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To improve the accuracy of clinical diagnosis of severe patients with advanced liver cancer and enhance the effect of chemotherapy
treatment, the U-Net model was optimized by introducing the batch normalization (BN) layer and the dropout layer, and the
segmentation training and verification of the optimized model were realized by the magnetic resonance (MR) image data.
Subsequently, HepG2 cells were taken as the research objects and treated with 0, 10, 20, 40, 60, 80, and 100 μmol/L emodin (EMO),
respectively. *e methyl thiazolyl tetrazolium (MTT) method was used to explore the changes in cell viability, the acridine orange
(AO)/ethidium bromide (EB) and 4′,6-diamidino-2-phenylindole (DAPI) were used for staining, the Annexin V fluorescein
isothiocyanate (FITC)/propidium iodide (PI) (Annexin V-FITC/PI) was adopted to detect the apoptosis after EMO treatment,
and theWestern blot (WB) method was used with the purpose of exploring the changes in protein expression levels of PARP, Bcl-
2, and p53 in the cells after treatment. It was found that compared with the original U-Net model, the introduction of the BN layer
and the dropout layer can improve the robustness of the U-Net model, and the optimized U-Net model had the highest dice
similarity coefficient (DSC) (98.45%) and mean average precision (MAP) (0.88) for the liver tumor segmentation.

1. Introduction

Primary liver cancer is currently one of the common ma-
lignant tumors with highmorbidity andmortality, which has
seriously threatened the safety of human life [1]. Surgical
treatment is currently the most direct and thorough method
for liver treatment, but precise surgical treatment is required
to preserve the integrity of the unaffected area of the liver to
the greatest extent [2]. *e prerequisite for doctors to
perform accurate diagnosis and treatment of liver cancer is
to accurately segment the lesion area from the patient’s
imaging treatment. *e current manual segmentation
method has the highest accuracy, but it will waste a lot of
time and energy in the face of massive medical imaging data.
In addition, the manual segmentation has the characteristics

of non-repeatability and subjectivity [3, 4]. To improve the
efficiency of medical image processing and realize the in-
telligence and repeatability of image segmentation, a large
number of experts and scholars have introduced the intel-
ligent algorithms to achieve this goal. At present, the al-
gorithms commonly used for the image segmentation
include the support vector machines (SVMs), convolutional
neural networks (CNNs), and U-Net [5–7]. Among them,
the U-Net model is mainly used for the segmentation of
medical images and can fuse the image features of different
scales, so it is widely used in the segmentation of medical
images [8]. However, the depth of the original U-Net model
is not enough to obtain a good network model through fast
training. *erefore, to solve this problem, an improvement
on the structure of the U-Net was explored in this study.
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Surgical resection is limited to the treatment of patients
with liver cancer in the early stage, but the patients with
advanced liver cancer with the characteristics of fast de-
velopment and easy metastasis can only inhibit the devel-
opment of liver cancer through chemotherapy or
radiotherapy [9]. Radiotherapy can cause vomiting and
gastrointestinal mucosal damage in patients, and doxoru-
bicin and other drugs commonly used in chemotherapy have
certain toxicity, which can affect the growth of normal cells
in the patient’s body [10, 11]. Studies have proved that
natural secondary metabolites derived from animals, plants,
or microorganisms can reduce the toxic and side effects
caused by radiotherapy or chemotherapy and have the
advantages of high safety performance and resistance to
drug resistance [12]. At present, EMO can intervene in the
process of liver cancer, cervical cancer, prostate cancer, and
other cancers. It mainly achieves alleviation of cancer disease
process by blocking the cell cycle and inhibiting the cell
proliferation [13, 14].

2. Methodology

2.1. ExperimentalMaterials. *eMR imaging data related to
the “advanced liver cancer” were obtained from *e Cancer
Imaging Archive, and the data provided by researchers of
Harvard beamandrew machine learning and medical im-
aging on the GitHub were referred. As a result, a total of
1,526 MR images were obtained to construct the “MR Image
Data Set of Advanced Liver Cancer.”

2.2. Preprocessing of MR Image. During the process of
image data collection, there may be more interference in the
image due to the changes in environment and magnetic field
[15]. *erefore, to improve the effect of image segmentation,
the images had to be normalized and standardized when
inputting the MR images into the model.

*e (0, 1) normalization method was adopted to process
the image pixel matrix, and the mathematical expression of
this method was given as follows:

x
∼

� Factor ·
x − xmin

xmax − xmin
. (1)

In the above equation, x was the pixel of input image,
xmax represented the maximum value in the pixel matrix,
xmin represented the minimum value in the pixel matrix, and
Factor indicated the normalization coefficient. When it was
normalized to (0, 1), then Factor� 1; when it was normalized
to (0, 200), then the Factor� 200.

Z score was adopted for the standardization of the MR
image, and the mathematical expression of this method was
given as follows:

x′ �
x − x

σ
. (2)

In the above equation, x represented the average value
of the pixel matrix of the inputted image and σ repre-
sented the standard deviation of the pixel matrix of the
inputted image.

*e number of MR image data collected in this study was
limited by time, cases, and other factors, and the use of deep
learning technology for image segmentation required a large
amount of data for model training, so it was hoped to expand
the original MR samples in the form of data enhancement.
*e methods commonly used for image data enhancement
include flip, random crop, color jittering, shift, scale, con-
tract, noise, rotation, and reflection [16], and the Python was
used for data enhancement of theMR images from the third-
party database Augmentor.

2.3. Design and Improvement of U-Net. U-Net was a net-
work algorithm of the medical cell segmentation proposed
by Olaf et al. in 2015. *e basic structure of the network is
shown in Figure 1. It can be seen that the original U-Net
presented a structure similar to the “U,” which contained a
total of 23 convolutional layers, 4 downsampling operations,
and 4 upsampling operations. Compared with the CNN,
there was no fully connected layer in the U-Net. Each ex-
ecution of downsampling included 2 convolution operations
with a convolution kernel size of 3∗ 3 and 1 pooling op-
eration with a size of 2∗ 2, while the upsampling operation
only included 2 convolution operations with a convolution
kernel size of 3∗ 3, and finally, a convolution layer with a
convolution kernel size of 1∗ 1 was added to the U-Net.

Based on the original structure of U-Net, the BN layer
and the dropout layer were added to improve the structure of
the model, and the hyperparameters of the model were
adjusted to improve the robustness of the model.

It can be observed from Figure 2(a) that when the
traditional neural network was adopted for standardization,
the sample data were standardized before the samples were
inputted into the network, which reduced the difference
among the inputted samples. From Figure 2(b), it can be
known that the batch normalization [17] standardized the
inputted data of each hidden layer based on the standard-
ization results of traditional neural network. After the effect
of activation function ReLU, the output of the first hidden
layer was L1 �ReLU(WL1 +BL1). In the calculation of the
hidden layer standardized by the batch normalization, it was
necessary to process the matrix x of the input data using the
linear transformation to obtain the input value q1 in the
hidden layer. Secondly, q1 was standardized, and the average
μy and standard deviation

�����
σ2y + ε


were subtracted to obtain

the output value q2. μy is referred to the average value of the
selected batch, and μy � 1/m 

m
i�0 WL1x1

. *e standard de-
viation was also the standard deviation of a specific batch,
and σ2y � 1/m 

m
i�0 (WL1x1

− μy)2 to prevent errors when
σ2y � 0. *e processed q2 data showed a normal distribution
characteristic, which reduced the expressive ability of the
network model, so new parameters (m and B) had to be
introduced. m and B were obtained by self-learning of the
network after training, q3 can be obtained after data q2 were
processed with the introduced parameters, and the output L1
of the hidden layer was obtained using the activation
function ReLU.

*e basic structure parameters of the U-Net optimized in
this study are shown in Table 1.
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Finally, the U-Net model was built and tested under the
Keras deep learning framework. *e process of segmenting
the MR image of liver cancer patients using the optimized
U-Net model is shown in Figure 3.

2.4. Evaluation Indexes of Liver Tumor Segmentation
Efficacy. *e DSC and recall and precision (R-P) were
utilized to evaluate the segmentation efficacy of liver tumor
by the optimized U-Net. Among them, DSC was used for
evaluating the degree of overlap between the segmented
tumor and the gold standard tumor. *e closer it was to 1,
the more similar the segmentation result was to the gold
standard result. *e calculation equation can be written as
follows:

DSC(T, P) �
2|T∩P|

|T| +|P|
. (3)

In the above equation, Twas the true value and P was the
prediction value outputted by the model.

Recall was used to evaluate the correct rate of image
classification. *e closer it was to 1, the better the classifi-
cation effect. *e calculation equation was given as follows:

recall �
TP

TP + FN
. (4)

In the above equation, TP is referred to the truth-positive
value (both the classification result and the gold standard

result were positive samples) and FN is referred to the false-
negative value (the positive samples were predicted as
negative samples).

Precision was to evaluate the error rate of wrong clas-
sification of the samples. *e closer it was to 1, the better the
classification effect, and it can be calculated with the fol-
lowing equation:

precision �
TP

TP + FP
. (5)

In the above equation, the FP is referred to the false-
positive value (the negative samples were predicated as the
positive samples).

2.5. Test on Cell Viability of HepG2 after EMO Treatment.
Studies had shown that plants can selectively enrich the
growth-promoting bacteria Stenotrophomonas through
roots and then promote the accumulation of EMO in the
roots (as shown in Figure 4) [18]. Studies had also shown
that EMO can inhibit the proliferation of cancer cell through
cell cycle arrest, autophagy, and apoptosis [19].

Based on this, the changes in cell viability by different
concentrations of EMO (0μmol/L, 10μmol/L, 20μmol/L,
40μmol/L, 60μmol/L, 80μmol/L, and 100μmol/L) effecting on
HepG2 cells at the 0th, 12th, 24th, 26th, and 48th hour were
compared.*e activity of cell mitochondrial dehydrogenase was
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Figure 1: Basic structure of U-Net.

Journal of Healthcare Engineering 3



tested by MTT. Firstly, the cells in the logarithmic growth phase
were collected and inoculated in a 96-well plate after the cell
density was adjusted to 1× 104 for cultivation overnight; each
well was supplemented with 10μL of different concentrations of
EMO (each concentration was added for 3 wells), respectively,
and then incubated for 24hours after mixing fully; the medium
was discarded, and 100μL of 5mg/mL MTTwas added to each
well, shaken, andmixed at low speed for around 10minutes; the
absorbance of each well was detected at 560nmwavelength with
a microplate reader, and finally, the results were displayed by
IC50 (the concentration at which cell viability was inhibited by
50%).

2.6. Test on Cell Morphology of HepG2 after EMO
Treatment. After adjusting the cell density to 1× 105, the
cells were inoculated in a 12-well plate for cultivation
overnight; each well was supplemented with 10 μL of
10 μmol/L (low concentration), 40 μmol/L (medium con-
centration), and 80 μmol/L (high concentration) EMO (each
concentration was added for 3 wells), respectively, and
then incubated for 24 hours after mixing fully. *e
morphologies of HepG2 cells treated with different
concentrations of EMO and untreated (control group)

were observed with a light-induced microscope
(Olympus, Japan), and related pictures should be taken.

2.7. Detection on Apoptosis of HepG2 after the EMO
Treatment. AO combined with EB was adopted to stain the
HepG2 in the control group, low concentration, medium
concentration, and high concentration EMO treatment for
16 hours. *e cells were rinsed with phosphate-buffered
saline (PBS) twice before adding the dyes, and 50 μg/mL
mixed dyes made of 100 μg/mL AO and 100 μg/mL EB at the
ratio of 1 :1 were added to each well, so that the cells were
completely immersed in the solution, and then, they were
immediately placed under a fluorescent inverted microscope
(Olympus, Japan) to observe the luminous state of the cells,
and related pictures should be taken.

*e Annexin V-FITC/PI Cell Apoptosis Kit was used for
the qualitative and quantitative analysis of the cells in the
control group and the treatment groups with EMO with
different concentrations. Firstly, the cells in different
treatment groups were prepared to single-cell suspensions of
1× 106 cells/mL with PBS, placed in a low-temperature
centrifuge after adding 1mL of the suspension, and
centrifuged at 1,000 rpm for about 10 minutes at the
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temperature of 4°C to collect the precipitate; the above steps
were repeated for three times; the cells were resuspended
with 500 μL binding solution and mixed fully after adding
10 μL of Annexin V-FITC reagent and 5 μL of PI reagent to
react in a dark box at the room temperature lasting for 20
minutes; Annexin V-FITC and PI fluorescence were de-
tected with a flow cytometer (*ermo Fisher Scientific, USA)
at the wavelengths of 488 nm–630 nm, respectively.

2.8. Detection on Levels of Related Proteins in HepG2 after
TreatmentwithEMO. *e radio-immunoprecipitation assay

(RIPA) cell lysate was used for cell lysis on ice, and then, the
cells were centrifuged, and the cell protein supernatant was
collected. *e protein concentration was detected using the
bicinchoninic acid (BCA) protein quantification kit. *e
separate gels and concentrated gels of different concentra-
tions were prepared according to the molecular weights of
the target protein and up-sampled in the sample holes, and
then, the electrophoresis was performed at 80V and then
120V, respectively, until the bromophenol blue dye solution
was 1 cm from the bottom of the gel. *e gels were cut and
transferred with polyvinylidene fluoride (PVDF)membrane.
*e transferred PVDF membrane was placed in a blocking
solution for 60 minutes and rinsed with the blocking so-
lution three times and then incubated with the poly ADP-
ribose polymerase (PARP), Bcl-2, and p53 primary antibody
overnight at a temperature of 4°C. It was rinsed with the
blocking solution another three times and then incubated
with corresponding secondary antibody for around 120min
at the condition of room temperature; the enhanced
chemiluminescence (ECL) color developing solution was
supplemented to develop in the gel imaging system (Bio-

Table 1: Structure parameters of optimized U-Net model.

Layer no. Structure
1 Batch_Nor 1
2-1 Conv 1–32
2-2 Conv 1–32
3 Maxpooling 1
4 Batch_Nor 2
5 Dropout (0.1)
6-1 Conv 2–64
6-2 Conv 2–64
7 Maxpooling 2
8 Batch_Nor 3
9 Dropout (0.1)
10-1 Conv 3–128
10-2 Conv 3–128
11 Maxpooling 3
12 Batch_Nor 4
13 Dropout (0.2)
14-1 Conv 4–256
14-2 Conv 4–256
15 Maxpooling 4
16 Batch_Nor 5
17 Dropout (0.2)
18-1 Conv 5–512
18-2 Conv 5–512
19 Maxpooling 5
20 Batch_Nor 6
21 Dropout (0.3)
22 Upsampling +merge 1
23 Batch_Nor 7
24 Dropout (0.2)
25-1 Conv 6–256
25-2 Conv 6–256
26 Upsampling +merge 2
27 Batch_Nor 8
28 Dropout (0.2)
29-1 Conv 7–128
29-2 Conv 7–128
30 Up-sampling +merge 3
31 Batch_Nor 9
32 Dropout (0.1)
33-1 Conv 8–64
33-2 Conv 8–64
34 Upsampling +merge 4
35 Batch_Nor 10
36 Dropout (0.1)
37-1 Conv 9–32
37-2 Conv 9–32
38 Conv 10-1

MR image data
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U-Net Construction

U-Net training

Data enhancement

Feature extraction

Image segmentation

Output

Figure 3: Process of segmenting the MR image of liver cancer
patients using the optimized U-Net network.
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Rad, USA). Quantity One was used for image acquisition
and gray value analysis.

2.9. Statistical Analysis. GraphPad was used for data pro-
cessing, and the one-way ANOVA process in SPSS 19.0 was
used for analysis.*e experimental data of themechanism of
EMO on the apoptosis of HepG2 cells were all expressed as
mean± standard deviation, and Duncan’s multiple com-
parisons were used to analyze the differences between
groups. It was considered that P< 0.05 indicated that the
difference was statistically significant, P< 0.05 indicated

there was a significant difference, and P< 0.01 indicated
there was an obviously great difference.

3. Results and Discussion

3.1. Performance Test of Optimized U-Net. *e performance
of the U-Net model with and without the BN layer was
compared, and the results are given in Figure 5. It can be
seen that as the number of training increased, the DSC
value of the U-Net model without the BN layer showed a
decreasing trend, indicating that the model training was
not successful. *is may be because the U-Net model used
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Figure 5: Impacts of the BN layer on test results of the U-Net.
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Figure 6: Impacts of dropout layer optimized by various algorithms on the test results of U-Net model.
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the random parameter initialization. Similar to other re-
search results, adding BN layer to FCNmodel can improve
the efficiency and accuracy of brain image segmentation
[20].

*e test results of U-Net adding with and without the
dropout layer were compared optimized by the batch gradient
descent (BGD), stochastic gradient descent (SGD), Newton’s
method (NM), quasi-newton method (QNM), conjugate
gradient (CG), and Adam optimization algorithms, and the
results were given as below. It can be seen from Figures 6(a)
and 6(b) that the U-Net model optimized by SGD had the
fastest convergence speed and the highest DSC value after
stability regardless of whether a dropout layer was added to

the U-Net model. Taking the result of SGD optimization as an
example, it was found based on the comparison that the test
result of the U-Net model with the dropout layer was re-
markably better than the model without the dropout layer,
and the DCS value was increased by about 2.24%. It shows
that adding a dropout layer can prevent the model from
overfitting or generalization, and it also improves the seg-
mentation ability and robustness of the model [21].

Finally, the changes in training DSC value of the im-
proved U-Net model before and after the enhancement of
the MR image data were compared. It can be observed from
Figure 7 that the convergence speed of the model after the
data enhancement was faster than that before the data
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Figure 7: Test results of U-Net model before and after the data enhancement.
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enhancement greatly, and with the gradual increase in the
number of iterations, the model became stable gradually. When
the maximum number of iterations was reached, the DSC
verification result of the model after data enhancement was
97.8%, while the DSC verification result of the model before the
data enhancement was 94.55%, so it increased by 3.25%.

3.2. Segmentation Efficacy of MR Liver Tumor Based on the
Optimized U-Net Model. *e application effects in liver
tumor segmentation of original U-Net, convolutional neural
network (CNN), FCN, regional growth (RG), and Snakes
were compared with the effect of the optimized
U-Net algorithm in this study, and the results are shown in
Figure 8. It can be seen from Figure 9(a) that the seg-
mentation efficacy of U-Net, CNN, FCN, and the improved
U-Net model was similar to the gold standard segmentation

efficacy, while that of RG was excessively segmented when
the distinction between liver tumors and surrounding tissues
was not high. Under the condition of uneven grayscale
distribution of MR images and uneven surface of the tumor,
under segmentation could be found for the Snakes. *e
segmentation efficacies of different models were quantita-
tively compared, and recall and precision values were used to
draw the P-R curve to obtain the area under the PR curve
mAP. From Figure 9(b), it can be seen that the improved
U-Net model had the highest mAP value (0.88), followed by
the original U-Net model (0.74), while the Snakes model had
the smallest mAP value (0.53).

3.3. Impacts of EMO on Cell Viability and Proliferation of
HepG2. *e MTT was used to determine the effect of dif-
ferent concentrations of EMO on the viability of HepG2
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cells. It can be seen from Figure 9(a) that with the gradual
increase in treatment time, the viability of HepG2 cells gradually
decreased after treatment with different concentrations of EMO.
It meant that the higher the EMO concentration, the lower the
viability of HepG2 cells. *e blue-purple formazan crystal
staining was adopted to observe the changes in the number of
HepG2 viable cells after treatment with different concentrations
of EMO. It can be known from Figure 9(b) that the formation of
formazan crystals was proportional to the number of viable cells.
With the gradual increase in EMO concentration, the amount of
formazan crystal gradually decreased, which was consistent with
the test results of cell viability.

3.4. Impacts of EMO on Morphology and Staining Results of
HepG2. First, the changes in cell morphology, AO/EB, and
DAPI staining results of HepG2 cells treated with different
concentrations of EMO were observed under a microscope.
*e results are shown in Figure 10. It can be seen that the
HepG2 cells treated with 0 μmol/L EMO were tightly con-
nected and exhibited the irregular spindle shapes. With the
increasing concentration of EMO, the cell outline became
blurred, most of the cells came off, and the number of
adherent cells decreased, similar to the characteristics of
apoptosis. *e AO/EB was used for cell staining, and it can
be seen that as the concentration of EMO increased, the
proportion of green fluorescence in HepG2 cells gradually
decreased, while the proportion of orange-red fluorescence
gradually increased; when the EMO concentration reached
100 μmol/L, HepG2 cells all became red.*e results of DAPI
staining showed that with the gradual increase in EMO
concentration, the blue fluorescence in HepG2 cells grad-
ually decreased, showing a dose-dependent manner.

4. Conclusion

To improve the effect of deep learning algorithm in tumor
segmentation in images and to explore the molecular
mechanism of the impacts of EMO on liver cell apoptosis,
the U-Net model was optimized in this study to segment the
MR images of liver cancer patients. It was found that the
improved U-Net model can improve the efficiency and
robustness of tumor segmentation, and the segmentation
effect was significantly higher than other advanced models.
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