregulates type III secretion (Sall

et al., 2014; Valentini et al., 2018). Through these pathways,

GacS promotes characteristics of the chronic virulence state.

RetS activity attenuates GacS signaling and therefore promotes

expression of factors of the acute virulence state (Francis et al.,

2018). RetS has been found to be a hotspot for loss-of-function

frameshifts in hypermutators. Interestingly, GacS and GacA (the

other member of the GacS/GacA two-component system

controlling RsmY and RsmZ expression) have also been

identified as hotspots for convergent evolution in

hypermutators (Feliziani et al., 2014; Marvig et al., 2015; la

Rosa et al., 2021). GacA mutants have been associated with

nitrogen metabolism upregulation, type VI secretion, and

reduced motility (Wei et al., 2013; Huang et al., 2019). GacS

mutants appear to confer an evolutionary advantage in the CF

airway through formation of small colony variants in biofilms

with increased resistance to immune defense and antibiotics

(Davies et al., 2007; Nelson et al., 2010). Large numbers of AmpR

and ExsA mutants have also been observed in hypermutators

with adaptive consequences in type III secretion system

functions, quorum sensing, immune evasion, and nitrogen

metabolism (Balasubramanian et al., 2014; Marvig et al., 2015;

Huang et al., 2019; Tian et al., 2019; la Rosa et al., 2021).
Pathoadaptive loss of function
mutations in key acute
virulence genes

Numerous genetic analyses of longitudinal CF isolates have

revealed overwhelmingly large numbers of mutations in key Pa

virulence genes and have consistently showed a strong signature of

purifying selection for these loss-of-function pathoadaptivemutations

(Smith et al., 2006; Chung et al., 2012; Feliziani et al., 2014; Marvig

et al., 2015; Wee et al., 2018). One example is the loss of quorum

sensing in CRI with Pa due to LasR loss-of-function. However, recent

evidence has shown that quorum sensing may not be lost, but

hypermutation helps rewire it to favor the LasR-independent RhII-

RhIR alternate pathway (Feltner et al., 2016; Chen et al., 2019;
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Kostylev et al., 2019). RhIR mutants are highly correlated with

hypermutability in CF isolates (Bjarnsholt et al., 2010). In vitro,

RhIR mutants were not found with evolution of a MutS-deficient Pa

strain, whereas LasR mutants did emerge, suggesting differing

selective pressures on the two pathways (Luján et al., 2007). In the

context of Pa CRI, RhII has also been associated with anaerobic

biofilm viability, which quorum sensing plays an especially important

role in due to close spatial arrangement and population heterogeneity

(Hassett et al., 2002; Darch et al., 2018).

Another common pathoadaptive mutation in CF isolates is

the loss of type III secretion. This usually results from mutations

in transcription regulators such as retS and exsA, as mentioned

previously. Hypermutators show significantly more

downregulation of genes involved in type III secretion

compared to non-mutators, and they do not produce the

major type III secretion product ExoS (Hoboth et al., 2009).

Instead, adaptive laboratory evolution with a hypermutator CF

isolate shows that shift in expression of type III to type VI

secretion is a key adaptive event (Moscoso et al., 2011; la Rosa

et al., 2021). Hypermutators also show significantly more

downregulation in flagellar proteins compared to non-

mutators, and show convergent evolution in flgG and fliD,

associated with the chronic virulence state of loss of motility

(Hoboth et al., 2009; la Rosa et al., 2021). This is recapitulated in

vitro, as MutS-deficient Pa shows impaired swimming and

twitching motility, suggesting the switch to favor biofilm

formation (Smania et al., 2004). The genes targeted for

pathoadaptive mutations in hypermutators are summarized

in Table 2.
Conclusions and perspectives

Hypermutators play a vital role in the survival and

persistence of Pa in CRI by allowing rapid diversification and
Frontiers in Cellular and Infection Microbiology 06
adaptation to the CF lung environment. This results in the shift

from the acute virulence phenotypes (type III secretion, motility,

toxin production) to the chronic virulence phenotypes. Isolates

having undergone the shift to a chronic virulence state display

mucoidy, biofilm formation, modulation of metabolic pathways,

alteration of quorum sensing, type VI secretion, and loss of

motility. The high prevalence of hypermutators arising in the CF

lung underscores the need for the adaptability afforded by

genetically diverse isolates. This mutagenesis is preferred

despite the simultaneous increased probability of accumulating

deleterious mutations and potential reduced virulence.

This review reveals many discrepancies between longitudinal

genetic analyses and in vitro adaptive evolution, notably in data

concerning the effect of hypermutability on MucA and LasR.

Although mutation rate and accumulation of mutations is higher

in hypermutators, numbers of variants in target genes are usually

not significantly different between hypermutator and non-

mutator CF isolates (Mena et al., 2008). This suggests that

hypermutation may not affect a specific adaptive trait

significantly over the course of CRI, but rather has a

generalized effect of facilitating adaptive evolution. As the

selective pressures of the CF lung are the same on both

hypermutators and non-mutators, it is reasonable for both to

undergo similar genetic and phenotypic changes just at different

rates. In fact, the only trait significantly linked to hypermutation

is antibiotic resistance (Macıá et al., 2005; Feliziani et al., 2010).

This could be due to the large bottlenecking effect of antibiotic

treatment on a population (Windels et al., 2021).

Although this review mainly addresses the role of

hypermutation in the adaption of Pa to the CF lung

environment, hypermutation has also been shown to play a

role in adaptation in other disease states as well. PAHM4 (a

bronchiectasis Pa isolate) displays mutS inactivating alleles

similar to CF isolates (Warren et al., 2011). It also contains

mucA22 causing mucoidy, likely caused by MutS-deficiency as
TABLE 2 Summary of genes targeted for convergent evolution in the CF lung during CRI with Pa, catalyzed by hypermutation.

Gene Product function Type of pathoadaptive
mutation

Downstream phenotypic result

mucA Negative regulator of algU Loss-of-function Alginate overproduction, mucoidy

bfmS Sensor histidine kinase, negative regulator of
bfmR

Loss-of-function Biofilm maturation

lasR Master transcriptional regulator Loss-of-function Loss of LasI-LasR quorum sensing network

gacS Negative regulator of Gac/Rsm signaling Loss-of-function Formation of SCVs in biofilms

gacA Regulator of RsmY and RsmZ expression Loss-of-function Upregulation of nitrogen metabolism, type VI secretion, and reduced
motility

retS Attenuates GacS signaling in Gac/Rsm pathway Loss-of-function Upregulation of type VI secretion and Pel polysaccharides

ampR Master transcriptional regulator Loss-of-function Promotes type VI secretion, affects Gac/Rsm, quorum sensing, adhesion

exsA Master transcriptional regulator Loss-of-function Affects quorum sensing, nitrogen metabolism

flgD Flagellar protein Loss-of-function Loss of motility and twitching

fliD Flagellar cap protein Loss-of-function Loss of adhesion
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discussed above. The isolate shows similar characteristics of loss

of motility and type III secretion and demonstrates high levels of

antibiotic resistance (Varga et al., 2015). Similar to CF,

bronchiectasis airways are known for having high mucin

levels, altered nutritional complexity, and a widely diverse

diseased-state lung microbiome, so perhaps similar selective

pressures are driving convergence on these highlighted

similarities (H. Richardson et al., 2019).

The prevalence of the hypermutator phenotype in Pa CRI

and its prominent role in adaptation challenges the common

assumption in microbiology that strains and isolates are clonal

and can be treated as such. Population heterogeneity is

overwhelmingly seen in CF isolates. With the occurrence of

hypermutation in other diseases and even other species, it is

possible that many other bacterial isolates also display high levels

of population heterogeneity. Hypermutator S. aureus and H.

influenzae isolates have been documented in CF patients and are

associated with higher rates of antibiotic resistance, similar to Pa

(Prunier et al., 2003; Román et al., 2004). How the hypermutator

phenotype affects interspecies competition in the context of the

CF lung is yet to be understood. As mentioned previously,

hypermutability also occurs in pathogenic E. coli, S. enterica,

and N. meningitidis (LeClerc et al., 1996; Matic et al., 1997; A. R.

Richardson et al., 2002). It would be interesting to explore the

role of hypermutation in different species and disease contexts

and to see if it similarly drives adaptation to the host

environment fostering survival. Hypermutation and its effect
Frontiers in Cellular and Infection Microbiology 07
on bacterial pathogenesis poses many interesting questions for

future study.
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Macıá, M. D., Blanquer, D., Togores, B., Sauleda, J., Pérez, J. L., and Oliver, A.
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