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ABSTRACT
Background: The role of different types and quantities of macronutrients on human health has been controversial, and

the individual response to dietary macronutrient intake needs more investigation.

Objectives: We aimed to use an ‘n-of-1’ study design to investigate the individual variability in postprandial glycemic

response when eating diets with different macronutrient distributions among apparently healthy adults.

Methods: Thirty apparently healthy young Chinese adults (women, 68%) aged between 22 and 34 y, with BMI between

17.2 and 31.9 kg/m2, were provided with high-fat, low-carbohydrate (HF-LC, 60–70% fat, 15–25% carbohydrate, 15%

protein, of total energy) and low-fat, high-carbohydrate (LF-HC, 10–20% fat, 65–75% carbohydrate, 15% protein) diets,

for 6 d wearing continuous glucose monitoring systems, respectively, in a randomized sequence, interspersed by a 6-d

wash-out period. Three cycles were conducted. The primary outcomes were the differences of maximum postprandial

glucose (MPG), mean amplitude of glycemic excursions (MAGE), and AUC24 between intervention periods of LF-HC and

HF-LC diets. A Bayesian model was used to predict responders with the posterior probability of any 1 of the 3 outcomes

reaching a clinically meaningful difference.

Results: Twenty-eight participants were included in the analysis. Posterior probability of reaching a clinically meaningful

difference of MPG (0.167 mmol/L), MAGE (0.072 mmol/L), and AUC24 (13.889 mmol/L·h) between LF-HC and HF-LC diets

varied among participants, and those with posterior probability >80% were identified as high-carbohydrate responders

(n = 9) or high-fat responders (n = 6). Analyses of the Bayesian-aggregated n-of-1 trials among all participants showed a

relatively low posterior probability of reaching a clinically meaningful difference of the 3 outcomes between LF-HC and

HF-LC diets.

Conclusions: N-of-1 trials are feasible to characterize personal response to dietary intervention in young Chinese

adults. J Nutr 2021;151:3158–3167.
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Introduction

Whether low-carbohydrate (LC) or low-fat (LF) diets are better
for cardiometabolic health has been debated for decades, with
inconsistent evidence from both observational studies and
clinical trials (1, 2). These inconsistencies have been attributed
primarily to differences in study designs, populations studied,
and sample sizes. However, another important argument to
consider is the substantial intra- and interperson variability
in response to dietary factors (3–6). Several landmark studies
have been conducted to characterize and predict the individual
response to diet in humans, including an Israeli personalized

nutrition cohort and the most recent personalized responses
to dietary composition (PREDICT 1) study (7, 8), challenging
the concept of ‘one-size-fits-all’ dietary recommendations.
Although postprandial hyperglycemia has been associated with
a higher risk of cardiometabolic diseases (9), postprandial
glycemic response can be easily monitored by a wearable device
and recovers to baseline within a short time, which makes it an
ideal target for investigating the individual response to specific
meals with n-of-1 clinical trials (7, 8, 10, 11).

In contrast to conventional randomized clinical trials focus-
ing on group-level treatment differences, the n-of-1 clinical trial
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aims to identify individual responses to a given intervention in
a controlled trial, which suits a chronic or frequently recurring
condition and intervention with rapid onset and little carryover
(11). Although this approach has mainly been applied in
psychological and pharmaceutical fields (12, 13), some previous
trials have used principles of n-of-1 research to design and/or
interpret results in the nutritional field (14, 15). In fact, the
intraindividual variability of glycemic responses has also been
reported, and many statistical methods or machine-learning
algorithms have been developed for personalized nutrition
(7, 8). Additionally, in clinical practice, dieticians have been
delivering personalized nutrition to some extent, accounting for
each client’s characteristics and clinical outcomes. With these
signs of progress, the concept of n-of-1 trials is also becoming
increasingly popular, supported and promoted by the Interna-
tional Collaborative Network for N-of-1 Clinical Trials and
Single-Case Designs (16). Taken together, n-of-1 may hold great
potential for its application in the nutrition field and provide a
systematic approach toward personalized nutrition (17, 18).

Therefore, in the present study, we conducted a series of
nutritional n-of-1 clinical trials to investigate individulized
postprandial glycemic responses to different proportions of
dietary fat and carbohydrate intake: the Westlake N-of-1
Trials for Macronutrient Intake (WE-MACNUTR). In the WE-
MACNUTR, we aimed to predict individuals who responded
better to a high-fat, low-carbohydrate (HF-LC) diet or to
a low-fat, high-carbohydrate (LF-HC) diet, with regard to
postprandial glycemic status. We examined glycemic responses
by continuous glucose monitoring (CGM) data because multiple
postprandial blood sample collections were challenging, which
would place a considerable burden on the participants. The WE-
MACNUTR also investigated the feasibility of n-of-1 clinical
trials in the nutritional field, aiming to provide an example for
future studies.

Methods
Study design and participants
The study was approved by the Ethics Committee of Westlake
University (No. 20190919ZJS001) and registered at clinicaltrials.gov
as NCT04125602. Participants were recruited from students and
staff of Westlake University (Hangzhou, China) through an electronic
poster and emails in October 2019, and all participants gave written
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informed consent. Inclusion criteria included adults aged between 18
and 65 y and willingness to join and complete the study. Exclusion
criteria included: inability or unwillingness to provide informed
consent; neurological conditions that might affect the assessment of
the study measurement; hospitalization or surgery planned within 3
mo; gastrointestinal diseases; other severe medical conditions, such as
liver, kidney, or systemic disease; pregnant or lactating women; tobacco,
alcohol, or illicit drug abuse; antibiotics use within 2 wk before the trial;
participants on a vegan diet; food allergy; no access to a smartphone
or computer with an internet connection; those who could not speak
Chinese; or concurrent participation in another intervention study.

The study was undertaken at Hangzhou, a city in southeast China,
between 20 October, 2019, and 31 December, 2019. After screening and
baseline data collection, 3 intervention sets comprising 4 6-d periods
for each set were conducted. An n-of-1 trial would have to have
>2 intervention pairs or cycles for a stable estimate of a treatment
effect(19). Therefore, taking feasibility into account, we designed a 3-
set ‘n-of-1 trial.’ Each participant completed 2 crossover experimental
conditions within each study set with a wash-out period to reduce
the potential carryover effect. The number of measurements within a
treatment period was determined by the primary outcome (3 meals
per day). Isocaloric diets were provided throughout the trial for each
individual. According to a computer-generated randomization schedule,
the order of HF-LC and LF-HC diets was randomly assigned within
each of 3 pairs of interventions with a block size of 2. The order in which
intervention was given was: LF-HC, HF-LC, HF-LC, LF-HC, HF-LC,
and LF-HC (Supplemental Figure 1). Two research staff took charge of
the recruitment and enrollment, and a team member not involved in the
implementation of the trials carried out random sequence allocation.

A dietitian designed the diet for the intervention and the wash-out
periods based on the Chinese Dietary Guidelines (2016) and Chinese
Dietary Reference Intakes (2013) (20, 21). Men’s and women’s target
energy intake was 2300 and 1900 kcal per day, respectively. The HF-
LC diet comprised a 3-d diet consisting of 70% of total energy intake
(E) from fat, 15%E from protein, and 15%E from carbohydrate (70%
fat diet or 15% carbohydrate diet), whereas the other 3-d diet consisted
of 60%E from fat, 15%E from protein, and 25%E from carbohydrate
(60% fat diet or 25% carbohydrate diet). The LF-HC diet comprised a
3-d diet consisting of 20%E from fat, 15%E from protein, and 65%E
from carbohydrate (20% fat diet or 65% carbohydrate diet), whereas
the other 3-d diet consisted of 10%E from fat, 15%E from protein,
and 75%E from carbohydrate (10% fat diet or 75% carbohydrate
diet). The diet for the 6-d wash-out period consisted of 30% from
fat, 15% from protein, and 55% from carbohydrate (30% fat diet
or 55% carbohydrate diet). Detailed dietary macronutrient intake of
the intervention and wash-out diet is provided in Supplemental Table
1. Recipes for the study meals during the intervention are also in
Supplemental Tables 2 and 3.

Participants were instructed to consume only the provided foods
or beverages. Participants consumed prepackaged and weighed meals
(scheduled for: breakfast 07:00–09:00, lunch 11:00–13:00, dinner
17:00–19:00) for 72 d in total during the intervention. All participants
were asked to complete a daily food checklist to assess their compliance.
The sequentially numbered recipes of the study meals were provided to
the chef at the Westlake University canteen, responsible for preparing
the meals. Participants and researchers conducting the analyses were
blinded to all randomization and packaging procedures until the
completion of all analyses. A more detailed description of the WE-
MACNUTR trial protocol is available elsewhere (22).

Procedures
The enrolled participants spent the first 6-d period with a wash-out
diet to obtain a relatively standardized baseline status before each
intervention period. Prior to each intervention period, a continuous
glucose monitoring system (CGMS; FreeStyle Libre Pro System, Abbott
Diabetes Care) was inserted into the participant’s subcutaneous fat
tissue on the back of the upper arm, which was then secured with
waterproof dressings. Following insertion, 1 h was used to allow
the CGMS sensor to adjust to the interstitial fluid before the initial
calibration. Every participant was required to wear the CGMS for CGM
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≤8 d (CGM started 2 d before the intervention), covering each 6-d
intervention period. The FreeStyle Libre Pro System consists of a sensor
and a receiver/reader. The sensor is provided with a sterile catheter
(0.4 mm caliper) inserted 5 mm under the skin and connected to a round
disk (35 mm × 5 mm). The CV (11.75%) of 2 monitors on the same
participant’s arm showed the reliability of CGMs in the PREDICT 1
study (8). The reliability (R >0.80) of mean glucose was sufficient after
2 d of recording for individuals with normal glucose metabolism (23).

Participants were asked not to change their lifestyle or physical
activity throughout the study period. Throughout each 6-d intervention
period, they were asked to wear an AX3 band around the wrist
(Axivity AX3 wrist-worn triaxial accelerometer, Open Lab, Newcastle
University) to monitor their physical activity.

Participants had 12 visits to the study site, where their biological
samples and related anthropometric data were collected (Supplemental
Figure 1). During each visit, urine, feces, and saliva were collected for
future metabolomics and microbiota profiling. Fasting venous blood
was collected for biochemical tests during the 4 visits of the first study
set. Participants were asked to complete daily a basic questionnaire
using an online app to record their eating behaviors and health
conditions, including emotional status, sleep duration, illness, and drug
use.

Biochemical and clinical chemistry analyses
Biochemical analyses were performed on fasting serum samples.
Clinical chemistry analyses were performed with an ARCHITECT
c16000 clinical chemistry analyzer (Abbott Laboratories) and Abbott
reagents. The analytes were glucose (hexokinase), triglycerides (glyc-
erophosphate oxidase), total cholesterol (cholesterol oxidase), LDL
cholesterol (surfactant assay), HDL cholesterol (catalase activity assay),
apoA1 (immunoturbidimetry), apoB (immunoturbidimetry), albumin
(bromcresol green), creatinine (enzyme), aspartate transaminase (NAD),
alanine transaminase (NAD), uric acid (uricase), and urea (urea
enzyme). Insulin was measured in serum samples using an insulin ELISA
kit (Jiangsu Jingmei Biological Technology Co., Ltd).

Outcomes
The primary measurement was interstitial glucose concentrations
measured by the CGMS every 15 min. The specific primary outcomes
were maximum postprandial glucose (MPG) (24), mean amplitude of
glycemic excursions (MAGE), and AUC24 (25, 26). MPG is the peak
value of CGM within 3 h after the first bite of a meal or the maximum
CGM value between 2 meals when the interval is <3 h. MAGE is
obtained by measuring the arithmetic mean of the differences between
consecutive peaks and nadirs provided that the differences are >1 SD
around the mean glucose values. AUC24 refers to the total area under the
CGM curve from 00:00 to 24:00 of the day. Other secondary outcomes,
such as microbiome and urine metabolomic profiles will be analyzed and
reported in the future.

Statistical analysis
Data on baseline characteristics of study participants were expressed
as mean ± SD or number (percentage). One-way ANOVA was used to
analyze physical activity changes at the individual level based on the
time of moderate and vigorous physical activity (27) recorded by AX3
bands.

We examined the effect of the LF-HC diet on postprandial blood
glucose (PBG) concentrations compared with the HF-LC diet within
each participant. Based on the previously reported difference of 3 mg/dL
(0.167 mmol/L) in daytime MPG between young participants aged 25–
45 y and those older than 45 y (69% participants were women) (28),
we considered this magnitude of difference clinically meaningful. For
MAGE, we considered the clinically meaningful difference as 1.3 mg/dL
(0.072 mmol/L) based on the values derived from healthy participants
aged 25–45 y versus those older than 45 y (28). In terms of AUC24,
the threshold was 1.5 × 104 mg/dL·min (13.9 mmol/L·h) based on
values derived from young adults with normal and prediabetes glycated
hemoglobin (HbA1c) (29). The MPG data from missing meals were not
used. Regarding MAGE and AUC24, if an individual was absent from 3

intervention meals of a day, his/her corresponding data for the day were
excluded.

A Bayesian analysis model with noninformative priors was applied
to calculate the posterior probability of a clinically meaningful
difference in MPG, MAGE, and AUC24 elicited by the different
dietary patterns at the individual level (19). We estimated the posterior
distributions of the parameters of interest using Markov chain Monte
Carlo (MCMC) methods in Bayesian modeling. The Bayesian analysis
differs from the usual frequentist approach (e.g. use of P values or
CIs). Rather than focusing on the probability of different patterns
in outcomes assuming specific treatment effects, Bayesian analysis
calculates the probabilities of a treatment effect and expresses the
uncertainty derived from finite data collection. Specifically, the observed
outcome differences from the paired treatment periods for a given
participant were combined into a mean difference that was assumed
to follow a normal distribution centered about that participant’s true
mean effect difference μi, and μi could be related to the treatments by
linear regression such that μi = α+βx (where α was constant effects
within a participant, β was treatment effects, x was the treatments
with category values). To complete the model’s Bayesian specification,
prior distributions needed to be defined for α and β, and these prior
informations described what was known about these parameters before
the study. We chose normal distributions centered at 0 with large
variance for α and β as noninformative prior distributions (30). The
participant would be identified as a responder to a specific dietary
pattern (HF-LC compared with the LF-HC diet) with respect to the
outcome if the posterior probability of a meaningful intervention
effect was >80%. Otherwise, the participant would be considered as
a nonresponder (31). We defined responders and nonresponders by
comparing the results of 2 interventions within an individual.

To explore the effects of dietary carbohydrate/fat ratios on the
outcome measures with positive results by macronutrient categoriza-
tion, we performed the Bayesian analysis model to estimate the mean
difference and the posterior probability of reaching a meaningful
difference (0.167 mmol/L for MPG, 0.072 mmol/L for MAGE, and
13.889 mmol/L·h for AUC24) for each participant, comparing the diets
consisting of higher carbohydrate/lower fat proportion (LF-HC; 75%
carbohydrate diet, 65% carbohydrate diet, and 25% carbohydrate diet)
with those containing the lowest carbohydrate/highest fat proportion
(HF-LC; 15% carbohydrate diet).

For the Bayesian hierarchical model meta-analysis at the population
level, we performed a simulation-based statistical power calculation,
referring to the method reported by Stunnenberg et al. (31). This
simulation suggested that a sample size of 30 participants (individually,
3 sets per participant, 2 intervention periods per set, and 18 observations
per intervention period) at group level would achieve a power of >99%
to detect a prespecified meaningful difference (>0.167 mmol/L) in MPG,
between diet interventions (HF-LC compared with the LF-HC diet), at
a 5% 2-sided type I error level.

To generate an estimate of an intervention effect at the population
level, we combined the n-of-1 results derived from participants with
≥1 completed intervention cycle. As our n-of-1 trials used multiple
measurements over time on the same individual, a hierarchical Bayesian
method could be used to combine the results from serials of n-of-1
trials and obtain posterior estimates of both population- and individual-
level treatment effects. This methodology incorporates both random
variation at the different levels, such as within-participant and between-
participant variance (30). As described in the protocol (22), we specified
a generalized linear mixed regression (adjusted for age, sex, and BMI),
which constructed a separate regression model incorporating serial
correlation that related longitudinal measurements for each participant,
assuming a normal distribution of the measurements centered around
each participant’s true intervention effect. These regression models
were then connected through a second-level random-effects model,
which postulated that the individual-specific regression coefficients
were related through a normal distribution centered around the
population-level average coefficients. We had limited information about
the variance parameters, and inverse γ -distributions were convenient
computational choices for distributions of variance (32). Therefore,
we chose a noninformative inverse γ prior distribution for the
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44 Volunteers assessed for eligibility in
N-of-1 series

14 Excluded
8 Difficulties with schedule

of the trial
6 Uninterested

30 Enrolled in N-of-1 trial

4 Withdrew
1 Personal reasons
1 Needed to control her diet   

as her doctor’s advise   
2 Time constraints

28 N-of-1 trials included in analysis
26 completed 6 intervention periods
2 completed 5 intervention periods

FIGURE 1 Study flow chart.

between-participant variance parameter. We chose 90%, rather than
80% (used in the above individual-level data analysis), as a threshold
of posterior probability of a clinically meaningful difference in MPG,
MAGE, and AUC24, as we found the Bayesian hierarchical model for
the group level meta-analysis needs a higher threshold to reduce the
type I error in the simulation-based statistical power calculation. In
the Bayesian hierarchical model meta-analysis, we also performed the
following sensitivity analyses for different types of missing data: 1)
analysis of all available data; 2) analysis excluding participants who
withdrew early from the trial; 3) analysis of participants who completed
the entire protocol, i.e. excluding those who withdrew early and those
with valid data <50%; (4) analysis of individuals who completed the
entire protocol with neither chronic diseases nor taking prescription
medications.

All statistical analyses were done in R statistical (version 3.6.2), and
the Bayesian analysis was performed using the Open2BUGS R package
(33).

Results

Data analyzed

Of the 44 participants who contacted the study staff, 8 declined
participation due to difficulties with the trial schedule, 6 were
not interested in the trial, and eventually, 30 participants
were enrolled. Twenty-six participants completed 6 intervention
periods, 1 withdrew from the study for personal reasons
after the data collection at baseline, 1 only completed the
first intervention period due to her doctor’s advice on diet
control, and 2 underwent 5 periods and then quit the trial
because of time constraints (Figure 1). Thus, data from 28
participants’ n-of-1 trials (82 LF-HC periods and 82 HF-LC
periods) were analyzed at both individual and group levels.
The mean adherence rate of the 28 participants was 98%,
with the rate of a single person defined as the meals a person
consumed divided by the total number of meals offered in the
study. The mean proportion of meals with valid data in total
intervention meals during individual participation was 90.2%,
and the value was <50% for only 1 participant due to CGMS
failure (Supplemental Table 4).

Outcomes

The baseline characteristics of the participants are listed in
Supplemental Table 5. Nine men and 19 women participants

with a mean age of 26 y (SD, 2.8; range, 22–34 y) were
enrolled and none of the participants had fasting glucose beyond
6.1 mmol/L. The AX3 band data showed no substantial physical
activity changes during the intervention (Supplemental Table
6). No adverse effects were observed during the trials. As
postprandial glycemia is an acute response to the meal, we did
not assess carryover effects. All responders’ characteristics are
shown in Table 1. The MPG, MAGE, and AUC24 of a single
participant throughout the intervention periods are shown in
Supplemental Table 7 as an example of the change of these
parameters in response to the interventions.

For MPG, participants responded to LF-HC and HF-LC diets
in 3 distinctive ways, which were defined as high-carbohydrate
responders (HC-responders [MPG]), high-fat responders (HF-
responders [MPG]), and nonresponders (MPG). A clinically
meaningful MPG difference could be observed among 10
participants (Figure 2A–C), with the posterior probability of
the difference reaching a clinically meaningful effect >80%. In
7 (HC-responders [MPG]) out of the 10 responders, the LF-
HC diet increased MPG (the difference was >0.167 mmol/L)
compared with the HF-LC diet, which was contrary to the other
3 individuals (HF-responders [MPG]) (Figure 3A, B; Table 2;
Supplemental Table 8).

For MAGE, the difference of MAGE >0.072 mmol/L could
be found in 9 participants, which were defined as responders,
whereas the others are nonresponders. Higher MAGE was
found in 5 participants (HC-responders [MAGE]) when eating
an LF-HC diet, and in 4 participants (HF-responders [MAGE])
when eating an HF-LC diet (Figure 2A–C; Figure 3C, D; Table 2;
Supplemental Table 8). Among these 9 individuals, 3 were
HC-responders for both MAGE and MPG, and 1 participant
was an HF-responder for both the above measures (Table 2;
Supplemental Table 8). There was no noticeable, clinically
meaningful difference for AUC24.

There was an upward trend in the mean difference between
MPG elicited by diets with increased carbohydrate proportions
for HC-responders. On the contrary, there was a downward
trend for HF-responders (MPG) (Supplemental Figure 2A). The
effect by macronutrient categorization could also be seen in
the posterior probability for HC-responders (difference of MPG
>0.167 mmol/L) (Supplemental Figure 2B) and HF-responders
(difference of MPG < −0.167 mmol/L) (Supplemental Figure
2C). Similar trends of mean difference and posterior probability
for MAGE are shown in Supplemental Figure 2D–F.

Analyses of the Bayesian-aggregated n-of-1 trials among all
participants showed an 11.8%, 27.0%, and 0 posterior prob-
ability of reaching a clinically meaningful difference of MPG
(>0.167 mmol/L or <–0.167 mmol/L), MAGE (>0.072 mmol/L
or <–0.072 mmol/L), and AUC24 (>13.889 mmol/L·h or <–
13.889 mmol/L) between LF-HC and HF-LC diets. Posterior
probabilities of the intervention effects on MPG and MAGE at
group level were higher in the sensitivity analysis but did not
change the results substantially (Supplemental Table 9).

Discussion

In the present feeding-based nutritional n-of-1 trials focusing
on investigating an individual’s postprandial glycemic response
to different proportions of dietary fat and carbohydrate
intake, we demonstrated the ability of this study design to
predict responders or nonresponders to different ratios of
macronutrient intake among young adults. With standardized
interventions and strictly controlled eating behaviors, we

N-of-1 trials for macronutrient intake 3161



TABLE 1 Baseline characteristics of participants classified by response to the intervention1

Characteristic
HC-responders2

(n = 9)
HF-responders2

(n = 6)
Nonresponders

(n = 13)
Overall
(n = 28)

Age, y 24.0 (22.0–30.0) 26.0 (22.0–34.0) 26.0 (22.0–30.0) 26.0 (22.0–34.0)
Men, n (%) 2 (22) 3 (50) 4 (31) 9 (32)
BMI, kg/m2 20.8 (18.2–28.1) 22.2 (19.6–24.0) 22.8 (17.2–31.9) 22.0 (17.2–31.9)
Waist circumference, cm 74.0 (67.0–91.0) 80.0 (70.0–91.0) 79.0 (64.0–101) 78.5 (64.0–101)
Drinking, No. (%)

Occasionally 2 (22) 5 (83) 9 (60) 16 (57)
Never 7 (78) 1 (17) 4 (40) 12 (43)

Fasting serum analyte
Insulin, mU/L 26.3 (17.8–32.9) 24.3 (17.8–33.3) 24.8 (16.7–32.7) 25.5 (16.7–33.3)
Glucose, mmol/L 4.21 (4.00–5.02) 4.32 (3.88–4.46) 4.16 (3.58–4.56) 4.21 (3.58–5.02)
Triglycerides, mmol/L 0.54 (0.43–1.08) 0.76 (0.45–1.99) 0.69 (0.39–1.48) 0.65 (0.39–1.99)
Total cholesterol, mmol/L 4.45 (3.60–5.44) 4.64 (3.61–6.47) 4.08 (3.00–5.17) 4.38 (3.00–6.47)
LDL cholesterol, mmol/L 2.12 (1.26–2.77) 2.19 (1.15–3.57) 1.80 (1.12–2.67) 1.94 (1.12–3.57)
HDL cholesterol, mmol/L 1.73 (1.27–2.17) 1.49 (1.23–2.63) 1.68 (1.14–2.08) 1.64 (1.14–2.63)
ApoA1/apoB 1.92 (1.32–3.22) 1.55 (1.11–4.30) 2.10 (1.50–3.45) 2.05 (1.11–4.30)
Albumin, g/L 42.3 (39.4–43.2) 43.5 (42.6–45.7) 40.8 (39.2–47.0) 42.4 (39.2–47.0)
Creatinine, μmol/L 55.0 (46.0–70.0) 66.0 (54.0–76.0) 59.0 (46.0–76.0) 59.5 (46.0–76.0)
AST, U/L 15.0 (13.0–19.0) 17.5 (12.0–22.0) 14.0 (11.0–21.0) 15.0 (11.0–22.0)
ALT, U/L 11.0 (9.00–22.0) 15.0 (9.00–24.0) 9.00 (6.00–22.0) 10.5 (6.00–24.0)
Uric acid, μmol/L 276 (187–450) 280 (242–417) 282 (163–400) 280 (163–450)
Urea, mmol/L 3.70 (3.00–4.80) 3.95 (3.50–5.00) 4.00 (2.70–5.30) 3.80 (2.70–5.30)

1Values are frequency (%) or median (range). ALT, alanine aminotransferase; AST, aspartate aminotransferase; HC, high carbohydrate; HF, high fat.
2Responders for maximum postprandial glucose (MPG) or mean amplitude of glycemic excursions (MAGE).

identified not only HC-responders but also some HF-responders
in terms of postprandial glucose response (PPGR). Such a strict
feeding-based clinical trial, together with previous intervention-
or observation-based precision nutrition studies (7, 8, 10),
would provide mutually complementary evidence.

Biochemical individuality is more important than it is
assumed to be because of its relation to susceptibility to
human diseases (34). Postprandial glycemia has been implicated
in the etiology of chronic metabolic diseases such as type
2 diabetes (T2D) and cardiovascular diseases (CVD) (9),
which may militate against health via interstitial and cellular
effects (35). Although a time difference (i.e. a “lag time”)
exists for the equilibration of blood and interstitial glucose
(36), interstitial glucose measured by CGMS reflects reliable
physiological information on glucose in blood, interstitial space,
and cells (37). The correlations of CGMS peak glucose and
CV with reference glucose measurement (i.e. venous blood
glucose concentrations) in a previous study were high (r = 0.89,
r = 0.87 respectively) (38). In PREDICT 1, the correlation
(r = 0.97) of participants’ incremental AUC in response
to standardized meals also supports the reliability of the
measurement with CGMS (8). Moreover, for the PREDICT
1 study, the variability of CGM was presented as the raw
postprandial blood glucose trajectory, which visually showed
high variability. In comparison, our results were based on
integrated variables representing different scales of blood
glucose variability over a period of time which were more stable
and potentially clinically relevant.

All the above glucose components may contribute to the
mechanisms that lead to diabetic and cardiovascular compli-
cations, including excessive protein glycation and activation of
oxidative stress (9, 25). Hence, participants whose PBG was
higher when eating a specific diet may need to modify their
macronutrient distribution to reduce the potential health risks.
If >1 aspect of MPG, MAGE, and AUC24 was high in response

to a diet, for example, 4 participants’ MPG and MAGE were
higher when eating 1 diet in the present study; the alternative
diet might bring benefits for their metabolic health. We did not
find responders for the AUC24, which might indicate AUC24

was less sensitive to the changes in dietary carbohydrate/fat
ratio compared with the other variables (i.e. MPG and
MAGE).

The effect of a low-carbohydrate or low-fat diet on glycemic
control has been controversial (39, 40). In addition to the well-
elucidated pathways of macronutrient metabolism, previous
research also suggested that gastric emptying time might
play a role in mediating the effects of macronutrients on
postprandial glycemic responses. Although a 2-wk high-fat
diet induced an accelerated gastric emptying over the linear
phase of emptying, no perceptible changes in the pattern
of emptying of the high-carbohydrate meal were detected
(41). Therefore, gastric emptying time might take part in
mediating the effects of different proportions of dietary fat
and carbohydrate on postprandial glycemic variables (e.g.
PMG, AUC24). Maintaining the same energy intake from
protein between 2 interventions made it possible to compare
substantial interindividual variation in postprandial glycemic
response from interventions with different carbohydrate to fat
ratios. Taking PPGR as an indicator, the present study, from
a precision nutrition angle, provides a potential interpretation
for these prior inconsistent findings about carbohydrate and
glycemic control, in addition to the general explanation from
the perspective of study design, sample size, or population
ethnicities. Actually, individual variability in postprandial
glucose in response to diet intake has been well recognized (6,
42). The PREDICT 1 study suggested that some individuals
would experience large PBG excursions across most meals,
whereas others would consistently experience modest responses
(8). In the Israeli personalized nutrition study, interpersonal
differences in the response of postprandial glucose to different

3162 Ma et al.



5

10

15

Nonresponders (MPG)M
ax

im
um

po
st

pr
an

di
al

gl
uc

os
e

(m
m

ol
/L

)

10 18 24 4 16 12 213 252 15 5
26 20 1 14

9
28

HF-LC diet
LF-HC diet

4

6

8

10

12

HC-responders (MPG)M
ax

im
um

po
st

pr
an

di
al

gl
uc

os
e

(m
m

ol
/L

)

7 19
17

22 27 6
23

HF-LC diet
LF-HC diet

4

6

8

10

12

HF-responders (MPG)M
ax

im
um

po
st

pr
an

di
al

gl
uc

os
e

(m
m

ol
/L

)
13

8 11

HF-LC diet
LF-HC diet

0

2

4

6

8

10

HF-responders (MAGE)M
ea

n
am

p l
itu

d e
of

gl
yc

em
ic

ex
cu

rs
io

ns
(m

m
ol

/L
)

8 1
4

28

A

B

C

0

1

2

3

4

5

6

HC-responders (MAGE)M
ea

n
am

pl
itu

de
of

gl
yc

em
ic

ex
cu

rs
io

ns
(m

m
ol

/L
)

25 5
22 27 19

0

1

2

3

4

5

6

Nonresponders (MAGE)M
ea

n
am

pl
itu

de
o f

gl
yc

em
ic

ex
cu

rs
io

ns
(m

m
ol

/L
)

10 17 24
318 1121 6

232 15
7

16

20
13

14
9

2612

FIGURE 2 Individual-level maximum postprandial glucose and mean amplitude of glycemic excursions in participants during low-fat high-
carbohydrate and high-fat low-carbohydrate interventions. Individual-level maximum postprandial glucose (MPG) or mean amplitude of glycemic
excursions (MAGE) during 6 intervention periods (3 HF-LC periods illustrated by grey boxes and 3 LF-HC periods illustrated by white boxes) are
separated on the x-axis, with participant numbers beneath data markers for crossreferencing with information in Table 2, Supplemental Tables 3,
5, and 6. Data are median (central line), IQR (box margins), adjacent values (whiskers), and outliers (dots). (A), HF-responders (MPG) (n = 3) and
HF-responders (MAGE) (n = 4); (B), HC-responders (MPG) (n = 7) and HC-responders (MAGE) (n = 5); (C), nonresponders (MPG) (n = 18) and
nonresponders (MAGE) (n = 19). The numbers in the figure, e.g. 13, 8, 11 in panel A, are participant numbers. HF-LC, high-fat low-carbohydrate;
LF-HC, low-fat high-carbohydrate.
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FIGURE 3 Results from Bayesian analysis of postprandial maximum glucose and mean amplitude of glycemic excursions at the individual and
group level in young Chinese adults consuming low-fat high-carbohydrate compared with high-fat low-carbohydrate diet. (A) Mean difference
between postprandial maximum glucose (MPG) from LF-HC and HF-LC diets and 95% credible interval (CrI) for each participant, n = 28. The
estimates for the group are estimated using information from all participants. Individual-level effects are separated on the x-axis according to
their response to LF-HC and HF-LC diets, with participant numbers beneath data markers for crossreferencing with information in Table 2,
Supplemental Tables 3, 5, and 6. The size of the squares and rhombus is in direct proportion to the posterior probability of the difference of MPG
between LF-HC and HF-LC periods higher than 0.167 mmol/L. Green dotted lines at y = 0.167 and –0.167 represent the threshold for a clinically
meaningful effect. (B) Cumulative density function provides readout for the posterior probability (y-axis) belonging to the difference in MPG
elicited by LF-HC and HF-LC diets (x-axis). The blue dashed lines provide readouts for posterior probabilities of reaching a clinically meaningful
effect of 0.167 mmol/L difference. For HC-responders (MPG), n = 7, the posterior probability of difference in MPG elicited by LF-HC and HF-LC
diets higher than 0.167 mmol/L is >80% (marked by the dashed line at y = 0.8). For HF-responders (MPG), n = 3, the corresponding posterior
probability of difference in MPG higher than –0.167 mmol/L is lower than 20%, in other words, the posterior probability of difference in MPG
elicited by HF-LC and LF-HC diets higher than 0.167 mmol/L is >80% in HF-responders (MPG). (C) Mean difference between mean amplitude
of glycemic excursions (MAGE) from LF-HC and HF-LC diets and 95% CrI for each participant, n = 28. Green dotted lines at y = 0.072 and
–0.072 represent the threshold for a clinically meaningful effect. (D) Cumulative density function provides readout for the posterior probability
(y-axis) belonging to the difference between MAGE elicited by LF-HC and HF-LC diets (x-axis). The blue dashed lines provide readouts for
posterior probabilities of reaching a clinically meaningful effect of 0.072 mmol/L difference. For HC-responders (MAGE), n = 5, the posterior
probability of difference in MAGE elicited by LF-HC and HF-LC diets higher than 0.072 mmol/L is >80% (marked by the dashed line at y = 0.8).
For HF-responders (MAGE), n = 4, the corresponding posterior probability of difference in MAGE higher than –0.072 mmol/L is lower than
20%, in other words, the posterior probability of difference in MAGE elicited by HF-LC and LF-HC diets higher than 0.072 mmol/L is >80% in
HF-responders (MAGE). The numbers in the figure, e.g. 13, 8, 11 in panel A, are participant numbers. HF-LC, high-fat low-carbohydrate; LF-HC,
low-fat high-carbohydrate.

meals were suggested to be predictable (7). In light of their
results, our study integrated the concept of interpersonal
variability of postprandial glucose response and the n-of-1
feeding trials to discover an optimal diet for each individual
under a clinical trial setting.

Traditional investigation methodologies that make conclu-
sions from a number of individuals to evaluate an average
effect of interventions may lead to overlooking of variations
in results between individuals (responders compared with non-
responders), and correspondingly may yield “null findings” in

clinical studies (43), like the result on a group level in the present
study. Thus, more robust study designs are needed, such as
genotype-based randomized controlled trials (RCTs) and n-of-1
trials (3, 44). The present work, which predicted the optimal
macronutrient distribution for an individual using objective
data-driven criteria, provides information complementary to
traditional trials and an example of applying the “n-of-1”
study design in the nutrition field. The n-of-1 trial has great
potential to help further understand the health effects of the
complex interplay among genetics, microbiome, metabolism,
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TABLE 2 Individual posterior probability of difference in postprandial blood glucose when participants consumed low-fat
high-carbohydrate compared with high-fat low-carbohydrate diets1

Posterior probability (%)

Difference of MPG (mmol/L) Difference of MAGE (mmol/L) Difference of AUC24 (mmol/L·h)

Participant No. <–0.167 >0.167 <–0.072 >0.072 <–13.889 >13.889

12 35.4 4.50 83.2 4.37 0 0
2 17.3 28.6 33.0 43.7 0 0
3 0.567 78.5 43.4 21.7 0 0.133
42 22.7 37.2 91.6 4.47 0 0
53 2.73 63.7 1.70 94.0 0.133 0
63 0.367 87.9 12.6 66.5 0 0
73 0 99.2 9.87 55.5 0 44.8
82 81.0 1.60 83.8 8.60 3.07 0
9 5.17 53.9 28.5 52.9 0 0
10 20.7 17.7 17.2 56.5 0 0
112 83.9 0.267 25.1 45.9 1.47 0
12 26.6 23.5 35.1 48.4 0 0
132 85.1 0.167 72.6 13.1 0.0333 0
14 63.0 0.600 32.5 43.0 0 0
15 2.73 69.4 6.87 78.3 0 0
16 51.7 7.90 10.5 77.5 24.8 0
173 0.0667 83.5 30.2 37.7 0 0
18 67.8 1.77 76.1 10.1 0 0
193 0 100 1.77 91.5 0 61.8
20 7.20 55.6 51.8 27.6 0 0
21 41.6 7.53 58.1 16.0 0 0
223 0 99.5 2.20 94.2 0 4.17
233 0.400 88.7 60.3 21.5 0 22.9
24 47. 7 1.70 34.7 23.1 0 0
253 3.13 73.0 4.43 86.4 0 0
26 1.33 70.7 19.6 64.3 0 0
273 0.433 86.3 3.03 91.7 0 0
282 77.5 0.800 86.8 2.67 2.87 0

1Values are individual posterior probabilities (applied Bayesian analysis) of reaching a clinically meaningful difference in postprandial blood glucose between LF-HC and HF-LC
diets, n = 28. This table reveals the posterior probability of the difference of outcomes between LF-HC and HF-LC periods reaching a clinically meaningful effect (MPG,
0.167 mmol/L; MAGE, 0.072 mmol/L; AUC24, 13.889 mmol/L). HF-LC, high-fat, low-carbohydrate; LF-HC, low-fat, high-carbohydrate; MAGE, mean amplitude of glycemic
excursions; MPG, postprandial maximum glucose.
2HF-responders for MPG or MAGE.
3HC-responders for MPG or MAGE.

food environment, and physical activity and then provide
multidimensional and dynamic dietary advice tailored to an
individual’s unique characteristics (45). Nevertheless, it should
be noted that the design allows flexibility for nutritional n-of-
1 trials. Two common types of n-of-1 trials exist with either
dynamic intervention or fixed intervention to a participant,
and this study applied fixed interventions (11). The results
of our n-of-1 trials without personalized interventions within
the trial could be used to inform participants about their
future dietary options. The design of the n-of-1 trial may
also facilitate a detailed assessment about the sensitivity and
specificity of an intervention, given that participants serve as
their own controls in repeated crossover interventions, and all
the analyses are based on personal outcomes for each individual
(46). Furthermore, personal outcomes derived from the n-of-
1 trial can be included in future clinical practice, which may
enhance the clinical relevance of the treatment’s effects. Finally,
it is possible to combine the study design of the n-of-1 trial
and observational study in a future investigation if we have
a sufficient number of participants, which may maximize the
strengths of both approaches.

In the present study setting, n-of-1 trials systematically
offered an approach to personalized advice on choosing a
diet based on one’s unique postprandial glycemic response to
macronutrient intake. Although it is generally considered that a
low-carbohydrate dietmay help attenuate postprandial glucose
increase, our n-of-1-based evidence identified 3 “outliers,”
which showed the opposite response. These results indicate
great potential for the application of n-of-1 trials in nutrition
clinics, although more work needs to be done to make it more
suitable for a clinical setting.

A significant strength is that we used a feeding n-of-1
clinical trial to investigate the personal PPGR with cutting-
edge wearable devices monitoring continuous glucose values.
Using our unique study design and statistical methods, we
predicted responders and nonresponders at individual levels.
Moreover, individualized nutritional decisions based on a series
of randomized within-individual comparisons based on n-of-1
trials are likely to complement those based on traditional RCTs.
A limitation of the present study is that we did not test post-
prandial insulin and could not elucidate the mechanism beyond
the different responses to dietary macronutrient distribution,
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although we could identify the responders and nonresponders.
A limited number of responders also prevented us from
doing some group-level characterization or machine learning to
identify the predictors. In addition, a potential carryover effect
might affect the outcome. Although a 6-d wash-out period was
applied between intervention periods, the parameters of interest
during the wash-out interval may follow an asymptotic curve,
and the observed changes in the parameters may depend on this
state. Another limitation is that the present study is based on
a group of young adults, consisting mainly of healthy young
women, with limited generalizability to other age or ethnic
groups. Moreover, we included some individuals with different
baseline characteristics (e.g. chronic diseases) compared with
others when we performed the hierarchical Bayesian analysis
at the population level, which may bias our group-level results.
Nevertheless, the personal characteristics were unlikely to bias
our primary outcomes, which demonstrated the individual’s
postprandial glycemic response to diets, with each participant
acting as her/his own control. In addition, due to the complexity
of the Chinese diets and cooking methods, there is some
deviation between our targeted macronutrient intakes and the
delivered ones. Using our study as a model, researchers may
potentially develop a more concise and straightforward strategy
to implement the nutritional n-of-1 trial into daily clinical
practice in the future.

In conclusion, our study, with a novel n-of-1 trial design,
indicates that young participants without diabetes show
substantial interindividual variation in postprandial glycemic
response to HF-LC and LF-HC diets, and we identified specific
HC-responders and HF-responders after the intervention. The
present study suggests that the n-of-1 clinical trial can be
a feasible study design in nutritional research to precisely
characterize the personal response to specific dietary or
nutritional intervention. More nutritional n-of-1 trials are
warranted in the future as an important component in the
precision nutrition field.
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