
Implications of Pyrosequencing Error Correction for
Biological Data Interpretation
Matthew G. Bakker1*¤, Zheng J. Tu2, James M. Bradeen1, Linda L. Kinkel1

1Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America, 2 Supercomputing Institute, University of Minnesota,

Minneapolis, Minnesota, United States of America

Abstract

There has been a rapid proliferation of approaches for processing and manipulating second generation DNA sequence data.
However, users are often left with uncertainties about how the choice of processing methods may impact biological
interpretation of data. In this report, we probe differences in output between two different processing pipelines: a de-
noising approach using the AmpliconNoise algorithm for error correction, and a standard approach using quality filtering
and preclustering to reduce error. There was a large overlap in reads culled by each method, although AmpliconNoise
removed a greater net number of reads. Most OTUs produced by one method had a clearly corresponding partner in the
other. Although each method resulted in OTUs consisting entirely of reads that were culled by the other method, there
were many more such OTUs formed in the standard pipeline. Total OTU richness was reduced by AmpliconNoise processing,
but per-sample OTU richness, diversity and evenness were increased. Increases in per-sample richness and diversity may be
a result of AmpliconNoise processing producing a more even OTU rank-abundance distribution. Because communities were
randomly subsampled to equalize sample size across communities, and because rare sequence variants are less likely to be
selected during subsampling, fewer OTUs were lost from individual communities when subsampling AmpliconNoise-
processed data. In contrast to taxon-based diversity estimates, phylogenetic diversity was reduced even on a per-sample
basis by de-noising, and samples switched widely in diversity rankings. This work illustrates the significant impacts of
processing pipelines on the biological interpretations that can be made from pyrosequencing surveys. This study provides
important cautions for analyses of contemporary data, for requisite data archiving (processed vs. non-processed data), and
for drawing comparisons among studies performed using distinct data processing pipelines.
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Introduction

Current DNA sequencing capacity offers the opportunity to

study microbial communities in unprecedented detail. However,

quality standards often lag behind technical innovation and many

early studies of microbial communities using second generation

sequencing now appear to have substantially overestimated

microbial diversity [1]. An expanding list of criteria has been

proposed to screen out low quality reads from pyrosequencing

datasets [2,3], but these have not proven adequate to eliminate

spurious diversity. Although high sequencing accuracy can be

achieved by removing reads that are most likely to contain errors,

low error rates may still accumulate to substantial effect in datasets

with hundreds of thousands (or more) sequence reads. Further-

more, data processing methods can continue to introduce error

after sequencing is completed, as with imperfections in multiple

sequence alignment during the process of defining operational

taxonomic units (OTUs) [4].

One approach to dealing with the problem of sequence error

has been to simply shed detail from a dataset until there is a high

probability that the influence of PCR or sequencing errors has

been removed, for example with the use of broad criteria for

delimiting OTUs or in approaches that discard all of the least-

frequently occurring sequence variants [5]. A preferable approach

is to devise means of identifying and correcting errors such that

accurate detail can be maintained. The AmpliconNoise program

[6] was reported as such a method for pyrosequencing error

detection and correction and was quickly incorporated into the

major processing pipelines for pyrosequencing data [7,8]. How-

ever, users are often uncertain how the interpretation of their data

will be affected by the choice of different processing methods. A

great deal of the effort given to evaluating sequence-based

methodologies has been given to reducing OTU inflation and

forming the correct number of OTUs. However, most experi-

mental studies aim to do much more than derive simple richness

estimates, and the interpretive impacts of a choice of data

processing pipeline are likely to be broader than this single,

predominant criterion. Compared to simple constructed commu-

nities often used in evaluating new methods, there are many more

opportunities for interpretations to shift when the work concerns
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a real dataset derived from a complex experiment in a natural

environment. Here, we give careful consideration to interpretive

implications of the AmpliconNoise processing method on an

original dataset of soil microbial community samples.

Materials and Methods

Soil sampling was performed at the Cedar Creek Ecosystem

Science Reserve (CCESR; part of the National Science Founda-

tion Long-Term Ecological Research network) in July of 2009,

from a long-term plant richness manipulation [9]. We targeted soil

under the dominant influence of each of four different plant

species (two C4 grasses: Andropogon gerardii, Schizachyrium scoparium;

two legumes: Lespedeza capitata, Lupinus perennis) by collecting soil

cores from the base of individual plants. Each sample consisted of

four bulked soil cores (5 cm diameter, 30 cm depth) collected from

different individuals within the same plot and homogenized by

hand. Each plant species was sampled in five different plant

richness treatments (monoculture and assemblages of 4, 8, 16 or 32

species). There were three plot-level replicates per host-plant

richness combination.

The PowerSoil DNA kit (MO BIO; Carlsbad, CA USA) was

used to extract DNA from soil. The manufacturer’s protocol was

modified with extended bead beating and sonication to enhance

recovery of DNA from Actinobacterial spores [10]. Selective

primers were used to amplify a portion of the 16s rDNA gene. We

used StrepB [11] as our forward primer, and the reverse

complement of Act283 [12] as our reverse primer, each at a final

concentration of 200 nM. Both primers are selective for

Actinobacteria and together amplify a fragment of approximately

165 nucleotides, encompassing the V2 variable region of the 16S

rRNA gene. Primers were modified to contain one of 30 different

10mer identifying barcodes [13]. PCRs consisted of 10 ng of

template DNA in a 50 uL reaction volume using PCR Supermix

High Fidelity (Invitrogen; Carlsbad, CA USA). PCR conditions

consisted of an initial denaturation step of 30 sec at 94 C, followed

by 30 cycles of 30 sec 94 C, 30 sec 57 C, 60 sec 70 C. Products of

PCRs were passed through the QIAquick PCR Purification Kit

(Qiagen; Valencia, CA USA), quantified by spectrophotometry,

diluted with elution buffer to approximately 15 ng/uL, and

quantified by fluorometry (Quant-iT dsDNA HS assay kit;

Invitrogen). Thirty samples, each with a unique primer barcode,

were combined in equimolar amounts to form each of two pooled

amplicon samples. Emulsion PCR and sequencing were per-

formed using a GS FLX emPCR amplicon kit according to the

manufacturer’s protocols (454 Life Sciences; Branford, CT USA).

Each pooled sample was run on one region of a picotitre plate on

the GS FLX sequencing system [14] at the University of

Minnesota BioMedical Genomics Center. Resulting sequence

data have been submitted to the NCBI Sequence Read Archive as

accession SRA019985.3.

Sequence data were processed through the program Ampli-

conNoise, version 1.24 [6] for the detection and correction of

probable errors. The dataset was processed on a per sample basis,

with the raw flowgram signals as the input to AmpliconNoise.

Initial processing tested for a perfect match to the forward primer,

truncated flowgrams at 225 flows and discarded any reads that did

not reach this length threshold. The PyroNoise algorithm was run

with parameters set at s = 1/60, c = 0.01. The SeqNoise algorithm

was run with parameters set at s = 1/30.3, c = 0.08.

Subsequent processing, and all processing for the standard (not-

denoised) pipeline, was done with the program Mothur 1.20.1 [8].

Table 1. Number of sequences failing quality screening criteria and total number of sequences remaining (bold, italics), for
standard processing pipeline and for AmpliconNoise processing.

Screening Criteria Standard Output AmpliconNoise Output

Initial 409,997 232,792

,100% match to 5’ primer 31,948 NA

Sequence length ,120 bp 137,753 NA

Ambiguous bases present 6,295 0

Homopolymers .6 bases 149 12

Avg Qscore ,25 8,985 NA

Poorly aligning to database 138 106

Remainder after 1st stage screening 253,973 232,674

Uniques 22,351 3,053

Pre-cluster sequences differing by 1 bp 10,529 uniques NA

Flagged as chimeras 1,081 1,460

Phyla other than target 25 25

Net sequence read yield 252,867 231,189

Sequence reads per sample (+/2SE) 4,214+/2101 3,853+/299

Unique sequence reads 10,250 2,751

OTUs 1,166 792

OTUs containing shared reads 769 739

Equalize sampling effort (subsample to 3,000 reads per sample)

OTUs per sample (+/2SE) 112+/22 120+/22

The sum of sequences failing each criterion in the initial screening is greater than the number of sequences dropped because some sequences failed on multiple
criteria. AmpliconNoise processing includes a test of matching to the 5’ primer, and does not make use of quality scores. OTUs were defined based on a 3% sequence
dissimilarity threshold, using the average neighbor method.
doi:10.1371/journal.pone.0044357.t001
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Figure 1. Corresponding OTUs between data processing methods. A) Each method generated some OTUs which consist entirely of
sequence reads that were culled in the alternate method. These inconsistent OTUs were mostly singletons and were more abundant in the standard
pipeline. B) Most OTUs had a clear corresponding OTU in the alternate method. Data shown are OTUs having a membership.50 reads in the
AmpliconNoise dataset, and the proportion of the membership of each OTU that was shared with the best corresponding OTU in the standard
pipeline dataset.
doi:10.1371/journal.pone.0044357.g001
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Quality screening criteria and the number of reads culled are

shown in Table 1. Sequences were aligned to the Silva reference

database [15] using kmer searching with a ksize of 8 to find the

best template sequence and the gotoh alignment method with

a reward of +1 for a match and penalties of 21 for a mismatch,

22 for opening a gap, and 21 for extending a gap. Aligned

sequences were truncated to a length of 150 nucleotides and

screened for chimeras using the UChime method [16]. In the

standard processing pipeline, sequences that differed by only

a single base pair were pre-clustered. Sequences passing these

quality criteria were clustered into operational taxonomic units

(OTUs) using a 3% sequence dissimilarity criterion and the

average neighbor clustering method. We rarefied to a consistent

sampling effort of 3,000 reads per sample prior to calculating

diversity statistics. Five of the 60 samples were excluded from

diversity analysis because they consisted of fewer than 3,000 reads.

For phylogenetic diversity analysis, dendrograms were generated

from sequence distance matrices using Clearcut [17], as

implemented in Mothur.

The per nucleotide error rate implied by AmpliconNoise

processing was calculated as the pairwise distance between the

input and output sequences, where distance is defined as the

number of base differences between the two sequences divided by

the length of the shortest sequence, where terminal gaps are

ignored and each internal gap contributes a length of one. Pairwise

alignments were made with ClustalW [18] and distance was

calculated using Mothur. We generated a PostgreSQL database to

map reads from the raw data through AmpliconNoise processing

steps and associated accession number changes, in order to

contrast OTU composition between processing pipelines.

Results and Discussion

Quality Screening
In the standard processing pipeline, error-prone and low-quality

sequences are culled from the dataset. Pre-processing in

AmpliconNoise also results in sequence culling, but the actual

de-noising steps correct probable errors while retaining those

modified sequence reads. The subset of sequence reads culled by

the two methods overlapped substantially, but the standard

pipeline had a higher net yield (Table 1; net sequence reads per

sample 4,214 for the standard pipeline vs. 3,853 for Amplicon-

Noise; tpaired = 6.50, p,0.01). Only 0.74% of reads passing

through AmpliconNoise did not also pass through the standard

pipeline. This suggests a quite modest potential for AmpliconNoise

to salvage reads that would otherwise be discarded. In contrast,

9.3% of reads passing through the standard pipeline were culled

by AmpliconNoise.

De-noising with AmpliconNoise will have multiple impacts on

the final dataset: not only are some reads changed to correct

probable errors, but the selection of reads that pass through quality

screening will also be impacted. It is difficult to isolate the effects of

de-noising versus effects of other quality screening criteria. For

instance, length screening in AmpliconNoise sets a threshold

number of flows, while length screening in the standard pipeline

sets a threshold number of bases. Error correction or altered base

calling can also change the fate of sequences during subsequent

quality screening, such as by eliminating ambiguous bases that

would otherwise result in culling of a read.

Among the 232,792 sequence reads that were output after de-

noising, 78.5% were unchanged by the AmpliconNoise algorithm.

Figure 2. Impacts of de-noising on the rank-abundance distribution of OTUs. AmpliconNoise processing significantly altered the OTU rank-
abundance distribution (two-sample Kolmogorov-Smirnov test; D = 0.20, p,0.0001), and increased evenness.
doi:10.1371/journal.pone.0044357.g002
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Among sequences that were changed by the algorithm, the

average implied error rate was 1.51%, equal to approximately 1.2

corrections per sequence. ‘‘Implied error rate’’ indicates that, for

this dataset derived from unknown organisms, we cannot know

whether the changes made during de-noising correspond to true

sequencing or PCR errors. The uneven division of implied errors

across sequence reads is in keeping with previous reports that

pyrosequencing errors tend to be clustered in a subset of sequence

reads [2]. The overall error rate implied by AmpliconNoise

processing for our dataset was 0.17%, which is comparable to

published estimates of pyrosequencing error rates (0.12% to

0.50%; [2,14,19]). Variation in implied error rates across our

samples was modest, ranging from 0.11% to 0.24%.

A partial explanation for the variability in error rates may relate

to differences in community composition, since the frequency and

length of homopolymeric runs are known to impact error rates in

454 pyrosequencing [14]. Samples containing more homopoly-

meric runs did have higher implied error rates (Figure S1;

r2 = 0.17, p = 0.002). Samples containing a higher number of reads

which were culled on quality score in the standard pipeline also

had higher implied error rates in the AmpliconNoise pipeline

(Figure S2; r2 = 0.10, p = 0.018). However, the range of implied

error rates across our samples may also reflect a sensitivity of

AmpliconNoise to differences in the structure of the input

sequence set. For instance, more diverse communities had higher

AmpliconNoise implied error rates than low diversity communities

(Figure S3; r2 = 0.22, p,0.001). Additional factors may also have

contributed to variation in error rates. For instance, humic

substances from soil can inhibit nucleic acid amplification [20],

and unequal concentrations or degree of removal of humic

substances among samples may have impacted amplification

efficiency or fidelity. Finally, it is possible that some of the implied

error in this dataset was due to legitimate sequence variants that

were removed by AmpliconNoise processing.

OTU-based Microbial Community Analysis
When characterizing complex and unknown communities by

DNA sequencing, it is common to bin sequences into OTUs based

on a simple sequence similarity threshold. Processing methods will

impact the conclusions reached in such studies only if they change

patterns of sequence grouping during OTU formation. As

expected, de-noising reduced the total number of OTUs observed

across the dataset as a whole (Table 1). This was due more to

differences in read retention than to impacts of error correction on

clustering of reads. Of the 1,166 OTUs formed by the standard

pipeline, 397 consisted entirely of reads that had been culled by

AmpliconNoise (Figure 1A). In turn, AmpliconNoise processing

generated 53 OTUs consisting entirely of reads that had been

culled in the standard pipeline (Figure 1A). This loss of rare OTUs

is the expected outcome of de-noising. Interestingly though, much

of the reduction in OTU richness achieved by AmpliconNoise can

be attributed to read culling rather than to error correction;

considering only shared reads, AmpliconNoise processing reduced

OTU richness by just 4% (Table 1). In most cases, clearly

corresponding OTUs could be identified between datasets

(Figure 1B). For 79% of AmpliconNoise OTUs, all shared reads

were located in a single corresponding OTU in the standard

pipeline dataset, and for only 5% of AmpliconNoise OTUs were

shared reads distributed across more than three standard OTUs.

The rank-abundance distribution of OTUs generated by the

two methods differed significantly (Figure 2; two-sample Kolmo-

gorov-Smirnov test; D= 0.20, p,0.0001). Interestingly, de-noising

did not increase the relative abundance of the most common

OTUs. Rather, the membership of the most abundant OTUs was

reduced while the membership of OTUs of intermediate

abundance was increased (Figure 2) relative to the standard

pipeline. Evenness was higher for the de-noised data than for the

standard data (Shannon evenness of 0.64 vs. 0.58 overall; 1.72 vs.

1.66 per sample, tpaired =213.81, p,0.001). Altered rank-abun-

dance distributions as a result of denoising have not received

explicit attention, but have great potential to impact the

conclusions that are drawn from datasets.

For instance, it is now recommended that data be rarified in

order to equalize sampling effort across samples. The OTU

abundance distribution will influence the effects of this procedure

on subsequent analyses; the greater the proportion of rare OTUs

in a dataset, the more likely that OTUs will be lost while rarifying.

After rarifying our dataset, OTU richness was consistently and

significantly greater on a per sample basis in the de-noised dataset

(Figure 3A; tpaired =26.69, p,0.001). This is exactly the opposite

of the impacts of denoising on the overall richness of the dataset as

Figure 3. Impacts of de-noising on OTU richness and diversity. A) Relationship between OTU richness with and without de-noising, by
sample. B) Relationship between OTU diversity (Shannon index) with and without de-noising, by sample. C) Ranking of samples by Shannon diversity
index with and without de-noising.
doi:10.1371/journal.pone.0044357.g003

Table 2. ANOVA results tables for tests for differences in OTU
diversity among two main treatment effects.

OTU diversity (Shannon index) , Plant richness * Host species

AmpliconNoise processed

Source DF Sum of
Squares

Mean
Square

F Value Pr.F

Model 19 2.66 0.14 3.35 0.0009 **

Error 35 1.46 0.042

Corrected Total 54 4.12

DF Type III SS MS F Pr.F

Richness 4 1.17 0.29 6.99 0.0028 **

Species 3 0.38 0.13 3.02 0.042 *

Diversity*Species 12 1.53 0.13 3.07 0.0048 **

Standard processed

Source DF SS MS F Pr.F

Model 19 1.78 0.094 1.74 0.077 .

Error 35 1.89 0.054

Corrected Total 54 3.67

DF Type III SSMS F Pr.F

Richness 4 0.76 0.19 3.53 0.016 *

Species 3 0.32 0.11 2.01 0.13

Diversity*Species 12 0.89 0.074 1.37 0.22

We contrast the significance of differences when the underlying data is
processed through AmpliconNoise (top) vs. through a standard pipeline
(bottom).
doi:10.1371/journal.pone.0044357.t002
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a whole. Estimated OTU richness (Chao estimator) was impacted

more variably by de-noising (Figure S4): communities with smaller

OTU richness generally had increases in estimated OTU numbers

following de-noising, while communities having greater OTU

Figure 4. Impacts of de-noising on phylogenetic diversity. A) Relationship between phylogenetic diversity with and without de-noising, by
sample. B) Ranking of samples by phylogenetic diversity with and without de-noising.
doi:10.1371/journal.pone.0044357.g004
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richness had declines in OTU numbers following de-noising.

Richness estimates are heavily influenced by low-abundance

OTUs, and their use for molecular diversity surveys has been

questioned [21].

Shannon diversity estimates were also significantly higher after

de-noising than with standard processing (Figure 3B;

tpaired =214.08, p,0.001), probably due to a combination of

increased per sample OTU richness and increased evenness.

Processing through AmpliconNoise sometimes markedly shifted

the ranking of samples according to diversity index value

(Figure 3C), which is more significant for biological interpretation

than consistent increases or decreases in index values. When

testing for differences in OTU diversity among experimental

treatments, we observed both a greater number of significant

treatment effects and more highly-significant effects following

AmpliconNoise processing compared to the standard pipeline

(Table 2). These pipeline-based differences in analytical outcome

suggest distinct biological conclusions about the factors that

influence microbial community composition. Notably, an en-

hanced ability to distinguish among experimental treatments

provides implicit support for the AmpliconNoise processing

pipeline as being useful in reducing experimental ‘noise.’

Phylotype-based Microbial Community Analysis
There are shortcomings associated with binning DNA se-

quences into OTUs, and complementary approaches have been

developed that use phylotype methods for analyzing microbial

community DNA sequences. These approaches often map

sequence reads onto large dendrograms and analyze resulting

branch lengths between sequences from each sample [22]. It is

expected that these methods may be less sensitive to sequence

errors because typically only short branches will be introduced to

the phylogenetic tree [23]. However, we saw more dramatic effects

of de-noising on phylogenetic diversity than on OTU diversity.

Phylogenetic diversity was reduced after de-noising (Figure 4A;

tpaired =224.65, p,0.001), which is the expected outcome.

However, the ranking of samples according to phylogenetic

diversity switched without any apparent pattern (Figure 4B). This

was unexpected, and could dramatically impact comparisons

among samples. Further studies contrasting the impacts of de-

noising on phylogenetic estimates of microbial diversity among

communities differing in structure and composition are needed to

determine the generalizability of these findings.

Conclusions
Although the rapid turnover of techniques used in microbial

community analysis provides a disincentive for researchers to

invest time and energy in careful evaluation of specific data

processing methods, it is vital that such studies are undertaken. All

methodologies are likely to contain unexpected effects that may

only become clear after detailed comparisons across methods in

many different datasets. Such unexpected effects should be

revealed quickly, as methodological impacts on the conclusions

of studies can be carried into the literature and few datasets are

ever rigorously re-evaluated with updated methodologies. Fur-

thermore, detailed analysis of data processing methods can inform

refinements to algorithms and may demonstrate the need for

entirely new data handling procedures.

To date, the criteria for evaluating processing methods for

pyrosequence data have largely focused on the ability to

successfully recreate the correct number of OTUs. This criterion

does not account for other effects that may accompany the choice

of data processing methods. Thankfully, more nuanced impacts,

such as changes in the relative abundance of certain taxa [24], are

beginning to be considered in evaluating methods. We have

provided a template for evaluation that provides more detail on

the effects of data processing methods on biological conclusions,

extending to the full story of testing hypotheses and drawing

interpretations in an actual, complex experimental design. This is

a dramatically different approach that offers complementary

insights to those gained from use of defined mock communities.

Our data support a positive effect of denoising in reducing

spurious diversity. For instance, the AmpliconNoise pipeline

eliminated hundreds of OTUs which were formed by the standard

pipeline, and enhanced our ability to differentiate among

experimental treatments. However, we highlight the unexpected

outcome of denoising leading to higher per sample richness and

diversity estimates. This is an important caution against assuming

that adjustments to data processing methods will have simple

outcomes (ie. that de-noising sequence data will lead to reductions

in richness estimates).

The microbial ecology research community faces significant

challenges in contrasting and synthesizing analyses performed over

time. There is a need for ongoing re-processing and analysis of

existing datasets in order to establish legitimate comparisons with

more recently collected data, since the choice of data processing

pipelines carries significant interpretive impacts. This work also

emphasizes the importance of archiving pre-processed data as

a reference for future analyses.

Supporting Information

Figure S1 Relationship between the presence of homo-
polymeric runs and AmpliconNoise implied error rate,
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(TIFF)

Figure S2 Relationship between proportion of reads
culled on quality score and AmpliconNoise implied
error rate, by sample.

(TIFF)

Figure S3 Relationship between OTU diversity and
AmpliconNoise implied error rate, by sample.

(TIFF)

Figure S4 Relationship between OTU richness (Chao
estimate) with and without de-noising, by sample.
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