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Abstract
The human immunodeficiency virus (HIV) evolves rapidly owing to the
combined activity of error-prone reverse transcriptase, recombination, and
short generation times, leading to extensive viral diversity both within and
between hosts. This diversity is a major contributing factor in the failure of the
immune system to eradicate the virus and has important implications for the
development of suitable drugs and vaccines to combat infection. This review
will discuss the recent technological advances that have shed light on HIV
evolution and will summarise emerging concepts in this field.
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Introduction
The human immunodeficiency virus (HIV) is a major cause of 
morbidity and mortality worldwide, and infection leads to acquired 
immune deficiency syndrome (AIDS) and death in the overwhelm-
ing majority of untreated patients. Despite this, no effective vac-
cine or cure has yet been developed. A major obstacle in this 
endeavour is that rapid viral evolution essentially renders HIV a  
“moving target”, which also contributes to the inability of the host to 
control and clear the virus in natural infection. Understanding how 
HIV evolves is therefore of high priority, and substantial progress 
has been made in recent years. This review will discuss the latest  
technological advances that have shed light on HIV evolution and 
will summarise emerging concepts in the field.

Why does HIV evolve rapidly?
HIV evolves extremely rapidly, exhibiting the highest recorded 
biological mutation rate currently known to science. The inter-
patient genome-wide nucleotide substitution rate of intracellu-
lar viral DNA may be as high as 4.1 × 10-3 (2.4 × 10-3 – 5.8 × 10-3)  
substitutions per site per year (s/s/y)1 and, in the hypervariable 
regions of the envelope (env) gene, could reach 5.2 × 10-3 (2.9 × 10-3 
– 7.7 × 10-3) s/s/y2.

The rapid rate of HIV evolution is largely attributable to the error-
prone nature of reverse transcriptase, which plays an important role 
in viral replication yet lacks proofreading activity. This, in combi-
nation with short generation times, allows mutations to accumulate 
quickly within the virus at rates that differ across the genome3. As 
the duration of infection is prolonged—with clinical latency last-
ing around a decade in untreated individuals—and the replicating 
population is large, the degree of viral diversity within a patient can 
be extensive4.

In addition, one or more viruses may undergo recombination to pro-
duce a unique recombinant form (URF). Recombination can occur 
between highly divergent, closely related, or even identical viruses 
within a patient, and the evolutionary impact of the recombination 
event will be affected by the degree of divergence between the initial 
“parental” variants. If the resulting URF spreads amongst a popula-
tion, it becomes a circulating recombinant form (CRF). Recombina-
tion of various simian immunodeficiency viruses (SIVs) is believed 
to have been an important contributing factor in the cross-species 
transmission and evolution of HIV from SIVs infecting non-human 
primates. It is also believed to have contributed substantially to the 
diversification of HIV-1 group M subtypes5.

Another potential source of variation is guanosine to adenosine  
(G-to-A) mutation induced by the host restriction factors 
APOBEC3G and APOBEC3F (A3G/F)6,7, but the contribution of 
A3G/F to viral evolution is controversial. Analysis of whole viral 
genomes failed to detect evidence of A3G/F footprints8, and it has 
been proposed that the excessive degree of G-to-A hypermutation 
may be lethal, even in the context of very low levels of APOBEC3G9. 
However, later studies have suggested that whilst low-level G-to-A 
mutagenesis may contribute to viral evolution10, the overall contri-
bution of this effect is likely to be small11.

Mutations may accumulate either because of genetic drift or 
because they confer a relative fitness advantage to the virus, allow-
ing it to persist and replicate more successfully than in its previous 
state. Escape mutations often confer a degree of resistance against 
selection pressure exerted by drugs or the host immune response, 
and evidence of viral evolution driven by cytotoxic lymphocytes 
(CTLs) and antibodies can even be detected in infants12. HIV-1 is 
known to adapt to host HLA class I13,14, and up to 56% of polymor-
phic sites in viral genes may be subject to HLA-associated selection 
pressure15.

Whilst many studies have been performed in vitro, HIV has also 
been shown to evolve rapidly in vivo1. This has obvious biologi-
cal implications as untreated patients eventually lose control over 
the virus and progress to AIDS. Whether or not HIV continues to 
replicate during antiretroviral therapy (ART) is currently subject to 
debate, with conflicting studies suggesting evidence both for 16 and 
against persistent, on-going replication contributing to the mainte-
nance of the viral reservoir during treatment17.

How does the virus evolve within and between 
hosts?
HIV infection is usually established from a single transmitted 
founder virus18–20. How this one virus then diversifies within an  
individual has been the subject of numerous studies. Early longitudi-
nal studies of envelope sequences within patients identified consist-
ent evolutionary patterns associated with disease progression21 and 
CD4+ lymphocyte decline22. In the late stages of infection, sequence 
divergence tends to stabilise as a result of the reduced selec-
tion pressure that can be exerted by a severely damaged immune  
system23. As the rate of disease progression varies between patients, 
attempts have also been made to identify whether evolutionary fac-
tors contribute to these differences. It is now known that synony-
mous rather than non-synonymous substitution rates are associated 
with disease progression, most likely owing to underlying replica-
tion dynamics, which may in turn be driven by excessive immune 
activation24. Primary infection may also be established from two 
or more strains. Such co-infections are more frequently observed 
with injection drug use than sexual routes of transmission, and the 
viruses can undergo recombination, which significantly expands 
the genetic diversity of the quasispecies pool25.

Whilst HIV evolves extremely rapidly within individuals, viral 
evolution is somewhat slower on a population level, reviewed by 
Lemey et al.2. Most evolutionary studies have been performed using 
the env gene, but the rate of inter-host viral evolution is consistently 
lower across the whole viral genome3. Several hypotheses have 
been proposed to explain this anomaly, including fluctuations in 
selection pressure over time, reversion of patient-specific adaptive  
changes following transmission, and a “store and retrieve” mecha-
nism in which archived ancestral virus is preferentially transmit-
ted26. The last proposal is currently the most well supported27.  
Such cycles of latency are believed to occur irrespective of  
treatment, and the proportion of viruses in the plasma that have 
gone through latency is believed to be large28. Cycling in and  
out of latency is therefore likely to make a non-trivial impact on 
viral evolution.
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Another key question in HIV evolution concerns the establishment 
of primary infection and whether the virus responsible possesses 
favourable characteristics or is merely in the right place at the right 
time. Despite the diversification of virus within a patient, infection 
is typically established with CCR5 tropic (R5) virus containing spe-
cific residues associated with increased viral fitness29. However, the 
selection bias imposed by this genetic bottleneck is significantly 
reduced in more permissive environments, such as in the context 
of inflammation, and the bottleneck itself is affected by the mode 
of sexual transmission30. Viruses that are pre-adapted to the HLA 
types of the recipient are also associated with higher viral loads, 
rapid CD4+ lymphocyte decline, and a poorer prognosis31.

How has HIV evolved since its emergence?
HIV is an evolutionarily young virus, having first emerged in the 
first half of the 20th century32,33. How the virus has disseminated and 
evolved since then is of great epidemiological interest, and advances 
in the field of phylogeography have helped to address these ques-
tions. Phylogeographic studies combine genetic and geographical 
data to draw inferences about historical events that have contributed 
to the current geographic distribution of a virus. The use of such 
an approach enabled the determination of the likely origin of the  
HIV-1 group M pandemic: 1920s Kinshasa34. Group M virus is 
responsible for the overwhelming majority of infections worldwide, 
and within group M, subtype C virus is most prevalent globally35.

However, it was the emergence of subtype B virus in the United 
States of America that first alerted medical professionals to the 
global AIDS crisis. A recent high-profile phylogeographic analysis 
of serum virus has revealed that the early US epidemic probably 
emerged from an existing epidemic in the Caribbean, which was 
introduced into New York City in around 197036.

It has also been proposed that, since the introduction of the virus 
into the human population, HIV may be becoming less virulent 
with time. Indeed, there is some evidence to suggest that the exten-
sive global spread of subtype C may be related to relatively lower 
virulence, despite comparable transmission efficiency37. The rapid 
rate of evolution has been suggested to contribute to decreased 
virulence over time by allowing HIV to adapt to protective HLA 
types, reducing the replicative capacity of the virus38. However, the 
interpretation of this study has been contested39, and a meta-analy-
sis of the existing literature has previously suggested the converse 
may be true: that the virulence of HIV is actually increasing40. 
Further investigation is needed to clarify these apparent contradic-
tions, which arguably have important translational implications. 
One possible explanation for the discrepancies between studies is 
that virulence may differ geographically as a result of considerable  
differences in the distribution of HLA class I types and HIV-1 sub-
types globally.

The evolutionary virologist’s toolkit
The number of resources available to evolutionary virologists has 
expanded dramatically over recent years. The latest technological 
advances in computing power have permitted high-level analyses of 
datasets to be performed, and innovative next-generation sequenc-
ing (NGS) platforms have increased—almost exponentially—the 
amount of data that can be collected from a sample.

Many sequencing studies continue to be performed using the con-
ventional Sanger approach, and these investigations yield interest-
ing and important results. The application of Bayesian Markov 
Chain Monte Carlo (MCMC) methods in the field of phylogenetics 
has revolutionised the way that sequence data are interpreted. This 
approach has been popularised in large part by the ability to incor-
porate a priori information about the sequences such as sampling 
dates. Such time-stamped data can be used to predict sequence 
divergence times owing to the robust molecular clock of HIV, which 
is itself under early immune selection pressure41. Bayesian analyses 
also allow a large number of inferences to be drawn from sequenc-
ing data and can, for example, be used to reconstruct population 
dynamics42 and transmission networks43.

Whilst Sanger sequencing remains popular, a number of limita-
tions are associated with traditional methods. For example, HIV 
sequence clustering is known to be heavily confounded by low sam-
pling density44, short sequence lengths, and suboptimal inclusion 
of informative sites45. NGS has therefore been embraced in recent 
years, as it facilitates rapid, high-throughput, and cost-effective 
analysis of viral quasispecies. Full-length genomes can be ampli-
fied, sequenced, and assembled without bias46, and the datasets 
generated can be of sufficient depth to allow reliable detection of 
ultra-rare mutations at frequencies as low as 0.2%47.

Much can be learned from analysing deep sequencing data: indeed, 
NGS of longitudinally collected whole viral genomes from untreated 
patients has shown that reproducible patterns in sequence diversity 
between patients mirror those seen on a global scale, indicating that 
the fitness costs controlling diversity are universally conserved48. 
NGS may also play an increasingly central role in clinical settings 
by facilitating the detection and sequencing of low-abundance virus 
to monitor patients for the emergence of drug-resistant variants49.

NGS offers up a number of exciting opportunities for evolution-
ary virologists, but it is not without its own limitations. Much like 
Sanger sequencing, there are many possible sources of error50 and, 
even if these are effectively overcome, the sheer size of datasets and 
the short fragment sizes generated may pose logistical challenges in 
their analysis. Progress is being made in developing novel frame-
works to facilitate phylogenetic reconstruction of NGS data51, but 
such approaches are not yet the status quo.

Concluding remarks
Over recent years, a clearer picture is being formed as to how, 
where, and why HIV is evolving. Understanding how the virus 
evolves within an individual patient is central to the development of 
appropriate drugs and vaccines, as rapid evolution constitutes a key 
evasion mechanism against the immune response. Studies of viral 
evolution between hosts have demonstrated somewhat slower rates 
of evolution but have also indicated that HIV may be changing in 
virulence over time.

Advanced analyses and disruptive technologies have been pivotal to 
recent breakthroughs, and the innovative approaches being devel-
oped today will surely shape our understanding of evolutionary 
virology tomorrow. Particularly promising is the application of NGS 
to study viral evolution, as the depth and coverage of sequences 
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generated exceed what is achievable through conventional means. 
In addition to being of academic interest, this technology may have 
important clinical implications in the future by facilitating the early 
detection of low-frequency drug resistance mutations and subse-
quently allowing alteration and optimisation of treatment plans.

To summarise, owing to a growing body of high-quality research, 
made possible by cutting-edge technology, HIV evolution is 
no longer the great enigma it once was. There are still outstand-
ing questions to be answered, but, as more and more of these are 
answered, the prospect of an effective vaccine or cure becomes 
increasingly tangible.
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