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Experimental realization of an extended
Fermi-Hubbard model using a 2D lattice
of dopant-based quantum dots

Xiqiao Wang 1,2,5, Ehsan Khatami 3, Fan Fei1,4, Jonathan Wyrick1,
Pradeep Namboodiri1, Ranjit Kashid1,6, Albert F. Rigosi 1, Garnett Bryant 1,2 &
Richard Silver 1

The Hubbard model is an essential tool for understanding many-body physics
in condensed matter systems. Artificial lattices of dopants in silicon are a
promising method for the analog quantum simulation of extended Fermi-
Hubbard Hamiltonians in the strong interaction regime. However, complex
atom-based device fabrication requirements have meant emulating a tunable
two-dimensional Fermi-HubbardHamiltonian in silicon has not been achieved.
Here, we fabricate 3 × 3 arrays of single/few-dopant quantum dots with finite
disorder and demonstrate tuning of the electron ensemble using gates and
probe the many-body states using quantum transport measurements. By
controlling the lattice constants, we tune the hopping amplitude and long-
range interactions and observe the finite-size analogue of a transition from
metallic toMott insulating behavior. We simulate thermally activated hopping
and Hubbard band formation using increased temperatures. As atomically
precise fabrication continues to improve, these results enable a new class of
engineered artificial lattices to simulate interactive fermionic models.

Analog quantum simulators are designed quantum systems with a
tunableHamiltonian to emulate complex quantum systems intractable
using classical computers due to the exponential growth of the Hilbert
space with the system size1. Simulating strongly interacting fermions
on a lattice lies at the heart of understanding quantum many-body
phenomena, such as high-Tc superconductivity2 and spin liquidity3

that emerge in solid-state systems at low temperatures and are not
describable through mean-field or density functional theory.

Various experimental platforms that form artificial lattices have
been explored for realizing Fermi-Hubbard analog quantum simula-
tors, including optical lattices4,5, moiré superlattices6, and semi-
conductor quantumdot systems7,8. Quantumdots, often referred to as
artificial atoms, can be arranged into artificial molecules and lattices
with tunable hopping amplitude, interaction strength, and custom-

designed point symmetry. For probing Fermionic many-body physics,
the unique advantages of quantum-dot systems relative to other
platforms, such as cold atoms in optical lattices, include a readily
achievable low-temperature-limit with respect to the hopping ampli-
tude, easy access to transport measurements, and dynamic control of
the chemical potential landscape and filling factors using gates9.
Amongst the various semiconductor quantum dot systems, lattices of
dopant-based quantum dots have unique advantages in simulating
strongly correlated Fermionic systems of real atomic lattice sites
because the atomic nature of the quantum dots means they have
naturally occurring ion-cores, nuclear spins, hyperfine interactions,
and inherently strong long-range interactions. Additionally, patterning
the device geometry using the scanning tunneling microscope (STM)-
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based hydrogen lithography technique10 adds the versatility of tailor-
ing complex gate designs.

Effective control of tunable Hamiltonian parameters and
precision-engineering of electron and spin correlations in a dopant-
based artificial lattice relies on the controlled placement of dopant
atoms in the host lattice with near-atomic precision. Although the
Anderson-Mott transition has been previously demonstrated in few-
atom systems using ion-implanted single dopant impurity atoms in
silicon11, this technique is limited by implantation aperture size and ion
straggle. To our knowledge the best reported implant positioning
accuracy is ~5–10 nm11, which is incompatiblewithmultiple site atomic-
precision dopant arrays (In this study, we define “atomic-scale preci-
sion” as achieving sub-nm positioning accuracy of the artificial lattice
sites using single/few-dopant quantum dots). The STM-based hydro-
gen lithography technique, initially pioneered by Joseph Lyding’s
group12, was further developed and expanded by Michelle Simmons’
group at UNSW10,13 into a method that allows controlled placement of

dopant atoms buried in an epitaxial Si environment, enabling a new
suite of atomic-scale precision devices. Several groups have further
developed this atomic-scale device fabrication technique introducing
new applications, e.g., NIST (dopant-based analog quantum
simulation)14,15, Sandia (CMOS integration)16,17, and UCL,18,19. These
advances have demonstrated success in atom-by-atomconstruction of
single and few-dopant quantumdot devices in silicon and atomic-scale
control of tunneling in dopant-based devices, enabling high-fidelity
dopant-based multi-qubits20 and simulation of the topological phases
of the 1-dimentional many-body Su–Schrieffer–Heeger (SSH) model21.
Here, we develop a path towards precise fabrication of dopant-based
Fermi-Hubbard simulators where the on-site electron-electron inter-
actions can be controlled by engineering the number and configura-
tion of dopant atoms at each site, while the site-to-site hopping
amplitude and strength of long-range interactions can be controlled
by altering the spatial separations between sites. Limited theoretical
studies have been carried out to predict the many-body properties in
dopant-based quantum dot arrays in silicon22–24, such as strong cor-
relation, excitation spectrum, and their robustness againstdisorder for
analog quantum simulation. Transport through many-body states in
dopant-based arrays has also been proposed as a sensitive probe to
topological phase transitions24 and coherent manipulation of electro-
nics states25. Until now, however, atomic-scale fabrication and quan-
tum transport characterization of 2D artificial lattices of single/few-
dopants have not been realized in the laboratory.

Here, we simulate an extended 2D Fermi-Hubbard Hamiltonian
using atomic-scale fabricated 3 × 3 lattices of single/few-dopant
quantum dot, although disorder present in the arrays leads to uncer-
tainty in the underlying Hamiltonian. We define the electron ensemble
in the array by tuning the chemical potential landscape using in-plane
gates and measure the low-temperature quantum transport through
the array to probe the charge addition spectrum, resonant tunneling,
and the impact of inhomogeneity within the many-body system of the
arrays. By increasing the average lattice constant from ~4.1 nm to
~10.7 nm, we tune the site-to-site hopping amplitude and long-range
interactions within the simulated Hamiltonian and observe a transition
frommetallic behavior to the formation of Coulomb blockade. Finally,
at elevated temperatures, we observe the formation of Hubbard bands
in transport spectroscopy that can be attributed to additional hopping
introduced by thermally activated occupation ofmany-body states. To
augment the interpretation of our simulated extended Hubbard
Hamiltonian, we numerically solve the Hubbard Hamiltonian using
exact diagonalization and parameters estimated based on the experi-
mental characterization of the array. Our results establish a new solid-
state platform for the exploration of extended Fermi-Hubbardmodels
of strongly correlated 2D systems.

Results
3 × 3 arrays of few-dopant quantum dots and the extended
Fermi-Hubbard Hamiltonian
We fabricated14 a series of 3 × 3 square lattice arrays of few-dopant
quantumdots that areweakly tunnel coupled to a source anddrain and
capacitively coupled to two in-plane gates. Figure 1 shows STM images
of the hydrogen lithography patterns from one of the arrays (average
lattice constant a= 10:7 ±0:3nm) on a hydrogen-terminated Si(100)
2 × 1 reconstruction surface, where the locations of the artificial lattice
sites and the lattice constants can be determined by using the surface
reconstruction dimer unit cells as an atomically precise ruler and
counting the number of dimer rows (dimer-row pitch =0.77 nm)
between neighboring sites. Each lattice site is defined by using an STM
tip to remove a small patch of (~10 to ~20) adjacent hydrogen atoms,
allowing individual phosphorus atoms to incorporate only into the
exposed surface Si lattice sites in a subsequent phosphorus dosing and
incorporation process.We have recently demonstrated that a dangling
bond patch of similar size typically forms a few-dopant cluster
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Fig. 1 | 2D dopant-based quantum dot arrays as a platform for simulating the
extended Fermi-Hubbard model. a Schematic of the experimental Fermi-
Hubbard system composed of a 3 × 3 array of single/few-dopant quantum dots
coupled to in-plane gates and source-drain leads, allowing transportmeasurements
through the array. The number of electrons (shown as arrows) anddopant atoms at
each array site (pink dots) in this schematic have been arbitrarily assigned for
illustration purposes. b STM image of the central device region of the 3 × 3 array
acquired immediately following hydrogen lithography. The lithography patterns
appear as bright regions on the hydrogen-terminated Si(100) surface due to
hydrogen-depassivation and the exposureof chemically reactive Sidanglingbonds.
In this image, the central array and the source/drain leads reside on the same
Si(100) surface terrace; Gate 1 and Gate 2 reside on surface terraces one mono-
atomic layer (~0.14 nm) above and below the middle terrace. c Atomic resolution
STM image of the 3 × 3 array pattern (zoom in of marked square region in b). Each
dot is numbered to facilitate the discussion in the main text. In this array,
a= 10:7 ±0:3nm is the square lattice constant that equals the average center-to-
center distance between nearest neighboring sites. 2 × 1 surface reconstruction
dimer rows on the Si(100) surface run from the upper left to lower right direction in
the image. We define the 2D square lattice constant, a, as the averaged center-to-
center distance between nearest neighboring dots within the array. The red circle
marks an example of an isolated single dangling bond that does not incorporate
dopant atoms. The STM image is taken at −2 V sample bias and 0.1 nA setpoint
current.
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quantum dot incorporating 1 to 3 phosphorus atoms14. At the same
time, the STM-patterned in-plane source/drain leads and two sym-
metric in-plane gates are saturation-doped to a dopant density of
~2 × 1014=cm2 that corresponds to a bulk doping density of
2 × 1021=cm3, approximately three orders ofmagnitude above the bulk
metal-insulator transition, allowing quasi-metallic conduction in all
electrodes.We use a room-temperature grown locking layer technique
to suppress atomic-scale movement of the precisely defined dopant
atom positions26 before a subsequent low-temperature (~250 °C) epi-
taxial Si overgrowth, that embeds the dopant atoms in a 3-dimensional
crystalline Si environment. Finally, ohmic contacts to the buried elec-
trodes are formed using a low thermal budget silicide contacting
technique27.

The Hubbard model has long provided a theoretical playground
for understanding different phases of matter, especially in the pre-
sence of strong electronic correlations. The 3 × 3 array’s physical
attributes map to an extended Fermi-Hubbard Hamiltonian, which, in
its simplest form, includes one spinful orbital at each site. Experi-
mentally, the absolute number of excess electrons at each single/few-
dopant quantum dot may vary according to the inhomogeneity in the
number of dopant atoms at each lattice site. For quantum transport
through dopant-based quantumdots within the small bias ranges used
in this study, charge fluctuations at quantum dots occur via quantum
dot energy levels that are near or in between the Fermi levels in the
source and drain leads. Therefore, we limit our analysis to on-site
binding energy levels that are nearest to the Fermi level, i.e., charge
number fluctuations of up to two electrons at each site which corre-
sponds to the three charge states of a few-dopant quantum dot: the
ionized state, the charge-neutral state, and the negatively charged
state. The absolute number of excess electrons on a few-dopant
quantum dot does not affect the underlying physical phenomena in
this work.

H =Hμ +Ht +HU
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The total Hamiltonian consists of the onsite energy terms inHμ, the
kinetic energy (hopping) terms in Ht , and the electron-electron inter-
action energy terms in HU . Here, niσ = c

y
iσciσ is the number operator

where cyiσ (ciσ) is the creation (annihilation) operator of a fermion with
spin σ at lattice site i. μi is the chemical potential at site i comprised of
fixed contributions from local and long-range electron-ion core Cou-
lomb interactions, i.e., Ebi (electron binding energy at site i) and Vi,j

(Coulomb attraction between an electron at site i and an ion-core at site
j); Ebi is determined by the number of dopants and detailed dopant-
cluster configurations at each site. Vi,j is determined by the separation
between two lattice sites and can be approximated using a point-charge
approximation Vi,j≈� V0

∣Ri�Rj ∣
where V0 =

e2
4πεrε0

≈123meV � nm in silicon
(see Supplementary Note 1). μi also includes a tunable contribution pi

that is determined by the classical capacitance couplings of the device
and the applied voltages on the gates and source/drain leads. t repre-
sents the hopping amplitude between nearest-neighbor sites (H:c:
indicates Hermitian conjugate). Ui is the local electron-electron Cou-
lomb repulsion at site i, and Uij is the long-range Coulomb repulsion
between electrons at sites i and j. The filling factor (electron number) in
the array is determined by the position of the array’s chemical potential
with respect to the Fermi levels in the source/drain leads, which we set
as EF =80meV below the Si conduction band edge10. We ignore Cou-
lomb exchange and higher-order hopping terms in our numerical
model28.

The hopping t, interactions Ui, Ui,j, chemical potential terms μi,
which determines the electron distribution and doping level of the
array, and the temperature T constitute the Fermi-Hubbard model’s
parameter space, covering a large variety of correlated electron phe-
nomena, somenot yet fully understood, andothers that continue to be
discovered. Physical control of the Hubbard model parameters in our
2D arrays is achieved by varying device fabrication and measurement
conditions. The number of electrons in the array (

P
i
ni), can be altered

by applying a common voltage on both in-plane gates to shift the
array’s chemical potential landscape (albeit non-uniformly due to
screening from source and drain leads) with respect to the Fermi level.
A voltage difference between the two gates will introduce a potential
gradient within the 2D array along the gate-gate direction. In contrast
to gate-defined quantum dot systems, in-situ gate tuning of tunnel
coupling within a single device is less efficient in donor-defined
quantum dot systems. Effects of tuning the hopping amplitude t and
long-range interaction terms (Ui,j) can be achieved, however, by fab-
ricating a series of dopant-based lattices with different lattice con-
stants that are determined at the fabrication stage. The local
interaction term Ui reflects the physical size of each quantum dot. For
the arrays in this study, we design the in-plane gates and average
lithographic dot size to be the same for all arrays and only alter the
lattice constant from a1 = 4:1 ±0:3nm in the first array to
a2 = 6:6±0:3nm in the second array and to a3 = 10:7 ±0:3nm in the
third array. Based on previous theoretical studies28,29, these lattice
constants correspond to hopping amplitudes in the ~8 meV to the
hundreds of μeV range and long-range interactions in the range of
~20meV to few-meV (See Supplementary Note 1). We estimate the
number of dopant atoms in the quantumdots to bewithin the range of
2 ± 1 dopants by characterizing the binding energies of few-dopant
quantum dots with a similar lithographic patch (See Supplementary
Notes 2 and 3). A quantum dot size of 2 ± 1 dopants corresponds to a
local electron-electron interaction energy Ui of ~45meV (for the rele-
vant charge-neutral to negatively charged state transitions). These
energy scales position theseHubbard arrays in the strongly interacting
regime with non-negligible long-range interactions, even beyond
nearest-neighbor sites30. Our best estimates point to an average ratio
Ui=t that varies roughly from 6 to 90 from the first to the third array.
The ratio of the nearest-neighbor Coulomb repulsion and the hopping
amplitude also varies by an order of magnitude roughly from 2 to 20.
So, while we expect Coulomb interactions to dominate in the third
array, their strengths are comparable to, or less than, the non-
interacting bandwidth (see SM, Fig. S4) in the metallic array, and
therefore, we expect the significant tunneling/delocalization of elec-
trons to change the character of the latter system.Disorder alsoplays a
significant role in all three arrays. Apart from introducing site-to-site
variations in interactions and tunneling amplitudes, the ratio of its
strength (defined as the difference in binding energies for 1 and 3
dopants per site) and the hopping amplitudes varies roughly from 4 to
70 from the first to the third array.

Atomic-scale defects have been a critical challenge for solid-state
implementations of quantum devices that rely on atomic precision fab-
ricationprocesses such as those usedhere. Theprimary source of defect/
disorder is the site-by-site variation in on-site energies Ebi and Ui, which
effectively introduces inhomogeneity in the chemical potential land-
scape, interactions, and hopping amplitudes. Due to the stochastic nat-
ure of the phosphorus dosing and incorporation process31, deterministic
control of the exact number of dopant atoms and their specific cluster
configuration within a lithographic patch remains an unsolved challenge
in the community16. While the precise atomic configurations in an array
may, in principle, be obtained by parametrically fitting themeasurement
results with numerical simulations, a detailed disorder configuration
investigation is extremely computationally expensive and beyond the
scope of this study. Instead, we account for disorder by estimating the
number of dopant atoms-per-site, based on STM-lithography patterns
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and dopant incorporation conditions32, for use as input to the numerical
simulations. We do not distinguish the effects from different sources of
disorder because variation in dopant number per site and their clustering
configuration have similar effects on site-by-site energy variations. While
we have not pursued the exactmatch between the numerically simulated
and experimentally simulated results in this study, the detailed atomic
configuration at each array site does not alter the qualitative under-
standing of the array system (see Supplementary Note 6), and the
quantitative differences between theory and experiment are a measure
of the accuracy of the disorder estimates. Supplementary Table 3 in
the SupplementaryNotes lists the range of binding energy Eb and the on-
site addition energyUi for 1 P, 2 P, and 3P dopant clusters29. Variations in
the number of dopant atoms and detailed dopant cluster configurations
at each lattice site introduce site disorder, which in larger arrays lends
itself to the study of Anderson/Mott localization, and especially its exis-
tence in the presence of strong interactions27.

In the following sections, we demonstrate the tunability of dopant-
based 2D arrays by first showing tuning of the hopping amplitudes and
long-range interactions through transport measurements of arrays fab-
ricated with different lattice constants. We then demonstrate the ability
to define the electron ensemble (the number of electrons in the many-
body system of the array) and characterize the charge addition bound-
aries and resonant tunneling within the 2D array using in-plane gates.
Finally,wemeasure the transport spectrumat elevated temperatures and
reveal thermally activated Hubbard bands within the array.

Tuning the hopping amplitude and long-range interactions
It is well known28 that the nearest neighbor hopping t is exponentially
dependent on the lattice-constant awhile the long-range e-e Coulomb
interactions are inversely proportional to a. Figure 2a, d, g shows STM
images after patterning from three arrays, where we intentionally

increase the lattice constant a1 = 4:1 ± 0:3nm in the first array, to
a2 = 6:6±0:3nm in the second array, and to a3 = 10:7 ±0:3nm in the
third array. If we interpret each artificial lattice site as an ‘impurity’
atom in silicon, the lattice constant in the first, second, and the third
arrays correspond to a bulk doping density of ~ 1:5 × 1019=cm3,
~ 3:5 × 1018=cm3, and ~ 8× 1017=cm3, spanning fromabove tobelow the
critical density of a metal-insulator transition in phosphorus-doped
bulk silicon. As will be described in the following, transport measure-
ment and charge stability analysis confirm a transition from deloca-
lized electrons displaying metallic behavior in the first array to
localized electrons in the third array.

Figure 2b, e, h are the measured charge stability diagrams from
the three arrays measured at T ~ 10mK base temperature (electron
temperature ~300mK). In the first array, charge addition boundaries
run more or less parallel throughout the entire gate-gate plane,
resembling the charge stability diagram of a single metallic island in a
single-electron transistor (SET). Comparing the charge stability dia-
grams of the first array with the second and third arrays, a key obser-
vation is that the charge stability boundaries in the third array are
dominated by straight line segments of distinct negative slopes with
bias triangles at avoided crossings; whereas on the gate-gate plane in
the second array, the charge addition boundaries appear crossed only
at negative gate voltages and evolve into smooth curves at positive
gate voltages. This is further substantiated by comparing the differ-
ential conductance bias spectra of the first and second arrays (Fig. 2c,
f) measured along the dashed lines in Fig. 2b, e, respectively. Here, the
Coulomb diamonds in the first array (Fig. 2c) are dominated by well-
defined diamond shapes that are closing at small biases and of similar
diamond heights (charging energy), resembling the conventional
Coulomb blockade behavior of ametallic island SET. However, despite
the dominant metallic behavior in the gate-gate map, we do observe

Fig. 2 | Transition frommetallic behavior at reduced lattice constant to a
weakly tunnel coupled array in the Coulomb blockade regime. a, d, g are STM
images of the three arrays, where the lattice constants vary from a1 = 4:1 ±0:3nm,
a2 = 6:6±0:3nm to a3 = 10:7±0:3nm, respectively.b, e,h Experimentallymeasured
DC conductance charge stability diagrams of the three arrays with Vbias = 2mV for
array one and atVbias =4mV for arrays twoand three at the base temperatureof the

dilution refrigerator (T = 10mK). c, f, iDifferential conductance Coulomb blockade
diagrams for arrays one and two and DC conductance Coulomb blockade diagram
for array three measured at base temperature along the dashed lines in
b, e, h, respectively. Solid and dashed circles in (i) mark examples of open and
closed Coulomb diamonds that are described in the main text.
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small discontinuities in the transport lines in the higher voltage range,
likely due to nearby charge instabilities.

In contrast, the Coulomb diamonds of the second array (Fig. 2f)
are irregularly shaped, and, despite the expected presence of disorder
within the arrays, the bias spectrum of the second array features two
groups of small Coulomb diamonds (highlighted by magenta color
bars), corresponding to the upper and lower Hubbard bands, sepa-
rated by a set of large, irregularly shaped Coulomb diamonds, corre-
sponding to the finite analog of a Mott gap. The separation of the two
Hubbardbands is characterized by the heights (addition energy) of the
Coulomb diamonds at the Mott gap, ~50meV, which is in reasonable
agreement with the addition energy of individual quantum dots of few
(1 to 3) dopant atoms29. (See Supplementary Note 3) Additionally, in
Fig. 2c, f, we observe a qualitative difference in the bias conductance
spectrum between the two arrays at base temperature. In the second
array (Fig. 2f), conductance is visible as lines of increased differential
conductance running parallel to the edges of Coulomb diamonds,
indicating a discrete eigen-energy spectrum within the array; such a
discrete conductance spectrum is not visible in the first array (Fig. 2c),
indicating a quasi-continuous (metallic) density of state distribution in
the first array, i.e., the exited addition energy state separation falls
below kBT so the addition energy levels can no longer be individually
distinguished at the operating temperature. (See Supplementary
Note 4 for the impact of hopping, long-range interactions, and dis-
order on simulated addition energy spectrum and charge stability
diagrams and Supplementary Note 5 for the effects from decreasing
the lattice constants within the simulated array)33.

Gate-tuning the electron ensemble and charge distributions
In this section, we use results from the third array, which is near the
atomic-limit (weak tunnel coupling limit, U

t ≫1) to illustrate tuning of
the charge distributions within an array using in-plane gates. In Array

#3, since the source/drain leads areweakly tunnel coupled to the array
and there is relatively large local and long-range electron-electron
interactions, the source-drain conductance through the array is in the
Coulomb blockade transport regime34,35, as evidenced by the zero-
conductance regions at finite bias in themeasured conductancemaps.
The Coulomb blockade in Array #3 can be lifted by applying plunger
gate voltages that overcome the interaction-induced blockade barrier
and align an addition energy level of the array with the Fermi level in
the source and drain leads. At these gate conditions the electron
number in the array can fluctuate by one (finite compressibility),
allowing source-drain conductance through the array.

Figure 3a, b plot numerically simulated charge stability diagrams
of the ground states and conductance map over the gate-gate space
for Array #3. Within each color domain in the simulated charge sta-
bility diagram, the total number of excess charges in the array (N) is
constant, corresponding to the Coulomb blockaded regions in trans-
port. Sweeping the common-voltage applied to both gates along the
45-degree diagonal direction on the charge stability diagram controls
the total number of electrons, therefore, the filling factor of themodel.
Sweeping the differential voltage between the two in-plane gates
(along the 135-degree diagonal direction in Fig. 3a) effectively tilts the
chemical potential landscape within the array, altering the charge
distribution of the ground state without considerably affecting the
filling factor within the array. Due to variations in the input binding
energies (see Supplementary Note 2), the largest Coulomb blockaded
region in the theory diagram belongs to N = 8, corresponding to ~11%
hole doping, as opposed to half filling (N = 9), which is expected for the
uniform Fermi-Hubbard model.

The charge stability domain boundaries correspond to con-
ductance lines in a transport map. Comparing the simulated con-
ductance map with the charge stability diagram, not all charge
addition boundaries are equally visible in conductance. This is also

Fig. 3 | Charge addition and resonant tunneling at avoided crossings in the
simulated gate-gate map for Array #3. a Numerically simulated charge stability
diagram of the 3 × 3 array’s ground state (see Methods). The hopping amplitude is
set as t =0.5meV. b Numerically simulated resonant conductance gate-gate map
(we account for the finite bias window in transport by equivalently setting
kT = 1meV in the simulation (see Methods for details). c Schematic illustration of
eigenstate charge distributions and single charge addition at the charge stability

diagram region highlighted by the red box in Fig. 3a. The charge configuration
panels follow the dot numbering scheme from Fig. 1c, from left to right and from
top to bottom, as D11, D12, D13, D21, D22, D23, D31, D32, D33. The black-white color
maps represent the charge occupation of the ground states at select locations. The
red-blue color maps represent the changes in ground state occupation when
crossing a charge stability boundary and adding a single electron onto the array.
The charge occupation numbers are overlaid on each charge configuration panel.
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evident in the non-closing diamonds that are circled in Fig. 2i36. Both
the measured and simulated conductance maps agree on a relatively
large conductance along a particular line of negative slope in the
positive gate voltages regionof the diagram(circled inFigs. 2h and 3b).
Visibility of the charge addition boundaries in measured conductance
maps can be enhanced by increasing the bias window (see Supple-
mentary Note 8) to allow transport through excited states or other
inelastic/incoherent transport processes in the array mediated by, for
example, electron-phonon interactions. We attribute the non-
symmetric shape of the charge stability diagrams with respect to two
gate voltages, or the fact that Coulomb diamonds do not always close
(do not have conductance) at a small bias along the diagonal gate-gate
direction, to the following: First, we expect the dominant effect to be
the non-uniformity in binding energies due to variations in the number
of dopants per site, which not only makes the system’s energy land-
scape non-uniform for the electrons but also affects the transport
through the array. Additional effects include small asymmetries in the
way each gate affects individual site potentials and atomic-scale var-
iation in the hopping amplitudes.

Effects of reduced lattice constants and increased hopping
amplitudes for the first and the second arrays, where t = 8meV and
t = 2meV, respectively, can be seen in simulated charge stability and

conductance diagrams (see Supplementary Section S8 and Fig. S9). To
illustrate the delocalization of many-body states in the second array,
Fig. S9c plots ground state charge and charge addition distributions at
select positions near an avoided crossing. Figure 3c shows ground
state charge and charge addition distributions at selected positions
near an avoided crossing at N =8 in the simulated charge stability
diagram in Fig. 3a. The simulations confirm that electron additions
take place mostly locally at individual sites on this array. Comparisons
to similar plots for the second array (see SupplementaryNote 5) reveal
the effect of reduced lattice constants and increased hopping ampli-
tudes (t = 2meV) in delocalizing the added electrons.

With our symmetric, in-plane two-gate design, the ratio of the
upper gate’s (Gate1) and lower gate’s (Gate2) capacitive coupling to
electrons at a quantum dot is determined by the ratio of the quantum
dot’s distances to the upper gate and to the lower gate. Charge addi-
tions to quantum dots in the upper, middle, and lower rows for Array
#3 correspond to three distinct lever arm ratios, whichmanifest in the
charge stability diagram as three different slopes in charge addition
boundaries. For example, in Fig. 3c, when gating the array from posi-
tions 1 to 2 and from 3 to 4, we cross charge addition boundaries of the
same slope, corresponding to the addition of an electron onto sites in
the lower row. Similarly, when gating the array from positions 1 to 3

Fig. 4 | Histogram distributions of conductance features in gate-gate maps for
all three arrays. The slopes of the conductance lines contain spatial information
about the eigenstates through which addition electron transport occurs. a–c Edge
detection of the conductance features in the measured gate-gate maps of the first
array at Vbias = 2mV (a), the second array at Vbias =8mV (b), and the third array at
Vbias =8mV (c), respectively. The edge detection is performed using a Hough
transform. The detected edges of constant slopes are represented by colored line
segments. We quantify the span of each line segment by measuring the length of
the line segment in units of pixel in the gate-gate map. d–f Histogram of the

detected conductance line slopes 4VG2=4VG1 of the first (d), the second (e), and
the third (f) arrays, respectively. The histograms are plotted as probability density
distributions of the number of pixels of the detected conductance line segments as
a function of their slopes from the gate-gatemaps. The three histogrampeaks in (f)
are fitted using Gaussian functions. g–i The calculated distributions of the gate
lever arm ratio �αG1=αG2 of electron addition occupancies over the simulated
charge stability maps of the first array (g), the second (h), and the third (i) arrays,
respectively.
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and from 2 to 4, the charge addition boundary slope corresponds to
adding an electron onto sites in the upper row. Charge addition to the
middle row can be found elsewhere in Fig. 3a when crossing addition
boundaries with an intermediate magnitude in slope.

We carry out a quantitative analysis of slopes by running edge
detection algorithms on the measured charge stability maps of the
three arrays (See Fig. 4a–c) and plotting histograms of the detected
edge length along their negative slopes �4VG2

4VG1
. As can be seen in Fig. 4d,

e, f, the histogram of the first array (Fig. 4d), shows a single peak in the
distribution, mimicking the behavior of conductance through a
metallic SET island. In the second array (Fig. 4e), in contrast, the single
peak in the distribution evolves into a broad distribution, exhibiting
conductance that occurs via single addition electrons that are more
often shared simultaneously by sites across different rows. The third
array shows three narrow distinct peaks, corresponding to charge
addition sites in the upper,middle, and lower rows,with littlemixing in
states between different rows for conductance via single electrons
jumping on and off the array. This change in slope distributions is
characteristic of the transition frommetallic to the collective Coulomb
blockade regime upon decreased hopping amplitude relative to the
interaction strength34. Such a transition from metallic behavior to the
collective Coulomb blockade regime, where the energy gap inhibits
adding an electron to an already strongly correlated state, is also
observed in Fig. 2c, f as the many-body energy spectrum transitions
from quasi-continuous to discrete distributions from the first to the
second array. The extended skewing in slope distribution towards
more negative slopes (4VG2=4VG1<−3) is likely the result of imperfect
symmetry in device geometry and gate nonlinearity. Similar results are
found in Fig. 4g, h, i plotting the distributions of the lever arm ratios of
charge additions, which are calculated from the simulated charge

stability diagrams using the identical bias windows as in the experi-
mental plots to include charge addition configurations of exitedmany-
body states. (see Supplementary Note 1 for detailed capacitance and
lever arm calculation methods). We note that the agreement in the
shapes of the slope distributions remains qualitative due to unknown
disorder and realmeasurement conditions that are not fully accounted
for in theory.

Resonant tunneling through many-body states
Additionally, we find small resonant tunneling lines with positive
slopes in the conductance map from Array #3 (see Fig. 5a), which are
attributed to hybridization between many-body states with the same
filling factor but different charge distributions on the array. Because of
the “multiply connected” topology37 in the 2D array, the resonance
conditions within the array enhance conductance through the array by
opening additional conduction paths. Figure 5b shows a histogram of
the positive slopes of conductance resonance lines extracted from the
charge stability diagrams of Array #3 over a bias range from+10mV to
−10mV. An example of the bias evolution of a positively sloped reso-
nance conductance region is shown in Fig. 5c. We attribute the dif-
ference in bias triangles at positive and negative biases to disorder in
the array. From the histogram in Fig. 5b, we observe positive slope
distributions centering at three distinct values representing resonant
tunneling betweenmany-body states that are primarily localized at the
first and the second rows, at the first and the third rows, and at the
second and the third rows of the quantum dot array, respectively.
Examples are ground states at positions 2 and 3 in Fig. 3c with an
avoided crossing of charge addition lines between them. The slopes of
the two crossing charge addition lines (dashed lines in Fig. 5d) corre-
spond to charge addition to sites in the upper row and to sites in the

Fig. 5 | Gate-gatemaps showing positively sloped resonance conductance lines
resulting from hybridization in many-body states in the multi-island limit
(Array #3). a The measured charge stability diagram at a bias window of +10mV.
Conductance resonance lines with positive slopes are marked by black errors.
bHistogram of the positive slopes of conductance resonance lines extracted using
edge-detection on the measured charge stability diagrams of the third array over a
range of bias voltages fromVbias = −10meV to+10mV.The y-axis of the histogram is
in arbitrary units of length of the extracted positive-slope conductance line seg-
ments. c Bias evolution of the resonant conductance at the avoided crossings that

are highlighted by the red box in (a). d Close-up of a region containing a few
avoided crossings as highlighted by the red box in (a). The solid arrow indicates a
resonant conductance line. The dashed linesmark the slopesof the charge addition
conductance lines that come across near the resonant transitions. The dashed
arrow marks the gate detuning ε axis perpendicular to the resonant conductance
line. eOverlaid resonant conductance profiles along the gate detuning axis that are
measured at different biases. Each curve is fitted using Eq. 2 in the main text; and
the best-fit parameters are averaged to reconstruct the dotted curves.
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lower row, respectively. Approximating the two ground states as
classical states of a double-dot system inwhich the electron is localized
at either the left or the right dot, we can find an estimate for the
effective tunneling between the states, t′, by fitting the conductance
peak at the avoided crossing to the following Lorentzian form38,39

Ids
e

=
t02Γd

t02 2 + Γd
Γ s

� �
+ Γd

2

4 + 1
_2

ε� ε0
� �2 ð2Þ

where Ids is the drain-source current; t0 is the tunnel coupling rate
(1GHz ≈4:14μeV ) between two charge occupations of discrete energy
levels. Γd and Γ s are tunneling rates to or from the drain and source
leads, which are assumed to be approximately equal in this study;
ε� ε0
� �

is the detuning energy between the two discrete energy levels
(see black dashed arrow in Fig. 5d, based on VG1 and VG2 using lever
arms, see Supplementary Note 1); and h and e are Plank’s constant and
the charge of a single electron. The amplitude of the current peak is
primarily determined by Γd and Γ s ; and thewidth of the peak depends
mostly on t0. We treat t0, Γd , and Γ s as fitting parameters.

As shown in Fig. 5d, e, we perform the fit using the measured
conductance near a crossing along the black dashed line in Fig. 5d. We
find t0 ≈4:4±0:3GHz 14:1 ± 1:7μeVð Þ and Γd ≈ Γ s ≈0:6±0:1GHz. The
insensitivity of the resonant current peak height and peak shape to the
applied bias confirms that the observed peaks are dominated by
resonant transport through two discrete energy levels. Away from
zero-detuning, the two discrete energy levels are isolated, while at
zero-detuning, the two discrete energy levels maximally hybridize. For
a double-dot system, the separation at an avoided crossing is deter-
mined by Um +2t0

� �
, whereUm is the long-range e-e repulsion between

the two sites. We computationally verify that this relationship also
applies to our 3 × 3 array systems where two localized charge dis-
tribution configurations that are on resonance at an avoided crossing
can be mapped to the two sites of a double-dot system. (See Supple-
mentary Note 8) Here each t’ should be interpreted as an off-diagonal
matrix element for an effective two-level Hamiltoniannear the avoided

crossing and distinguished from the nearest neighbor hopping
amplitude t in the Fermi-Hubbard Hamiltonian. However, we find that
the magnitude of t0 from the above fit is consistent with a simulated
tunnel coupling40 that is between non-neighboring array sites in the
upper and lower rows.

Thermally activated transport within an array
Transport through the second array is of special interest because its
lattice site density corresponds to the critical doping density in silicon
between tunneling and band transport regimes, where transitions of
the electron system from a frozen Wigner-like phase to a Fermi glass
has been previously observed by increasing the temperature in a few-
dopant silicon transistor41. Here, we explore the thermal activation in
the second array by monitoring the temperature evolution of trans-
port properties through the array. The experimental temperature
range investigated is limited by the temperature (~16 K) at which
leakage current through the Si substrate becomes comparable to
conductance through the array. At elevated temperatures, the charge
occupation is thermally broadened not only in the Fermi distributions
within the source/drain leads, but also in the occupation of the many-
body states within the array. In addition to reducing the opacity at the
source and drain tunnel junctions, both thermal effects increase the
ability for addition electrons to access many-body excited states, and
therefore, open new tunneling paths within the array that were pre-
viously not accessible at base temperature.

Figure 6a plots the Coulomb oscillation in source-drain con-
ductance at T = 10mK and 12 K taken along the dashed line cut in
Fig. 2e using a small bias voltage of 3mV . We observe the removal of
the Coulomb blockade within each of the Hubbard bands at higher
temperatures, where charge stability domains characterizing fixed
numbers of electrons in the array become ill-defined except for at the
large finite analog Mott gap. We also observe a similar transition in
transport in the simulated Coulomb oscillations at elevated tempera-
tures (Fig. 6b), which can be explained by a transition from the Cou-
lomb blockade regime to the collective Coulomb blockade regime
(two Hubbard bands)34. In this system, thermal broadening of

T=10mK T=4K T=8K T=12K
c

a b

VG1 = VG2 (mV)

Fig. 6 | Characterizing thermal activation in the second array at elevated
temperatures. a Direct current conductance measured along the dashed line in
Fig. 2e at a bias Vbias = 3mV and at temperatures T = 10mK ,12K . b Simulated Cou-
lomb oscillation peaks in conductance of the second array at different

temperatures (See Methods). c Conductance at an avoided crossing region of the
second array (highlighted by the circle in Fig. 2e) that is measured with a bias
Vbias =6mV and at varying temperatures T = 10mK , 4K , 8K , 12K . All 4 plots in (c)
share the same color bar on the right.
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Coulomb oscillation peaks at T = 12 K becomes large enough to elim-
inate smaller Coulomb blockade gaps within the upper and lower
Hubbard bands but not the large gap in between. Such thermally
activated Hubbard band formation behavior within a 2D array is a key
distinction from the thermal broadening in a zero-dimensional system
where Hubbard bands do not exist.”

Figure 6c shows the temperature evolution in conductance at an
avoided crossing region of the second array (circled in Fig. 2e) at
T = 10mK, 4 K, 8 K, and 12 K. Conductance at the two triple-points at
the avoided crossing stretches from well-defined bias triangles to
conductance lines running in parallel, in analogy to the development
of crescents at the triple-points of a double-dot system when
increasing the tunnel-coupling between the dots42.Within the 2D array,
this signature can be attributed to the additional hopping channels
that become accessible at elevated temperatures (thermally activated
hopping), that not only enhances conductance through the array, but
also causes many-body states to become more delocalized within
the array.

Discussion
We have simulated an extended Fermi-Hubbard Hamiltonian of a 3 × 3
2D lattice using a series of STM-fabricated 3 × 3 arrays of few-dopant
quantum dots and probed themany-body properties within the arrays
using quantum transport measurements. By introducing two in-plane
gates on either side of the array, we demonstrate gate tuning of the
electronensemblewithin the array aswell as the flexibility of tilting the
chemical potential landscape for characterizing the charge distribu-
tions of many-body ground states and resonant properties between
them. By varying the lattice constants of a series of array devices at the
fabrication stage, we demonstrate effective tuning of the hopping
amplitude and long-range interactions within the simulated Hamilto-
nian. Through comparisons with theory, we can identify a finite-size
analogue of the transition frommetallic to Mott insulating behavior in
charge distributions within the array when the lattice constant is
increased from 4:1 ±0:3nm to 10:7 ±0:3nm. By increasing the tem-
perature near a critical lattice site density, we observe the formation of
thermally activated Hubbard bands and enhanced electron transport
through the array via thermally activated occupation.

In this first experimental realization of an extended Fermi-
Hubbard Hamiltonian using atomically patterned 2D arrays of
dopants, the quantum simulation accuracy is limited by uncertainties
in the exact number of dopant atoms and their clustering configura-
tions within each array site, as well as atomic-scale variations in
nearest-neighbor hopping amplitudes. Continuing efforts are under-
waywithin our group and in the research community to seek long term
solutions in improving the atomic perfection in dopant-based quan-
tum devices. In a separate study43, we recently demonstrated fabrica-
tion of a sample having 6 sites and 12 sites with precisely one single
dopant per site by combining low-temperature feedback-controlled
hydrogen lithography44 with a newmethod called feedback-controlled
manipulation. The precise number of dopant atoms in a few-dopant
quantum dot and its clustering configuration can be measured using
STM spectroscopy after dopant incorporation and before Si epitaxial
overgrowth. When combined with ab-initio calculations of the elec-
tronic structure of STM-measured dopant-cluster configurations as
inputs, we expect significant improvement in the agreement between
the experiment and theory in the future. In addition, development of
more complex virtual gate designs7 is underwayallowing control of the
chemical potential at each array site and fine tuning of local tunnel
coupling, improving the accuracy of dopant-based analog quantum
simulators in the 2 by n configuration.

These experiments confirm the viability of simulating a Fermi-
Hubbard model using dopant-based 2D arrays that account for lim-
ited nonuniformity and pave the way towards more complex and
accurate analog quantum simulations of extended Fermi-Hubbard

Hamiltonians using dopant atoms. Tunability within the 2D array
demonstrates the expected control of Coulomb interactions, hop-
ping, filling factors, and temperature; this provides a pathway to
explore previously inaccessible regions in the multi-dimensional
condensed matter phase space. Extending this work to larger
dopant-based arrays should allow the study of many-body localiza-
tion and competing magnetic and charge order on 2D lattices,
including frustrated geometries. In contrast to other quantum
simulation platforms of Fermi-Hubbard Hamiltonians such as optical
lattices, dopant-based artificial lattices are unique in reaching low
effective temperatures and easy access to quantum transport.
Additionally, relative to gate-defined quantum dot arrays, a dopant-
based system has the unique property of having the naturally
occurring nucleus at each dopant-based lattice site, allowing simu-
lations that include nuclear spins and hyperfine interactions inherent
in real-world condensed matter physics.

With continued advances to reduce disorder and improve atomic-
scale precision in single-dopant placement, this method can be gen-
eralized to larger lattice arrays and other types of dopant species, such
as boron45 and arsenic19, potentially embedded in alternative substrate
lattice environments, such as a Ge substrate46. The results demon-
strated in this study serve as a launching point for a new class of
engineered artificial lattice systems to explore strongly correlated
many-body systems in the solid state and explore less well-understood
phenomena such as the pseudogap phase, strange metals, topological
phases, and superconductivity in the Fermi-Hubbard model and
magnetic ordering and frustration in spin systems. We point out that
the problem of solving the Hubbard Hamiltonian for generic para-
meters quickly becomes intractable with state-of-the-art classical
computers (even for ground state properties) for systems larger than
5 × 5 lattice sites. Even the 3 × 3 arrays in this study are on the cusp of
what can be numerically done today exactly for finite-temperature
transport properties.

Methods
Device fabrication and measurements
The 3 × 3 few-dopant quantumdot arrays are fabricated in an ultrahigh
vacuum (UHV) environment with a base pressure below 4× 10�9 Pa
(3 × 10�11 Torr) using an STM tip to create atomic-scale lithographic
patterns of the device by removing individual hydrogen atoms on an
hydrogen-terminated, Si(100) 2 × 1 reconstructed surface44. Detailed
sample preparation, UHV sample cleaning, hydrogen-resist formation,
and STM tip fabrication and cleaning procedures have been published
elsewhere47,48. The substrate is then saturation-dosed with PH3 gas at
room temperature, where PH3 molecules selectively absorb only onto
the lithographic regions where chemically reactive Si dangling bonds
are exposed. A subsequent rapid thermal anneal process at 350 °C for
1min incorporates the absorbed phosphorus atoms into the Si surface
lattice sites while preserving the hydrogen resist to confine dopants
within the patterned regions. We embed the incorporated dopant
atoms in a single crystalline silicon environment using low-
temperature Si epitaxial overgrowth with an optimized locking layer
to suppress dopant movement at the atomic scale during epitaxial
overgrowth26,48. Finally, ohmic contacts to the buried device are
formed using a low thermal budget contacting technique27. The
number of incorporated P atoms in each quantum dot can be esti-
mated by analyzing the lithographic sites that are available for P
incorporation31. See Supplementary Note 2 for analyzing the best
estimates of dopant numbers at each lattice site. Using the Si(100)
2 × 1 surface reconstruction lattice as an atomically precise ruler, the
lattice constant of the fabricated arrays (center-to-center distance
between adjacent quantum dots) can be precisely characterized. The
STM-patterned in-plane source/drain leads and gates are saturation-
doped49 with a dopant density of ~2 × 1014=cm2, corresponding to a 3D
doping density of ~2 × 1021=cm3 that is approximately three orders of
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magnitude above the metal-insulator transition, allowing quasi-
metallic conduction in all electrodes. We carry out direct-current
(DC) transport measurement of the device inside a dilution refrig-
erator at a base temperature of ~10mK.

Numerical simulation
Wehave constructed a time-independent extendedHubbardmodel to
simulate the 3 × 3 quantumdot array system following the analysis first
introduced by ref. 50 for semiconductor quantum dots and more
recently by Le and coworkers28 for dopant arrays in silicon. In our
extendedHubbardmodel (see Eq. 1), we include one spinful orbital per
dot near the Fermi level, which means a maximum of 18 valence
electrons canbe addedonto the array.Weuseafinite element software
package, FasterCAP51, for capacitance matrix calculations based on
STM imaging of device geometry patterned using STM-lithography,
where a lateral seam of 2.5 nm and a vertical thickness of 2 nm have
been included to account for the Bohr-radius-like electron density
extension beyond the lithographic patterns, previously shown to be
necessary to reproduce the experimental capacitance values in STM-
patterned Si:P devices15,52. We formulate the electrostatic potential
landscape aswell as on-site and long-range electron-electron Coulomb
interactions using the calculated capacitance matrix (See Supple-
mentary Note 1). We estimate the number of dopant atoms in the
quantum dots by characterizing the binding energies of similar few-
dopant quantum dots with a similar lithographic patch (See Supple-
mentary Note 3). We approximate the screened on-site electron-ion
Coulomb interaction in a quantum dot using the charge-neutral
binding energy of the estimated dopant cluster29. We adopt a Fermi
level of −80meV with respect to Si conduction band edge in the
saturation doped, in-plane source/drain, and gate electrodes53,54. We
approximate the long-range electron-ion Coulomb attractions using a
point charge approximation28. More details about model parameter
extractions are provided in the Supplementary Notes. Exchange
interactions and longer-range hopping terms are not implemented in
our model. We assume the lead’s tunnel coupling to the dot array is
sufficiently weak so that the dot array can be treated as an isolated
system when solving for the eigenstates.

At each gate-gate point, we use exact diagonalization to solve for
the ground and excited many-body eigenstates of the Hamiltonian,
whose matrix is represented in the Fock basis, for particle numbers
ranging from 0 to 18 in the 3 × 3 array system. The charge stability
diagram simulations utilize the classical capacitance coupling and
best-estimated numbers of dopants per site based on the STM-
patterned device geometries (See Supplementary Note 2). The hop-
ping amplitudes are set as t = 8meV, t = 2meV, and t =0.5meV for
simulating the first, second, and third arrays, respectively, based on
thedesigned lattice constants in the arrays40. Charge stability diagrams
and ground state charge distributions are obtained using the Lanczos
algorithm after further block-diagonalizing the Hamiltonian matrices
based on the total spin in the z direction. The numerically simulated
conductance results in the main text are linear response conductance
through the array atfinite temperatures and zerobias that is calculated
following the formalism of ref. 28, which uses Fermi’s golden rule for
the tunneling rate to/from the leads and a generalization of the
transport equations developed by Beenakker55 for a single quantum
dot. For that, we implement full re-orthogonalization of vectors in the
Krylov space in our Lanczos routine after each iteration and seek
convergence for 25 to ~40 low-lying states if the size of the Hilbert
space for a particular spin and particle number sector is greater than
2000. For that, except in Fig. 6b where we have used full diag-
onalization to obtain exact results, this approximation generally
underestimates the conductance values, especially at elevated tem-
peratures (T > 1 K), but does not alter its qualitative behavior. For
smaller sizes, we perform full diagonalization using Intel’s math kernel
library. The experimental conductance gate-gatemaps weremeasured

at finite bias voltage of the order of few mV and the extent to which
excited many-body states participate in transport is largely deter-
mined by the bias window, rather than thermal broadening. The cal-
culated conductance does not take into account the effect of the
environment, including the leads and the bias window, or other pro-
cesses, such as phonons, which can further broaden the measured
conductance peaks even at very low temperatures. Therefore, we
approximate these effects and the participation of excited states in
transport by setting a 1meV thermal broadening in the numerical
calculations of conductance gate-gate maps of Fig. 3b in the main text
and Supplementary Fig. 5b in the Supplementary Notes.

Adopting a similar notation as ref. 28, wewrite the conductance as

G= gT

X
n,m

X
α,β

M Lð Þ,n,m
α,β M Rð Þ,n,m

α,β

M Lð Þ,n,m
α,β +M Rð Þ,n,m

α,β

× Pn,m
α 1� f FD En,m

α � En�1,m�1
β

� �h i

Where gT = e
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and

M Lð Þn,m
α,β =

X
j2cL

∣hΨn,m
α ∣cyj"∣Ψ

n�1,m�1
β i∣2

where the last sum runs over sites on the left edge of the array, closest
to the source lead. M Rð Þn,m

α,β has a similar formula with a sum that runs
over sites on the right edge of the array. En,m

α is the αtheigenenergy of
the many-body wavefunction,Ψn,m

α with n particles and a total spin of
m. k is Boltzmann’s constant, and f FD is the Fermi–Dirac distribution
function. Γ is the hopping amplitude for electrons to/from the leads. In
our plots, we showresults for the dimensionless quantityG=gT .We use
spin inversion symmetry to simplify our calculations by considering
the transport of only spin-up electrons through the array and inserting
an overall factor of two in G (Certain commercial equipment,
instruments, or materials are identified in this paper to foster
understanding. Such identification does not imply recommendation
or endorsement by the national institute of standards and technology,
nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.).

Data availability
All relevant data are available upon request from the authors.
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