
Mutant Huntingtin induces activation of the
Bcl-2/adenovirus E1B 19-kDa interacting protein (BNip3)
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Huntington’s disease (HD) is a neurodegenerative disorder characterized by progressive neuronal death in the basal ganglia and
cortex. Although increasing evidence supports a pivotal role of mitochondrial dysfunction in the death of patients’ neurons, the
molecular bases for mitochondrial impairment have not been elucidated. We provide the first evidence of an abnormal activation
of the Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNip3) in cells expressing mutant Huntingtin. In this study, we show an
abnormal accumulation and dimerization of BNip3 in the mitochondria extracted from human HD muscle cells, HD model cell
cultures and brain tissues from HD model mice. Importantly, we have shown that blocking BNip3 expression and dimerization
restores normal mitochondrial potential in human HD muscle cells. Our data shed light on the molecular mechanisms underlying
mitochondrial dysfunction in HD and point to BNip3 as a new potential target for neuroprotective therapy in HD.
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Huntington’s disease (HD) is a neurodegenerative disorder
caused by a poly-glutamine (poly-Q) expansion in the protein
known as Huntingtin (htt). The neurons of HD patients
progressively die as the disease progresses, leading to
widespread atrophy of the striatum and cortex, which account
for the clinical symptoms of the disease.

Studies on the central nervous system (CNS) and
peripheral tissues of HD patients, as well as in animal and
cell culture models of HD, have identified several mitochon-
drial abnormalities, including a decreased activity of respira-
tory chain enzymatic complexes, a decreased ATP/ADP ratio
and an altered morphology of these organelles.1–5 Mitochon-
dria have an essential role in the physiology of eukaryotic
cells; not only do they produce most of the cell’s ATP but they
also participate in ion homeostasis, regulation of the cell’s
redox state, lipid and amino-acid metabolism, as well as in
regulation of programmed cell death. All these functions are
highly dependent on the mitochondrial electrochemical
transmembrane potential (Dcm), a physicochemical para-
meter consisting of two components, namely the total
transmembrane electrical potential (voltage gradient) and
the proton gradient that is physiologically generated across
the inner mitochondrial membrane by the activity of the

respiratory chain. Growing evidence indicates that the many
mitochondrial abnormalities observed in HD tissues may stem
from an abnormal Dcm, as the mitochondria extracted from
HD patients had Dcm values lower than the mitochondria from
normal patients.6–9 Dcm loss seems to be a direct effect of
mutant htt, given that it occurs in normal cells transfected with
mutant htt10,11 and when mutant htt is added to mitochondria
isolated from normal brains.12

The results from these studies notwithstanding, the
molecular bases for the Dcm decrease observed in HD cells
still remain elusive.

Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNip3)
is a member of the so-called BH3-only subfamily of Bcl-2
family proteins that regulate the permeability state of the outer
mitochondrial membrane (OMM). This regulation is accom-
panied by the formation of homo- and hetero-oligomers inside
the membrane, which influences Dcm and controls cell death
mechanisms.13,14 The BNip3 protein is normally present in the
brain tissue and skeletal muscle15 and is mainly localized in
the cytoplasm and nucleus or is found loosely associated with
the mitochondrial membrane in an inactive conformation.16,17

The molecular mechanism underlying BNip3 activation is
not completely understood, but it probably involves a multi-
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step process. A few intracellular toxic stimuli, such as
decreased intracellular pH and increased cytosolic calcium
concentration,17,18 can induce BNip3 integration into the
OMM with the protein’s N terminus in the cytoplasm and C
terminus inside the mitochondria.19 The BNip3 C-terminal
hydrophobic domain is required for integration in the OMM, as
its deletion prevents the mutant protein (BNip3DTM) from
integrating into the OMM and inducing cell death.20,21

Importantly, BNip3DTM functions as a dominant-negative
mutant, interacting with wild-type BNip3 and blocking its
integration into the OMM.22–24 Once integrated into the
OMM, BNip3 can self-associate and form stable homodimers
on the basis of intermonomeric helix–helix polar interactions
of various side chains.25 The unique structure of the
transmembrane domain suggests that BNip3 dimers could
function as proton channels in the OMM, thereby increasing
ion conductance.25

Considering the crucial role of BNip3 in regulating OMM
permeability, we have undertaken a study to investigate the
potential role of BNip3 in the mitochondrial dysfunction
induced by mutant htt.

Results

Increased BNip3 levels and mitochondrial localization in
muscle cells from HD patients. We have previously shown
that myoblasts isolated from HD patients show mitochondrial
dysfunction.8 To investigate the potential role of BNip3, we
analyzed its expression levels in muscle cell lysates from four
HD and four control subjects by SDS-PAGE. The molecular
weight of BNip3, as predicted from its amino-acid sequence,
is 21.5 kDa; however, the protein has been described to
migrate as two major molecular species, with apparent
molecular weights of B30 and B60 kDa in SDS-PAGE gels,
representing monomeric and dimeric forms, respectively.26,27

The apparent molecular weight of monomeric BNip3 in
SDS-PAGE and the presence of multiple protein bands at
B30 kDa are likely due to protein phosphorylation, as BNip3,
similar to many proteins of the Bcl-2 family, bears consensus
sites for phosphorylation by protein kinases (Supplementary
Figure 1).18 The biological role of these possible post-
translational modifications still remains unknown. The BNip3
signal at B60 kDa, corresponding to BNip3 dimers, can be
detected by SDS-PAGE, as BNip3 dimers are highly stable
and resistant to detergents.26,28

In cell lysates from human HD myoblasts, we detected
monomeric BNip3. Densitometric analysis showed higher
levels of monomeric BNip3 in HD myoblasts than in myoblasts

extracted from control subjects. Dimeric BNip3 was barely
detectable in total lysates of human myoblasts (Figure 1a).

As the pivotal step in BNip3-mediated cell death involves its
integration into the OMM,19 we tested whether the increased
expression of BNip3 resulted in increased mitochondrial
localization. Mitochondria-enriched fractions were prepared
from normal and HD human muscle cells and then treated by
alkaline pH. This treatment detaches loosely associated
peripheral membrane proteins, thus enriching the samples
for mitochondrial transmembrane proteins.29 Immunoblot
analysis of alkali-treated mitochondrial fractions showed
strong monomeric BNip3 signals in both HD and control
myoblasts. However, there was a trend of increased mono-
meric BNip3 in HD samples. The dimeric form of BNip3 was
visible only in the HD mitochondria and was not detectable in
control myoblasts (Figure 1b). HD myoblasts derived from
patients carrying 60 CAG repeats (lane 6) had the highest
dimeric BNip3 signal.

To confirm the increased association of BNip3 with the HD
mitochondria, we performed confocal microscopy on myo-
blasts obtained from control and HD patients. Notably, BNip3
colocalized with the mitochondria in B40% of HD cells,
while the protein was mainly localized in the cytoplasm and in
the nucleus in control cells (Figure 1c and Supplementary
Figure 2).

Overall, our data suggest the accumulation and dimeriza-
tion of BNip3 protein in the mitochondria of human HD
muscle cells.

BNip3 levels in the brain tissue from R6/2 and YAC128
mouse models. To investigate whether the changes
observed in BNip3 expression and localization in muscle
cells obtained from HD patients mirrored events occurring
in the CNS, we analyzed BNip3 levels and localization
patterns in the brain tissues of two different HD model
mice, namely R6/2 and yeast artificial chromosome
(YAC)128. R6/2 mice are transgenic for exon-1 of the
human IT15 gene, containing highly expanded CAG
repeats,30 whereas YAC128 mice express a full-length IT15
gene with 128 CAG repeats.31 There was a trend of
decreased monomeric BNip3 in HD striatum samples
(Figure 2a); no significant difference in BNip3 expression
was observed in the cortex from R6/2 and littermate control
mice at 10 weeks of age (Figure 2b). It is noteworthy that
immunoblotting analysis of alkali-treated mitochondrial
fractions showed a stronger dimeric BNip3 signal in the
R6/2 striatum than in the wild-type striatum (Figure 2c). In
R6/2 mitochondrial fractions, we also observed an anti-

Figure 1 Analysis of BNip3 expression and BNip3 integration into the mitochondrial membranes of human myoblasts. (a) Equal protein amounts from control (lanes 1–4)
and HD myoblasts (lanes 5–8) were analyzed by WB and probed with anti-BNip3 antibody (Clone ANa40, Sigma). The signal corresponding to monomeric BNip3 was higher in
HD myoblasts (from left to right: 48, 60, 42and 42 CAG, sample numbers correspond to the subject numbers in Supplementary Table 1) than in control myoblasts. Lane 9 was
a positive control (control myoblasts transfected with the plasmid encoding BNip3 protein). Equal protein loading was verified by stripping and reprobing membranes with anti-
actin antibody. Protein band densitometry is reported in the corresponding graphs as means±S.E.M. (*Po0.05). (b) Mitochondria-enriched fractions from control (lanes 1–4)
and HD myoblasts (lanes 5–8) were analyzed by WB. To verify equal protein loading, membranes were stripped and reprobed with anti-COX IV antibodies. Protein band
densitometry is reported in the corresponding graphs as means±S.E.M. Dimeric BNip3 signal was clearly detectable in HD myoblasts (from left to right: 48, 60, 42 and 42
CAG). There was a trend toward increased monomeric BNip3 in HD samples (P¼ 0.056). (c) Confocal microscopy on myoblasts isolated from control and HD subjects. White
arrows indicate regions of extended BNip3 and mitochondrial colocalization in HD myoblasts. The image is representative of four myoblast cultures from four HD patients. Line
scans below the images indicate colocalization between BNip3 (green) and mitochondria (red) and correlate with the lines drawn in the images
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BNip3-immunoreactive band with an apparent molecular
weight 460 kDa, which is consistent with previously
described higher-order oligomeric forms of BNip3.14,32

Immunoblotting analysis of cortical mitochondrial fractions
showed a slight increase in the dimeric BNip3 signal
in the R6/2 striatum than in the wild-type striatum,
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but the difference did not reach statistical significance
(Figure 2d).

In the striatum of 6-month-old YAC128 mice, levels of
monomeric and dimeric BNip3 were significantly increased
with respect to control littermates (Figure 2e). Expression
levels in the cortex showed a high degree of variability among
the animals analyzed, and mean differences between control
and HD mice did not reach statistical significance (Figure 2f).
However, the variance in the distribution of BNip3 levels in the
HD group was significantly different from the variance in the
control group of animals, suggesting a trend toward increased
BNip3 levels in HD cortexes. Similar to R6/2 animals, the
mitochondria from the YAC128 striatum contained more
BNip3 than those from the control striatum (Figure 2g). No
difference in BNip3 level was detected between the YAC128
cortical mitochondria and the mitochondria from control
cortexes (Figure 2h).

Expression of mutant htt induces the accumulation of
monomeric BNip3, BNip3 dimerization and BNip3
integration into the OMM in HD cell culture models. To
investigate whether the observed alteration of BNip3 levels in
HD myoblasts and HD mouse models was the direct result of

mutant htt expression, we transfected the neuroblastoma
cell line, SHSY5Y, with a plasmid encoding exon-1 of wild-
type (SHSY5Y-htt-wt) or mutant (SHSY5Y-htt-mut) htt
(Figure 3a). Immunoblotting analysis of whole-cell lysates
showed that mutant htt caused an accumulation of
monomeric and dimeric BNip3 (Figure 3b, line 3).

To investigate whether mutant htt expression also pro-
moted BNip3 integration into the mitochondrial membrane, we
isolated mitochondria from SHSY5Y-htt-wt and SHSY5Y-htt-
mut cells and treated them with alkali. Under these conditions,
significant amounts of BNip3 dimers and oligomers were
detectable in the mitochondria from SHSY5Y-htt-mut cells,
but not from cells transfected with normal htt (Figure 3c).

To further confirm that mutant htt induced BNip3 integration
into mitochondrial membranes, we analyzed an additional
model cell line. HEK293T cells express barely detectable
levels of endogenous BNip3 under normal growth condi-
tions;33 therefore, we conducted cotransfection experiments
of the plasmid encoding htt, together with the plasmid
encoding BNip3.

As a negative control, we transfected the mutant
BNip3DTM, which lacks the C-terminal domain essential for
integration into the OMM. At 72 h after transfection, wild-type

Figure 2 Analysis of the BNip3 level and BNip3 integration into the mitochondrial membrane in the brains of R6/2 and YAC128 mice. (a, b) Whole-protein lysates of the
striatum (left panel) and cortex (right panel) from 10-week-old R6/2 and littermate control mice were analyzed by WB, using anti-BNip3 antibodies. There was a trend toward
decreasing monomeric BNip3 in the R6/2 striatum (*Po0.05). No statistically significant difference in total BNip3 expression between R6/2 and wild-type mice was detected in
cortical tissues. Data are representative of six R6/2 and six wild-type mice. (c, d) The panels show WB analysis of alkali-treated mitochondrial fractions from the striata and
cortexes of 10-week-old R6/2 and control mice. To verify equal protein loading, membranes were stripped and reprobed with an anti-TOM20 antibody. Data are representative
of the six R6/2 and six wild-type mice analyzed (*Po0.05). (e, f) Immunoblotting and densitometric analysis of BNip3 expression in total lysates from the striatum (left panel)
and cortex (right panel) samples of five 6-month-old YAC128 mice and control littermates. Each lane represents one individual animal. Protein band densitometry results are
reported in the corresponding graphs as means±S.E.M. (two-tailed t-test, *Po0.05). (g, h) The panels show immunoblotting and densitometric analysis of BNip3 in alkali-
treated mitochondrial fractions from the striata and cortexes of YAC128 and control mice. TOM20 was used as a loading control (two-tailed t-test, *Po0.05)
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Figure 2 Continued
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and mutant htt were similarly expressed in HEK293T cells
(Figure 3d, left panel). An antibody recognizing expanded
poly-Q tracts confirmed the expression of mutant htt
(Figure 3d, right panel). HEK293T cells transfected with
mutant htt had higher levels of monomeric and dimeric BNip3
than did HEK293T-htt-wt cells (Figure 3e, left panel). These
results confirm the fact that the BNip3 protein undergoes
accumulation and dimerization in cells expressing mutant htt.
Truncated BNip3DTM protein did not dimerize (Figure 3e,
right panel) either in HEK293T-htt-wt or in HEK293T-htt-mut
cells; indeed, BNip3DTM was detected as two bands of
B28 kDa, as previously shown.26 These data are in agree-
ment with previous reports showing that the transmembrane
domain of BNip3 is required for its dimerization.20,26

We also analyzed alkali-treated mitochondrial fractions.
HEK293T-htt-mut cells had higher BNip3 signals in their
mitochondria than did HEK293T-htt-wt cells (Figure 3f). Both
monomeric and dimeric BNip3 significantly increased in cells
expressing mutated htt. BNip3DTM was not detected in mito-
chondrial fractions, in agreement with previous reports showing
that the transmembrane domain of BNip3 is required for its
complete integration into the mitochondrial membrane.20

Increased resistance of monomeric BNip3 in HD
samples to proteinase-K digestion. One proposed model
to explain BNip3 function posits that BNip3 can exist as an
inactive, latent monomer, which requires a death activation
signal to become active.28 The death signal elicits a
conformational change in monomeric BNip3 that promotes
protein dimerization or oligomerization in the lipid

environment of the mitochondrial membrane and the
formation of an ion-permeable channel through the OMM.25

Thus, a conformational change in the monomeric form is
believed to be the triggering event in BNip3 activation and
mitochondrial membrane permeabilization. To assess
potential differences in the conformational state of
monomeric BNip3 induced by mutant htt, we tested BNip3
resistance to in vitro digestion with proteinase-K (PK) in
whole extracts of HD samples. This approach has been
successfully used to discriminate between inactive (more
prone to digestion) and active (more resistant) forms of
monomeric BNip3 in a previous study.14 The increased
resistance of the active monomeric form to PK digestion is
presumably due to the acquisition of a proteolysis-resistant
conformation.14 Total lysates prepared from control and HD
myoblasts were digested with increasing concentrations of
PK, and the products were analyzed by immunoblotting. As
shown in Figure 4a, BNip3 monomers in cell lysates from HD
myoblasts were significantly more resistant to PK digestion
than those from control samples. Actin digestion was not
different between HD and control samples (Figure 4a),
demonstrating that the increased resistance to proteolysis in
HD samples was specific for the BNip3 protein. Similar
results were obtained using total protein extracts from R6/2
and control mouse brains (Figure 4b). Overall, our data
support the hypothesis that mutant htt promotes a
conformational change in the BNip3 protein that may
trigger its activation. To further confirm that BNip3
activation on mutated htt involve a posttrascriptional
mechanism, we analyzed the transcriptional expression

Figure 2 Continued
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level of BNip3. Results are reported in Supplementary
Figure 3. A slight increase in BNip3 mRNA was detected
in HD myoblasts compared with control myoblasts. No
difference in BNip3 mRNA was detected in R6/2 brains
compared with brains of littermate controls, and in YAC128
brains compared with wild-type brains.

Overexpression of the mutant protein BNip3DTM and
silencing of endogenous BNip3 protect cells from the
mitochondrial depolarization induced by mutant htt. We
have previously shown that human HD myoblasts show

important features of mitochondrial dysfunction, with Dcm

decreased by B30% compared with control myoblasts.8 As
BNip3 integration into the OMM can elicit the reduction of
Dcm on various toxic stimuli,15 we hypothesized that the high
BNip3 levels we found associated with mitochondrial
membrane fractions in HD cells could cause a decrease in
Dcm, previously observed in HD myoblasts and other HD
models.6,8,10,11

In this context, we reasoned that blocking both BNip3
integration in the OMM and BNip3 dimerization by over-
expression of the dominant-negative protein BNip3DTM

Figure 3 Analysis of BNip3 levels in cell culture models expressing mutant htt. (a) WB analysis of whole-protein extracts from SHSY5Y cells transiently transfected with
pcDNA4 (lane 1), wild-type htt exon1-9CAG (lane 2) or mutated htt exon1-60CAG (lane 3) and harvested 72 h after transfection. The WB was probed with anti-Myc antibody
(both wild-type and mutant htt exon-1 were tagged C-terminally with Myc epitopes). (b) WB analysis of SHSY5Y cells transiently transfected with empty vector (lane 1), wild-
type htt exon1-9CAG (lane 2) or mutant htt exon1-60CAG (lane 3). Cells were harvested 72 h after transfection. The signals corresponding to monomeric and dimeric BNip3
(Clone ANa40) were higher in cells expressing mutant htt than in those expressing wild-type htt. Results are representative of three independent experiments. To verify the
specificity of the signal, SHSY5Y cells were transfected with a plasmid encoding BNip3 (lane 4). Results are representative of three independent experiments. (c) Equal
amounts of protein from alkali-treated mitochondrial fractions of SHSY5Y cells expressing wild-type htt exon1-9CAG (lane 1) or mutant htt exon1-60CAG (lane 2) were
analyzed by WB and probed with anti-BNip3 antibody (Clone ANa40). To verify equal protein loading, membranes were stripped and reprobed with anti-actin and anti-COX IV
antibodies. Results are representative of three independent experiments. (d) WB analysis of HEK293T cells transiently transfected with empty pcMV6NEO (lane 1), wild-type
full-length htt-17CAG (lane 2) or mutant full-length htt-47CAG (lane 3). Blots were probed with anti-htt (MAB2166) and anti-poly-glutamine (MAB1574) antibodies. (e) WB
analysis of HEK293T cells transiently cotransfected with wild-type full-length htt-17CAG and BNip3 (left panel, lane 1); mutant full-length htt-47CAG and BNip3 (left panel,
lane 2); wild-type full-length htt-17CAG and BNip3DTM (right panel, lane 3); or mutant full-length htt-47CAG and BNip3DTM (right panel, lane 4). The signals corresponding to
monomeric and dimeric BNip3 were higher in cells expressing mutant htt than in those expressing wild-type htt. Results are representative of three independent experiments.
(f) Equal amounts of protein from alkali-treated mitochondrial fractions were analyzed by WB and probed with anti-BNip3 antibody (Clone ANa40). HEK293T cells were
transiently transfected with wild-type full-length htt-17CAG and BNip3 (left panel, lane 1); mutated full-length htt-47CAG and BNip3 (left panel lane 2); wild-type full-length
htt-17CAG and BNip3DTM (right panel, lane 1); or mutant full-length htt-47CAG and BNip3DTM (right panel, lane 2). To verify equal protein loading, blots were stripped and
reprobed with anti-COX IV antibodies. Results are representative of three independent experiments
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would protect cells from the mitochondrial depolarization
induced by mutant htt. The mutant BNip3DTM lacks
the C-terminal domain essential for integration into the OMM

and has been shown to function as a dominant-negative
mutant that blocks BNip3 translocation and integration into
the OMM.22,23

Figure 4 Increased resistance of monomeric BNip3 to proteinase-K digestion in HD cells. Total cell extracts from four human myoblasts (a) and three R6/2 mouse brains
(b) were digested in vitro for 8 min with increasing concentrations of PK: 0.05mg/ml (lane 2), 0.1mg/ml (lane 3), 0.2mg/ml (lane 4) and 0.4mg/ml (lane 5); lane 1 contained the
untreated sample. Lysis buffer contained 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1mg/ml pepstatin, 1mg/ml leupeptin and 20mM MG132.
Densitometric analysis was performed on monomeric BNip3 signals (Clone ANa40). Multiple bands corresponding to monomeric forms were analyzed together. Data are
reported as means±S.E.M., as percentages of the untreated sample. Monomeric BNip3 extracted from HD samples demonstrated increased resistance to PK digestion
(*Po0.05 versus control sample). No difference in actin digestion patterns was detected between HD and control samples
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In human HD myoblasts, transient transfection with
BNip3DTM did not modify mitochondrial Dcm both in
control and HD myoblasts (data not shown), probably
because of high endogenous levels of BNip3 and the low
transfection efficiency of plasmid DNA in primary myoblasts
(B60% of cells displayed green fluorescence 24 h after
trasfection with the pEGFP vector). However, cotransfection
of cells with BNip3DTM and with short interfering RNA
(siRNA) to knock down endogenous BNip3 resulted in an
efficient silencing of the endogenous protein (by B70%,
Figure 5a), in a detectable expression of BNIP3DTM, as well
as in a significant increase in Dcm in all four HD lines
transfected (mean value 124%, **Po0.01; Figures 5b and c).

Overall, these results suggest that the Dcm loss in HD
myoblasts may stem from BNip3 activation.

Discussion

Evidence that accrued over the past few years increasingly
favors the hypothesis that mitochondrial dysfunction has a key
function in the death of the neuronal cells of HD patients.34,35

Nevertheless, the nature of such mitochondrial damage
has remained elusive so far. Our results suggest a role of
BNip3 protein in the mitochondrial dysfunction induced by
mutated htt.

Figure 5 Overexpression of the mutant protein BNip3DTM and silencing of endogenous BNip3 protect cells from mitochondrial depolarization. (a) WB analysis (Clone
ANa40) of cotransfected myoblasts: lines 1 and 3 correspond to scrambled siRNAþ empty pTarget; lines 2 and 4 correspond to BNip3 siRNAþBNip3DTM. (b) Analysis of
Dcm in human HD (four samples) and control (four samples) myoblasts after treatment with siRNA against BNip3, together with a plasmid encoding BNip3DTM. Data are
presented as means±S.E.M. (**Po0.01). Cultured cells were transfected with equal amounts of plasmid DNA. (c) Image reports of the singular Dcm values of HD muscular
cell cultures from the four patients analyzed, carrying 60, 48, 42 and 42 CAG repeats, respectively. Dcm values are reported as means±S.E.M. (**Po0.01). Data were
derived from three experiments performed on four HD and four control myoblast cultures
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Clinical and experimental studies have provided convincing
evidence that mitochondrial dysfunction occurs in the CNS
and skeletal muscle tissue of HD patients.4,34,36,37 Thus,
cultures of human myoblasts obtained from HD patients are
an excellent model to study the pathogenic effects of mutated
htt on the mitochondria. Our former study showed a
pathological decrease of Dcm in HD myoblasts.8 In this study,
we provide evidence that BNip3 levels are increased in total
lysates of HD myoblasts. More importantly, we demonstrate
that more BNip3 colocalized with the mitochondria in human
HD myoblasts when compared with age-matched control
myoblasts. The increased total level of the BNip3 protein
might depend both on transcriptional and on posttranscrip-
tional regulation. However, results indicating increased BNip3
translocation into the mitochondria and BNip3 integration into
the OMM in HD cells suggest that posttranscriptional
mechanisms are primarily involved. This hypothesis is further
supported by the finding that the BNip3 protein in HD
myoblasts is more resistant to PK digestion compared
with that in control samples, probably because of the
acquisition of an alternative conformation as a prelude to
BNip3 activation.14

The results obtained from human HD myoblasts were
confirmed in the brain tissue extracted from two different
animal models of HD, R6/2 and YAC128 mice. In both animal
models, we observed increased levels of dimeric BNip3
associated with striatal mitochondrial fractions. Importantly,
YAC128 mice showed increased BNip3 levels in the striatum
at 6 months of age when, in spite of overt motor symptoms, no
striatal tissue loss had yet occurred. This suggests that
alterations in BNip3 localization and activity may precede
neural loss in HD. In addition, the transient expression of
mutant htt in SHSY5Y cells induced BNip3 accumulation and
translocation into the OMM, thus confirming that this
phenomenon occurs in neuronal cells and is directly triggered
by mutant htt. Unfortunately, a study on BNip3 in human HD
brains cannot be conducted, as BNip3 expression and
activation are strongly induced by hypoxic conditions that
inevitably precede the collection of autopsy specimens.

A large number of studies using cell culture models have
shown that BNip3 integration into the OMM leads to a potential
loss of mitochondria.19,21,23,38 In accordance with those
results, a recent report described the spatial structure of
BNip3 in a membrane-mimicking lipid environment, showing
that BNip3 homodimers can form an ion-conducting pathway
in the membrane.25 In line with these studies, BNip3
translocation into the mitochondrial membrane and BNip3
dimerization may elicit the Dcm loss observed in animal and
cell culture models of HD and in myoblasts extracted from
HD patients.

We observed increased levels of BNip3 homodimers in the
mitochondrial fractions of all HD models investigated in our
studies, including human HD myoblasts, R6/2 and YAC 128
mouse brains and transfected cell lines. These data suggest
that BNip3 dimerization may be a crucial step in the BNip3
activation process induced by mutant htt expression, even if a
role for the monomeric form of BNip3 in mitochondrial damage
cannot be ruled out. Indeed, we observed a significant
accumulation of BNip3 monomers in SHSY5Y cells on mutant
htt expression. Moreover, an increased resistance of the

BNip3 monomeric form to PK digestion was observed in
lysates from R6/2 brains and HD myoblasts. Whether some of
these monomers were derived from partial dissociation of the
homodimers under denaturing and reducing conditions or
rather represented the molecular precursors of dimers cannot
be assessed.

If our hypothesis positing that BNip3 has a role in Dcm loss
in HD is correct, then the inhibition of BNip3 expression and/or
BNip3 translocation and dimerization in HD cells should result
in the increase in mitochondrial Dcm. BNip3DTM is a
dominant-negative mutant lacking the transmembrane
domain required for BNip3 translocation and integration into
the OMM.23,24 We observed that expression of BNip3DTM
and simultaneous downregulation of endogenous BNip3 by
RNA interference in human HD muscle cells rescued the Dcm

loss induced by mutant htt. These data support a role for
BNip3 in htt-induced mitochondrial damage and point to a new
potential gene therapy approach for HD. It is important to note
that BNip3 knockout mice are viable and lack a pathological
phenotype;39 thus, the inhibition of BNip3 function by RNA
interference or by overexpression of the dominant-negative
mutant BNip3DTM may have neuroprotective effects without
causing adverse side effects.

One question that remains unanswered is how mutant htt
induces BNip3 activation. Previous reports have shown that
BNip3 association with mitochondria is strongly stabilized by
acidosis14,40 or by an increased cytosolic calcium concentra-
tion.18 Both conditions may occur in HD cells, causing BNip3
stabilization and integration into the OMM, but one more
intriguing possibility should also be considered: in light of the
fact that htt can localize to the mitochondria by loosely
associating with the OMM, we may hypothesize that htt binds
directly or indirectly to BNip3. Future studies will aim at
elucidating these and other potential mechanisms underlying
the effects of mutant htt on BNip3.

Materials and Methods
Muscle cell cultures. Muscle cell cultures were obtained from human biopsy
specimens, as described previously.8 Demographic and clinical data of HD patients
and control subjects are reported in Supplementary Table 1.

Animal models. Transgenic R6/2 mice and wild-type CBA animals were
originally obtained from the Jackson Laboratory (Bar Harbor, ME, USA) and from a
colony established in the animal facility of the Department of Biomolecular Science and
Biotechnology, University of Milan. Two additional R6/2 mouse brains were kindly
donated by Dr. Ferdinando Squitieri (IRCCS Neuromed, Pozzilli (IS)). YAC128 mice
(FVB-Tg(YAC128)53Hay/J) were originally obtained from the Jackson Laboratory and
maintained in the Health Sciences Laboratory Animal Services at the University of
Alberta. All mice were handled following institutional guidelines.

Plasmids. Plasmids encoding Myc-tagged htt exon-1, wild-type (9 CAG) or
mutant (60 CAG), were generated by in-frame insertion of a PCR-amplified DNA
fragment encoding htt exon-1 into the pcDNA4-Myc-HIS vector (Invitrogen,
Carlsbad, CA, USA). Plasmid pTarget-BNip3DTM was created by introducing a
stop codon (TAG) after amino acid 161, using the QuikChange kit (Stratagene, La
Jolla, CA, USA). To prevent BNip3DTM from being silenced by siRNA against
endogenous BNip3, three conservative single-nucleotide mutations were introduced
(i.e., a468c, c471t and a477c).

All DNA constructs were verified by sequencing with the BigDye Terminator kit
(Applied Biosystems, Foster City, CA, USA).

Isolation of mitochondria and immunoblotting. Cells were
homogenized with 40 strokes in a 1 ml Dounce homogenizer and centrifuged at
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600� g for 5 min to pellet nuclei and cell debris. The supernatant was centrifuged at
10 000� g for 20 min to obtain the mitochondria-enriched pellet. Mitochondrial
fractions were incubated on ice for 30 min with 100 mM Na2CO3 and centrifuged at
75 000� g to collect mitochondrial transmembrane proteins.

Mitochondrial isolation from mouse brains was performed as follows: Fresh
tissues (striatum and cortex) were washed with cold PBS and homogenized by 25
strokes in a Dounce homogenizer in a buffer containing 50 mM HEPES (pH 7.5),
1 mM mannitol, 350 mM sucrose and 5 mM EGTA. Intact cells and nuclei were
separated by centrifugation at 1000� g for 5 min, and supernatants were
centrifuged at 3500� g for 10 min to collect mitochondrial pellets. The mitochondrial
pellets were incubated on ice for 30 min with 100 mM Na2CO3, then centrifuged at
75 000� g to collect the heavy mitochondrial membrane pellets.

Equal amounts of protein were resolved on 12% SDS-PAGE gels. Antibodies for
htt protein (MAB2166) and for expanded poly-Q (MAB1574) were purchased from
Chemicon International (Billerica, MA, USA). Anti-Cox IV was obtained from Cell
Signaling. Anti-BNip3 antibodies were from Cell Signaling (Danvers, MA, USA)
and Sigma (St Louis, MO, USA). The anti-TOM20 antibody was a gift from
Dr. Goping (University of Alberta, Edmonton, Alberta, Canada). HRP-conjugated
antibodies were from GE Healthcare (Europe Gmbh, Milano, Italy). IR780- and
IR800-conjugated antibodies were from Li-Cor (Li-Cor Biotechnology, Lincoln,
NE, USA). Protein detection was performed by enhanced chemiluminescence
(GE Healthcare) or by using the Odyssey infrared imaging system (Li-Cor
Biotechnology). Densitometric analysis of chemiluminescent protein bands was
performed using Quantity One Software (BioRad, Hercules, CA, USA).

Transfection assays. SHSY5Y cells were transfected using Lipofectamine
2000 reagent (Invitrogen), according to the manufacturer’s protocol. SHSY5Y cells
were then differentiated with 10 mM retinoic acid (Sigma) and harvested 72 h after
transfection.

Human myoblasts were plated in 6- or 96-well plates and transfected in Optimem
using Lipofectamine 2000, 0.8mg/ml plasmid DNA and 40 nM siRNA. Stealth RNA
oligonucleotides (siRNA) against human BNip3 were purchased from Invitrogen.
The transfection efficiency of siRNA (480%) was confirmed with Block-iT
Fluorescent Oligo, as described previously.8

Mitochondrial potential (Dwm). Mitochondrial potential was evaluated
using a microfluorimetry assay, as described previously.8 Fluorescence intensity
was monitored with a fluorescence plate reader (Ascent FL Thermo Labsystems,
Waltham, MA, USA), using two excitation and emission filters (485/530 and 530/
590). The results are reported as ratios of red/green fluorescence.

Immunofluorescence. Cell monolayers were labeled with 250 nM
MitoTrackerRed for 30 min at 371C, then fixed in 4% paraformaldehyde,
permeabilized with 0.5% Triton X-100, thoroughly washed and finally blocked
with 10% normal goat serum. Cells were incubated first with anti-BNip3 antibody
(Prestige Antibodies, Stockholm, Sweden) at 41C, thoroughly washed and then
incubated with Alexa Fluor 488 anti-rabbit (Invitrogen) for 1 h. Slides were analyzed
with an LSM510 laser scanning confocal microscope mounted on a Zeiss Axiovert
100 M microscope (Zeiss, Thornwood, NY, USA), using a 40� 1.3 oil objective.
Images were converted to tif files and cropped using Adobe Photoshop CS3
(Adobe, San Jose, CA, USA).

Statistical analysis. Unless otherwise stated, all data are expressed as
means±S.E.M. Data were subjected to normality tests. As data showed normal
distributions, we used a parametric ANOVA (analysis of variance), followed by
Tukey’s test, to detect significant differences among groups, unless otherwise
stated. Statistical significance was set at Po0.05.
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