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ABSTRACT: We present a strategy for carrying out high-precision calculations of
binding free energy and binding enthalpy values from molecular dynamics
simulations with explicit solvent. The approach is used to calculate the
thermodynamic profiles for binding of nine small molecule guests to either the
cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations
using commodity hardware can yield binding free energy and binding enthalpy values
with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-
consistency of the approach is established by calculating the binding enthalpy
directly, via end point potential energy calculations, and indirectly, via the
temperature dependence of the binding free energy, i.e., by the van’t Hoff equation.
Excellent agreement between the direct and van’t Hoff methods is demonstrated for
both host−guest systems and an ion-pair model system for which particularly well-
converged results are attainable. Additionally, we find that hydrogen mass
repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we
provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time
series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the
possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be
used to reliably interpret experimental data and guide molecular design.

1. INTRODUCTION

The rational design of high-affinity ligands, in applications like
drug discovery and supramolecular chemistry, depends on an
understanding of how interactions involving the ligand,
receptor, and solvent contribute to the overall observed affinity.
Calorimetric studies, which break down the binding affinity into
enthalpic and entropic components, have been helpful in this
respect and have led to discussions of entropy−enthalpy
compensation1−8 and the role of entropy and enthalpy in ligand
design.9−15 Molecular simulations offer additional insight, as
they link atomistic detail and binding thermodynamics, but,
although decompositions of computed binding free energies
into enthalpic and entropic terms are sometimes per-
formed,16−19 this practice is not common, perhaps because
these terms are regarded as being more difficult to compute.
Importantly, simulations often allow the thermodynamic
components themselves to be further subdivided to provide
rich detail regarding the driving forces of the binding
interaction, as we recently demonstrated for the binding
enthalpies of a series of host−guest systems.20

Here, we extend our previous work to describe what may be
termed computational calorimetry, in which both a binding free
energy and a binding enthalpy are obtained self-consistently
from the same set of simulations. We focus on host−guest
systems (Figure 1) for which ample experimental data are
available21−30 and extensive sampling can be achieved via GPU-

enabled simulations.31 For these systems, just a few days of
computing on commodity hardware yields numerical precision
as good as or better than the corresponding reported
experimental uncertainties. This precision is enabled, in part,
by enhancements to the attach−pull−release (APR) free energy
framework, which include the addition of orientational and
conformational restraints that facilitate efficient simulations. As
the centerpiece of this study, we validate the self-consistency of
this approach by demonstrating excellent agreement between
binding enthalpies computed directly, via end-state mean
potential energies,16−20,32−34 and indirectly, via a van’t Hoff
fit of the binding free energy.16−19,35 Furthermore, we compare
the numerical efficiency of these direct versus van’t Hoff
approaches, determine whether hydrogen mass repartitioning
(HMR) simulations36−38 can be used to speed the calculations
without impacting their fidelity, and compare the results from
two widely used approaches to estimate the statistical
uncertainty of mean quantities from simulations with correlated
data sets: statistical inefficiency analysis39 and blocking
analysis.40

Comparison of our results with experiment reveals significant
deviation. The extensive sampling and uncertainty analysis we
perform, coupled with the relative simplicity of host guest
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systems, rules out sampling error as a major contributor to the
deviation. Rather, to build rational explanations of binding,
further testing and improvement of simulation force fields will
be necessary. The computational calorimetry framework we
describe will be helpful in performing such validation and
development studies.

2. METHODS

2.1. Binding Systems. The model host−guest systems we
chose for this work, cucurbit[7]uril (CB7) and β-cyclodextrin
(βCD), exemplify key features of protein−ligand binding, but
they are far more computationally tractable due to their small
size. The two hosts differ in their conformational properties and
binding characteristics. CB7 systems feature high binding
affinities24,27,41 and thus require a rigorous approach to deal
with the steep energy landscape encountered when removing
the guest. Additionally, binding enthalpies have been previously
calculated20 for these systems using the same force field
parameters but with a different simulation box setup, thus
providing a convenient comparison to study the influence of
the choice in setup, as detailed below. Cyclodextrin host−guest
systems are attractive due to the wealth of experimental data
available.21−23 Although their binding affinities tend to be more
modest than those of CB7 systems, their flexibility and large
number of hydrogen-bond donors and acceptors offer a
potentially more realistic representation of protein−ligand
binding. A complicating issue with cyclodextrins is that many
guest molecules can bind in two orientations that do not
exchange on the microsecond time scale of the present
simulations. For example, hexanoate can bind to βCD with
the carboxylate group near the primary hydroxyl face (primary
binding mode) or at the secondary hydroxyl face (secondary
binding mode). Thus, binding calculations must be performed
for both orientations and combined to yield a single value (see

Section 2.2.3). Finally, we study an extremely simple model of
binding, an ion-pair, to validate our computational procedures
at high precision.
The following subsections describe the parametrization and

system building protocol. Each set of simulations is named
according to the binding pair; the subscript Temp indicates a
temperature series used for van’t Hoff binding enthalpy
calculations, and the subscript HMR indicates calculations
using hydrogen mass repartitioning. Refer to Figure 1 and
Table 1 for illustrative and technical summaries, respectively, of
the simulation sets discussed below.

2.1.1. Cucurbituril Host and Eight Guests. All CB7
simulation sets used the same parameters as those described
by Fenley et al.20 in order to maintain consistency with that
publication. Briefly, parameters for the CB7 host and the guests
were assigned by the program Antechamber:42 partial charges
used the AM1-BCC method,43,44 whereas bonded and
nonbonded parameters came from GAFF.45 All simulations
(both bound and unbound) were solvated in an orthorhombic
box of 2210 TIP3P waters with dimensions of approximately 36
× 36 × 52 Å3, with the exception of the larger B11 guest, for
which 2500 waters were used in a box of dimensions 36 × 36 ×
60 Å3. The simulation with the MVN guest also included one
molecule of protonated Tris buffer in order to match
experiment. Included in each simulation box were three
noninteracting anchor particles, which, in conjunction with
several restraints, aligned the host−guest system with the long
axis of the box. Hydrogen mass repartitioning was tested for the
association of CB7 with B2. For these CB7-B2HMR simulations,
the parameter/topology file was modified with the Parmed.py
program (distributed with AMBER) to reallocate the solute
atom masses in accordance with previously described hydrogen
mass repartitioning schemes.36−38 Solvent molecules were not
modified.

Figure 1. Structures of the host (left) and guest (right) molecules studied in this work. The protonation state used in this study is shown for each
guest and reflects the dominant species under experimental conditions. Binding thermodynamic values were calculated for cucurbit[7]uril (CB7)
with all guests except Hex and for β-cyclodextrin (βCD) with Hex.
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2.1.2. β-Cyclodextrin Host and Hexanoate Guest. Cyclo-
dextrin parameters were taken from Ceźard et al.,46 and
hexanoate parameters used RESP47 partial charges from the
R.E.D. Server program48,49 and other bonded/nonbonded
parameters from GAFF.45 In an attempt to closely match
typical experiments, which include 10−20 mM phosphate
buffer, we included two molecules each of H2PO4

− and HPO3
2−

and neutralized with an appropriate number of sodium ions. To
our knowledge, there are no established parameters for
inorganic phosphate ions in the AMBER community, so we
began with parameters for existing bio-organic phosphates.
Partial charges for each species were determined with a RESP
fit while Lennard-Jones terms and bonded parameters were
taken from GAFF. Because we observed nonphysical
aggregation of phosphate and sodium ions in the initial
simulations, we increased the Lennard-Jones radius parameters
for the phosphate oxygen atoms from their default values by
0.29 and 0.33 Å for H2PO4

− and HPO3
2−, respectively, in

accordance with conclusions from Steinbrecher et al.50 This
change eliminated the aggregation, but we do not regard these
parameters as optimal, and we note the caution from
Steinbrecher et al. in regards to the uncertainty of their
suitability. The entire system was solvated with 2210 TIP3P
waters in an orthorhombic box whose dimensions were
approximately 36 × 36 × 52 Å3. As for the CB7 simulations,
anchor particles were used to orient the system along the long
axis of the box. Calculations were done with (βCD-HexHMR)
and without (βCD-HexTemp, βCD-HexAlt) hydrogen mass
repartitioning of the solute.

2.1.3. Ion-Pair Test Case. As a toy system that would allow
unambiguous numerical convergence, and thus rigorously test
our computational setups, we studied the binding of two
monatomic ions in aqueous solution. We used a single K+ and
Cl− ion pair, with cation parameters from Åqvist51 and anion
parameters from Dang,52 but we modified the ion parameters
to create a diatomic system with favorable enough affinity to
bind together during simulation. In particular, although this
combination is known to produce unphysical ion pairing,53 the
binding was not sufficiently tight to mimic a host−guest-like
system, so we increased the binding affinity by artificially
changing the charges on each ion from ±1.0 to ±1.3. This led
to a fairly stable ion pair, which persisted during simulation.
The K-ClSimple simulation set, which did not include orienting
anchor particles (see Section 2.5), was solvated with 2000
TIP3P waters in an isotropic truncated octahedron. In contrast,
the K-ClTemp simulations, which did use orienting anchor
particles, were solvated with 1000 TIP3P waters in an
orthorhombic box with dimensions of approximately 25 × 25

Table 1. Simulation Sets Studied in This Work

simulation set
setup
detailsa values calculated

total time
(ns)b

CB7-All8 I ΔG: 8 guests at 300 K 35265
ΔH: 8 guests at 300 K 16000

CB7-B2Temp I ΔG: 282, 288, 294, 300, 306,
312, 318 K

111090

ΔH: 300 K 3000
CB7-B2HMR I ΔG: 300 K 13094

ΔH: 300 K 4000
βCD-HexTemp I ΔG: 280, 290, 300, 310, 320 Kc 174536

ΔH: 300 Kc 33849
βCD-HexHMR I ΔG: 298 Kc 16 955

ΔH: 298 Kc 16955
βCD-HexAlt I ΔG: 300 Kd 13 958

ΔH: 300 Kd 2000
K-ClSimple II ΔG: 300 K 4000

ΔH: 300 K 2000
K-ClTemp III ΔG: 280, 290, 300, 310, 320 K 69563

ΔH: 300 K 2312
aSimulation setup types are as following: I = Rectangular box with a 3
anchor particle restraint setup; II = Truncated octahedron box with 1
distance restraint; III = Rectangular box with a two anchor particle
restraint setup. bAggregate simulation time over the entire simulation
set is indicated for direct calculations of the binding free energy and
binding enthalpy. Note that the binding free energy total time includes
the binding enthalpy simulation time since the latter can be included
with the former. cFree energies and enthalpies were determined for the
guest in two orientations inside the βCD host, requiring twice as many
simulations. Additionally, the total time listed for the ΔH includes the
two free energy calculations required to appropriately weight the
contributions from the two binding orientations. dCalculations were
performed only on the primary orientation, as these simulations served
as a consistency check.

Figure 2. Depiction of the attach−pull−release (APR) binding free energy calculation (left) and the direct binding enthalpy calculation (right). The
data shown was obtained from the primary orientation of the βCD-HexTemp simulation set at 300 K. Error bars are 95% CI.
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× 50 Å3, where the long dimension of the box corresponds to
the guest pulling axis.
2.2. Binding Free Energy Calculations. Our general

approach to free energy calculations extends the theoretical
framework described by Velez-Vega and Gilson,54 in which the
binding free energy is computed in terms of the sum of the
work, W, required to attach restraints to the complex, pull the
ligand from the binding site and then release the attached
restraints (see schematic summary in the left-hand panel of
Figure 2):

Δ ° = − + + +− −G W W W W( )bind attach pull release conf release std

(1)

Here, rather than performing a single dynamic pulling
calculation, we break the calculation into a series of
independent simulation windows. The collection of independ-
ent simulations can still be viewed as spanning an attach−pull−
release (APR) process, although, due to their independent
nature, the process could be equally viewed as unrelease−
push−unattach. Breaking the free energy path into independent
simulations has two advantages: (1) because each simulation is
independently built and equilibrated, little or no memory effect
is encountered from one point on the path to the next; (2) the
entire calculation can be distributed across a large, heteroge-
neous computational cluster, in order to improve turnaround.
In the following subsections, we provide more detail on the
binding free energy calculations performed in this work, starting
with a thermodynamic integration (TI) approach for calculating
the binding free energy from the APR simulation data.
2.2.1. Thermodynamic Integration Approach. Following

the approach detailed by Velez-Vega et al.,54 we first define the
chemical potential of the restrained host−guest system in the
following manner

∫

μ ° = −

−

°
π

β λ λ− +∑ − +∑ −= = ⎟⎞⎠
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p 2

1
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0,
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(2)

where β ≡ 1/RT, R is the gas constant, T is the absolute
temperature, C° is the standard concentration (1 M or 1
particle/1660 Å3), and E(X) is the potential energy as a
function of atomic coordinates, X, defined in the reference
frame of the host. The equation includes two nonphysical
summation terms that define harmonic restraint potentials on
the rotational and translational coordinates, or pose, of the
guest relative to the host, xn

p, and on a set of conformational
coordinates internal to the host and/or the guest, xn

c. The Np/
Nc number of harmonic restraints are described with force
constants, kp/kc (which implicitly include a factor of 1/2,
according to the convention in AMBER), and target values,
x0,n
p /x0,n

c , along with scaling coefficients λp/λc, which are varied
from 0 to 1 in order to turn the restraints on and off in the
course of the free energy calculations. In addition, E(X)
implicitly includes a set of energy terms that restrain the overall
translational and rotational coordinates of the host within the
lab frame, without influencing its conformational distribution.
These restraints remain in place and unchanged during the
entire APR process. Most simply, a single atom of the host may
be restrained to a lab-frame position. More generally, it may be
convenient to keep the host positioned in and aligned with the
long axis of a rectangular simulation box via restraints tied to a
set of artificial particles anchored in the lab frame (black
restraints in the Figure S1A example).
In the following sections, we will refer to five host−guest

states, which depend on the status of the variable restraints:
bound, attached, pulled, pulled-free, and unbound. These states
are illustrated in Figures 2 (left panel) and S1. The bound state
has the guest bound to the host but with no added restraints.
The attached state is the same, except that restraints have been
turned on. In the pulled state, the restraints are still on, but the
equilibrium value of the restraint that sets the host−guest
distance has been adjusted to keep the guest far from the host.
In the pulled-free state, the conformational restraints have been
turned off, but the pose restraints are still in force. In the
unbound state, the pose restraints are removed and the guest is
considered to be at the standard state concentration. The

Figure 3. Restraint scheme demonstrating the use of anchor particles for attach−pull−release (APR) free energy calculations. P1−3 are anchor
particles, H1−3 are host atoms, and G1−2 are guest atoms. The ED1, EA1−2, and ET1−3 labels indicate distance, angle, and torsion restraints,
respectively, which modify only the host translational and rotational degrees of freedom and are included implicitly in the potential energy function,
E(X), as described in the main text. These restraints are held constant throughout all simulation windows and do not perturb the host’s
conformational degrees of freedom. Indicated in gray with labels x1

p, x2
p, x3

p, and xn
c are restraints that are attached over a series of simulation windows

and are subsequently used to pull the guest out of the host cavity. In this example, x1
p is a distance restraint, x2

p and x3
p are angle restraints, and xn

c

represents host conformational restraints (of any harmonic form). In parentheses, the corresponding spherical coordinate or Euler angle is indicated
for each translational/rotational pose restraint, as defined in the main text. See Figure S1 for a full illustration of the APR process.
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following sections explain the process for moving the host−
guest system through each of these states.
2.2.1.1. Attachment Phase. This phase begins with the

system in the bound state. The bound state does not include
rotational or translational restraints on the guest or conforma-
tional restraints on either the host or the guest. Therefore,
using the definition in eq 2, the bound state corresponds to λp =
0 and λc = 0. With λp = 1 and λc = 1, the chemical potential is
defined as the attached state, as it now includes restraints
necessary to extract the guest (depicted in gray in the Figure
S1B example). The force of attaching these restraints is λ-
dependent and can be found by taking the partial derivative of
μhg° with respect to λp and λc (intermediate steps given in
Supporting Information).

⟨ ⟩ = +

= ∑ ⟨ − ⟩ + ∑ ⟨ − ⟩
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(3)

Note that the angle brackets indicate the mean value from the
simulation at a given value of λp/λc. Also, the scaling of λp/λc
should be performed simultaneously for the above equation to
be valid. To compute the work, we estimate the integral over
the force curve (Figure 2, left)

∫
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from a series of simulations with discrete λ steps from 0 to 1, as
detailed in the Appendix.
2.2.1.2. Pulling Phase. The geometry of the host molecule

and our restraint setup (Figure S1B) allows us to vary the target
value of a single distance restraint parameter, designated x0,1

p in
our general equations below, in order to pull the guest away
from the host while the other restraints remain constant. At this
point, all of the restraints are fully turned on (λp = λc = 1), and
we compute the work of increasing x0,1

p from its initial to its
final value, which is the pulled state (Figures 3 and S1C). First,
we write the mean force as the partial derivative of the chemical
potential with respect to the varying parameter, x0,1

p (see
intermediate steps in Supporting Information):

μ
⟨ ⟩ =

∂ °

∂
= − ⟨ − ⟩F

x
k x x2x

hg

0,1
p 1

p
1
p

0,1
p

0,1
p

(5)

Note that, during the pulling phase, usually x0,1
p > ⟨x1

p⟩, so the
present expression will generally yield a positive work for
pulling the guest from the host, as expected for favorable
binding. To find the work, we integrate the force over the
change in equilibrium restraint length from the initial attached
distance to a final pulled distance at which the host and guest
can be considered to be noninteracting.

∫= − ⟨ − ⟩W k x x x2 dpull
attached

pulled

1
p

1
p

0,1
p

0,1
p

(6)

As in the attachment phase, in practice the integration is
estimated from simulations at discrete steps in x0,1

p .
2.2.1.3. Release Phase. In the release phase, all of the

restraints added during the attachment phase must be removed
either by numerical integration or analytically. Those restraints

that perturbed the conformational distribution of the system,
either host or guest, are removed in precisely the same manner
as the attachment phase, except that now the guest is held far
from the host. In this case, only λc is varied, while the scaling
factor for the translational and rotational pose of the guest
relative to the host, λp, is held constant. The λ-dependent force
curve is integrated and multiplied by −1 to find the work of
releasing the Nc conformational restraints.

∫ ∑ λ= − ⟨ − ⟩λ−
=

W k x x( ) d
n

N

n n nrelease conf
0

1

1

c c
0,
c 2

c

c

c
(7)

After removal of the conformational restraints, the system is
in the pulled-free state (Figure S1D). Note that, in cases where
conformation-perturbing restraints are not used, there is no
distinction between the pulled and pulled-free states.
Finally, since the guest’s rotational and translational degrees

of freedom are still restrained relative to the frame of reference
of the host, we calculate the work to release these restraints and
place the guest at standard concentration (the unbound state,
depicted in Figure S1E). This work is the difference between
the chemical potential of the pulled-free state and the sum of
the chemical potentials of the separate host and guest at
standard concentration:
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Here, Xh and Xg represent the coordinates of the host and guest
respectively, so that X = (Xh,Xg). The cancellation of the energy
potential term is dependent on the assumption that the host
and guest are far enough apart to be noninteracting so that
E(X) = E(Xh) + E(Xg). For evaluation of the Wrelease−std term, it
is helpful to reconsider the guest’s translational degrees of
freedom in the spherical coordinate system (r, θ, φ) and its
orientation in terms of Euler angles (a, b, c). Here, we rewrite
eq 8 with appropriate Jacobian terms and, in accordance with
our example figures, identify the two translational restraints as r
and θ and one rotational restraint as b:
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(9)

This equation can be evaluated semianalytically, without the
use of molecular simulations. Note that it may readily be
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generalized to a calculation in which restraints are also applied
to φ, a, and/or c.
2.2.2. Multistate Bennett Acceptance Ratio Approach.

One may use the same set of dynamics trajectories to compute
Wattach, Wpull, and Wrelease−conf values by the MBAR estimator
approach.55 (Wrelease−std is still computed semianalytically, as
noted above.) This is done by postprocessing the simulation
trajectories to obtain the restraint potential energy of each
simulation frame in the restraint potential of each simulation
window. The freely available Pymbar implementation of the
MBAR estimator55 can then be used to determine the relative
free energy along the entire free energy path.
2.2.3. Multiple Non-exchanging Bound States. For some

host−guest complexes, the guest can adopt multiple, distinct
orientations that do not readily convert without unbinding. For
example, an asymmetric guest may bind to β-cyclodextrin head-
in or head-out. In such cases, the overall binding free energy
can be computed from Nb separate binding free energies of the
Nb noninterconverting configurations:

∑Δ ° = − β

=

− Δ °G RT ln e
n

N
G

bind,all
1

n
b

bind,

(10)

Note that eq 10 places greater weight on results of lower free
energy, so errors in the component free energies propagate
nonlinearly. Therefore, we estimate both the mean and the
uncertainty of ΔGbind,all° by numerically sampling from a
Gaussian distribution based on the values of ΔGbind,n° and
their respective uncertainties (see Appendix).
2.3. Binding Enthalpy Calculations. The enthalpy

calculations in this article are performed in one of two ways,
termed the direct and van’t Hoff methods,16−19 as now detailed.
2.3.1. Direct Method. The binding enthalpy is the difference

between the partial molar enthalpies of the complex and the
free molecules. In the direct approach, this quantity is obtained
from differences in mean potential energy between simulations
of the bound and free states. (Note that the pressure−volume
contribution to the binding enthalpy is negligible for binding in
solution.) Previously, Fenley et al.20 implemented this method
by a multi-box approach, which uses four separate simulations
of the free host, the free guest, the host−guest complex, and
any additional pure solvent needed to exactly balance the
stoichiometry of the bound and unbound simulations. Here, we
instead use a single-box approach, which involves simply
subtracting the mean energy of the host−guest system in the
pulled-free state from that of the bound complex (Figure 2,
right)

Δ = ⟨ ⟩ − ⟨ ⟩−H U Ubind bound pulled free (11)

where U is defined as the potential energy without any
restraining potentials included. It should be emphasized that, in
these bound and pulled-free states, the restraining potentials
have no influence on the internal coordinates of the molecules.
In the pulled-free state, they only hold the host and guest far
apart, along an axis aligned with the long axis of the rectangular
simulation box. The two states considered here correspond to
simulations in the first (Figure S1A) and last (Figure S1D)
simulation windows of the APR binding free energy approach.
As shown in Results, this single-box method gives excellent
agreement with the prior multi-box approach.
When Nb noninterchangeable binding orientations exist, as

for the present βCD systems, where Nb = 2, the binding

enthalpy of the various orientations must be weighted by their
respective free energies to yield the overall binding enthalpy:

Δ =
∑ Δ

∑

β

β
=

− Δ

=
− ΔH

H e

e
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n
N Gbind,all

1 bind,

1
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b bind,

b bind, (12)

Again, this combination step is carried out using resampling
from Gaussian distributions based on the mean and SEM of
each input value.

2.3.2. van’t Hoff Method. This approach involves using the
van’t Hoff equation or related forms to extract the binding
enthalpy and entropy from calculations of the binding free
energy (described above) at multiple temperatures. If one
makes the approximation that enthalpy and entropy are
invariant with temperature, then both values can be obtained
by fitting to the familiar integrated form of the equation

= − Δ + Δ
K

H
RT

S
R

ln eq (13)

via linear regression analysis on a plot of ln(Keq) versus 1/T.
Here, however, we allowed for temperature dependence by
explicitly including a fitted change in the heat capacity, ΔCp,
using the following equation, where the thermodynamic
parameters were fitted with nonlinear curve fitting tools:35

Δ = Δ − Δ
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Here the ref subscripts indicate the reference temperature for
which the parameters are fitted. We used simulations to
compute ΔG(Ti) at either five or seven different temperatures,
Ti, at uniform temperature intervals and with a central
temperature (i = 3 or i = 4, respectively) of 300 K; chose
Tref = 300 K; and used the values of ΔG(Ti) at all five or seven
temperatures to fit the values of ΔH(Tref), ΔS(Tref), and
ΔCp(Tref) via nonlinear fitting. It is worth remarking that this
approach yielded a value of ΔH(Tref) that was statistically
indistinguishable from that obtained by using eq 13 as
mentioned above. On the other hand, a pure finite difference
method, in which the entropy or enthalpy is computed from
just two free energy values at nearby temperatures, results in
very large uncertainties, as may be appreciated by inspection of
the data in the top panels of Figure 7. Thus, numerical
uncertainty is substantially decreased by using free energies
computed at multiple temperatures, as done here.

2.4. Quantifying Statistical Uncertainty. We use
numerical molecular simulations to estimate the mean
quantities in the equations above, so the reported binding
enthalpies and free energies are estimates associated with
statistical uncertainties, in the sense that replicating the
simulations with slightly different starting conditions or random
number seeds would yield somewhat different means, given
finite sampling. It is possible to estimate the uncertainty of the
mean without actually running time-consuming replicates so
long as time correlation within the simulation data is accounted
for properly.56 We investigated two approaches. First, the
blocking method40 iteratively averages a time course data series
(e.g., the potential energy, in an enthalpy calculation) into
successively larger blocks and calculates the SEM of the block
averages at each block size. The resulting plot of block size
versus SEM will, ideally, display a plateau feature in the curve.
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The SEM value of the plateau region is an error estimate that
accounts for correlation in the data. However, it is not
straightforward to automate detection of a plateau, and, in some
cases, there is no clear plateau, as detailed in Section 3.5.
Therefore, in order to automate the usage of this method, we
conservatively chose to use the maximum SEM value obtained
by the blocking analysis, even if it comes from the noisy region
of very large block sizes at the far right of the graph rather than
from a plateau region. Second, the statistical inefficiency39

(StIn) method involves estimating the autocorrelation function
of the data series. The effective number of uncorrelated data
points is then found by dividing the total number of correlated
data points by the StIn value. The usual formula for the SEM of
an uncorrelated data series can then be used. Following what
has been presented in the literature, we couple the TI free
energy calculations with the blocking method and the MBAR
calculations with the StIn method (although any combination
could be used). A comparison of these approaches is presented
in the Results. Further description of the error propagation in
each value calculated is given in the Appendix.
2.5. Restraint Setup. In order to perform the binding free

energy calculations described in this work, restraints must be
used to guide the host and guest apart along a free energy path.
In one case (K-ClSimple), we used a single distance restraint
between the ions, primarily as a reference benchmark for more
complicated but efficient restraint schemes that control the
position and orientation of the pulling axis. We discuss the
restraint setup details for each simulation set (Table 1) in the
following text.
2.5.1. Orientation with Anchor Particles. Many of the

simulations we present include 2 or 3 noninteracting anchor
particles, which are positionally restrained to fixed Cartesian
coordinates. The anchor particles have zero charge, zero
Lennard-Jones radius and well-depth, and a mass of 220 Da. To
these anchor particles we attach harmonic distance, angle, and
torsion restraints that position and orient the host and guest.
Figures 3, S1, and S2 diagram a typical anchor particle restraint
setup for a host−guest system and an ion-pair toy model. For
the ion-pair simulations, we use two restraints per ion: a
distance restraint and an angle restraint set to 180°. This
combination effectively locks all three translational degrees of
freedom. Six restraints are required to control the three
translational and three rotational degrees of freedom of the
polyatomic hosts. These include one distance restraint, two
angle restraints, and three torsional restraints; similar restraint
sequences have been described previously.57 It is critical to note
that, in order for the binding free energy results to be valid,
these six restraints must be designed so that they do not
perturb the conformational distribution of the host molecule;
see, e.g., Figure S1A. These host restraints are present during
the entire APR process, from the beginning to the end; thus,
they are not imposed during the attach phase or detached
during the release phase. In all cases with anchor particles,
except the βCD-HexHMR simulation set, the host translational
and rotational restraints had the following force constants:
distance restraints used a 10.0 kcal/mol·Å2 force constant,
whereas angle and torsional restraints used 100 kcal/mol·rad2.
A weaker distance restraint force constant of 5.0 kcal/mol·Å2

was tested for the βCD-HexHMR simulation set, whereas the
other force constants were identical, but no difference was
observed. The target equilibrium values of these host restraints
were set equal to the initial values of the input structure, which
was manually oriented in UCSF Chimera.58

2.5.2. Host Conformational Restraints. In all simulations
involving CB7 and βCD, restraints were added during the
attachment phase to adjust and restrain the host conformation
in a manner that would facilitate sampling during the pulling
phase. This approach is conceptually similar to the confine-and-
release method that has been described for alchemical free
energy calculations of protein−ligand complexes.59 The CB7
host, which is a very stiff molecule with narrow entry portals,
poses a high energetic barrier to removing guests from its
cavity. We used 14 distance restraints, seven spanning each of
the cavity portals, to enlarge the cavity opening and reduce the
energy barrier for guest removal (Figure S3). The work of
adding these restraints is relatively easy to converge, and
opening the portal in this manner avoids sampling problems
that would otherwise occur during the pulling phase, as the
guest pops like a cork from the restrictive portal.54,60 In
contrast to the CB7 molecule, βCD is very flexible and can get
dragged into distorted conformational substates for many
nanoseconds as it clings to the guest during the pulling-phase
simulations; the associated fluctuations and conformational
trapping can make convergence difficult. To alleviate this
problem, 14 torsional restraints (two per glucopyranoside
monomer) were added to the β-cyclodextrin backbone during
the attachment phase of the free energy calculation. The effect
of these restraints is to maintain the symmetrical, canonical
shape of the βCD molecule. The work of adding these
restraints is easy to converge, as the host’s conformation does
not fluctuate much in the presence of the bound guest. Overall,
the present restraint schemes significantly improve the
reproducibility of the calculated binding free energies for the
systems we have tested.
Additionally, the work of releasing such conformational

restraints must be included in the release phase, with the guest
now far from the binding site. We accomplished this by
performing the exact same simulations as the attachment phase
except the guest is either held at a constant remote distance (in
the case of the CB7-B2Temp, CB7-B2HMR, and βCD-HexAlt
simulation sets) or removed entirely from the simulation (all
other CB7 and βCD simulation sets). In the latter cases, we
added a single simulation window of the guest in the pulled-free
state with host conformational restraints released (Figure S1D)
in order to compute the direct enthalpy.

2.5.3. Guest Restraints. Fewer restraints were required to
orient the guest molecules on the pulling axis. Control of the
necessary degrees of freedom was achieved with just two or
three restraints for the ion-pair and host−guest systems,
respectively, due to convenient properties of 180° angle
restraints. We note here that it was necessary to include
constant flatwell restraints during the attachment phase for the
weaker affinity systems in order to prevent occasional
dissociation of the bound complex. An arbitrary choice must
be made about where to place the boundary of the bound state
in these cases.
The details of the guest restraints and chosen number of

windows for each calculation are given in the Supporting
Information. Some of the details vary from one simulation set
to another as we optimized our protocol during the course of
this investigation. However, none of the changes were made
due to concerns about the quality of a previously collected
simulation set; rather, we optimized our overly conservative
initial approach for the sake of greater computational efficiency.

2.6. Molecular Dynamics Simulation Details. All
simulations were performed using the pmemd, pmemd.MPI,
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and pmemd.cuda programs from AMBER 14.61 Production
simulations were run in the NPT ensemble, with temperature
control using a Langevin thermostat62 with collision frequency
1.0 ps−1 and pressure control provided by the Monte Carlo
barostat63 for all simulation sets except the CB7-B2Temp, which
used the Berendsen barostat64 to check consistency with
previous work20 (note that we have not observed differences
between the two barostats). Direct space nonbonded
interactions were truncated with a 9.0 Å cutoff, whereas long-
range electrostatics were handled with the PME method65,66

using default AMBER settings. SHAKE constraints67,68 were
applied to bonds involving hydrogen, and the simulation time
step was set to 2 fs, with the exception of HMR simulations,
which used a 4 fs time step. Anchor particles, when present,
were maintained at the desired coordinates using 100 kcal/mol·
Å2 positional restraints, except for the CB7-All8 and βCD-
HexHMR sets, which used 50 kcal/mol·Å2. The equilibration
process consisted of the following steps: (1) minimization of
the initial system with positional restraints maintained on the
anchor particles, host, and guest, (2) 50 ps of NPT simulation
at 50 K with the same positional restraints as the minimization,
(3) 1.0 ns of NPT simulation with smooth heating from 50 K
to the desired final temperature without positional restraints on
the host or guest, and (4) 2.0 ns of NPT equilibration at the
final temperature without positional restraints. Two strategies
were employed to determine the length of the production
simulations. For the CB7-B2Temp set, we chose a fixed
simulation length for each window involved in the APR path.
For all other simulation sets, we chose a variable simulation
length for each window that depended on either reaching a
specified error value in the forces or reaching a maximum
simulation time, whichever came first. The simulation windows
for the bound and pulled-free states were then extended to at
least 1 μs when the direct enthalpy calculation was required.
For the HMR simulations, which have previously been
reported,36−38 AMBER’s parmed.py program was used to edit
the standard parameter/topology file in order to increase
hydrogen masses to 3.024 Da and reduce the mass of

neighboring heavy atoms accordingly. The water molecules
were not altered.

3. RESULTS

3.1. Computational Calorimetry. Computational calo-
rimetry simulations were performed on nine host−guest
systems for which experimental data are available (Table 2),
using the attach−pull−release (APR) method for the free
energy and the direct, single-box method for the binding
enthalpy. The calculated binding thermodynamics display a
strong tendency to overestimate the measured favorability of
the binding free energy, the binding enthalpy, and the binding
entropy (Table 2 and Figure 4). The RMSD values of these
thermodynamic quantities, relative to experiment, are all greater
than 4 kcal/mol, with the largest RMSD, ∼8 kcal/mol,

Table 2. Comparison of Experimental and Calculated Binding Dataa

ΔGbind ΔHbind −TΔSbind
simulation set host, guest experiment calculated experiment calculated experiment calculated

CB7-All8 CB7, A1 −14.1 ± 0.2 −23.74 ± 0.29 −19.0 ± 0.5 −24.89 ± 0.43 4.9 ± 0.5 1.15 ± 0.52
CB7-All8 CB7, A2 −19.4 ± 0.1 −27.41 ± 0.27 −19.3 ± 0.5 −22.64 ± 0.60 −0.1 ± 0.6 −4.78 ± 0.66
CB7-All8 CB7, B2 −13.4 ± 0.1 −21.25 ± 0.22 −15.8 ± 0.2 −21.59 ± 0.41 2.4 ± 0.2 0.34 ± 0.47
CB7-All8 CB7, B5 −19.5 ± 0.2 −27.12 ± 0.36 −15.6 ± 0.5 −18.27 ± 0.48 −3.9 ± 0.6 −8.86 ± 0.60
CB7-All8 CB7, B11 −20.6 ± 0.5 −30.41 ± 0.81 −16.3 ± 0.5 −17.71 ± 0.48 −4.3 ± 0.6 −12.70 ± 0.94
CB7-All8 CB7, G8 −6.12 ± 0.12 −13.89 ± 0.29 −8.5 ± 0.6 −6.26 ± 0.48 2.4 ± 0.6 −7.63 ± 0.56
CB7-All8 CB7, G9 −7.43 ± 0.14 −18.49 ± 0.59 −3.8 ± 0.2 −11.68 ± 0.54 −3.6 ± 0.3 −6.81 ± 0.80
CB7-All8 CB7, MVN −7.08 ± 0.14 −11.07 ± 0.68 −3.2 ± 0.2 −2.34 ± 0.53 −3.9 ± 0.1 −8.73 ± 0.86
βCD-HexTemp βCD, Hex −2.28 ± 0.07 −3.86 ± 0.17 1.31 ± 0.08 −1.13 ± 0.66 −3.59 ± 0.03 −2.73 ± 0.68

RMSD 7.95 ± 1.50 4.19 ± 1.55 5.40 ± 1.92
MSE −7.48 ± 1.84 −2.92 ± 2.02 −4.56 ± 2.00
MUE 7.48 ± 1.84 3.61 ± 1.47 4.75 ± 1.80
R2 0.92 ± 0.09 0.87 ± 0.17 0.51 ± 0.49

aExperiments were all ITC measurements. A1, A2, B2, B5, and B1127 were at 298.15 K, G8 and G941 were at 300 K, and MVN24 was at 298 K. Data
for MVN is an averaged obtained from the published value and two additional measurements via personal communication. All simulations were
performed at 300 K. The calculated binding enthalpy was via the direct method. Calculated −TΔS was determined by subtracting the binding
enthalpy from the binding free energy, and the uncertainty was determined by addition of the respective errors in quadrature. Uncertainty values for
the thermodynamic data given as 95% CI calculated with the TI/blocking approach. The uncertainty in the error statistics are also 95% CI,
determined by resampling the data with replacement.

Figure 4. Comparison of the experimental and calculated binding
values for the systems in Table 2. Error bars are 95% CI.
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observed for the binding free energies due to overestimation of
both the enthalpic and entropic contributions. On the other
hand, the computed binding free energy and enthalpy correlate
well with experiment, with R2 values of 0.92 ± 0.09 and 0.87 ±
0.17, which suggests that there may be a systematic cause for
the large absolute deviations from experiment.
The statistical uncertainties of both the computed and the

measured thermodynamic quantities are on the order of 0.5
kcal/mol (Table 2). As a consequence, the deviations of the
calculations from experiment cannot be attributed to
inadequate sampling during the molecular dynamics simu-
lations. This view is supported by the highly stable convergence
graphs shown in Figure 5; indeed, the binding free energies and
enthalpies obtained with 100% of the simulation data in all
cases remain within the confidence intervals obtained with only
10% of the data. Finally, inspection of the simulation
trajectories suggests that good conformational sampling has
been achieved. This is demonstrated in Figure 6, where we
overlay the time-averaged structure for the bound state of every
host−guest system reported in Table 2. Due to averaging of the
guest’s orientation within the host, the extensive sampling
results in a stick-like appearance of the guests inside the host;
the averaging also gives the host a regular, symmetric
appearance. In the case of CB7 with the aromatic guests, this
differs substantially from the elliptical distortion characteristic
of a typical instantaneous bound conformation. Likewise, the
time-averaged βCD structure displays a uniform conformation
for each glucopyranoside monomer, which contrasts with a
typical instantaneous binding pose in which each monomer
flexibly adopts its own conformation, producing an asym-
metrical appearance. The thorough convergence and small
statistical uncertainties of these results highlight the feasibility
of performing numerically precise computational calorimetry
studies on host−guest systems.
One potential concern with the present single-box direct

approach to computing binding enthalpies is that the guest in
its pulled-free state might not really be far enough from the
host to be considered noninteracting. We addressed this issue
by comparing the present results with those from our prior

multi-box direct enthalpy calculations,20 in which the non-
interacting state is represented by two separate simulations, one
for the host and one for the guest, so that host−guest
interaction is eliminated in the unbound state. Figure S4
confirms that the present single-box results are indistinguish-
able from those of the multi-box approach and thus supports
our choice of separation distance as being adequate. Addition-
ally, to confirm that the calculated thermodynamic values did
not depend on our specific choice of atoms for the restraint
scheme, we performed an additional set of calculations, labeled
βCD-HexAlt, in which an alternate set of atoms was chosen as
the restraint points. The results showed excellent agreement
with the βCD-HexTemp values (see Table S2).

Figure 5. Convergence plot of the binding free energy and binding enthalpy for the systems in Table 2. The guests are indicated in the legend at
right. CB7 was the host molecule for all guests except Hex, which bound to βCD. Convergence is indicated by percentage of total data due to the
varying trajectory length of the simulation windows considered in the ΔGbind or ΔHbind calculations. Error bars are 95% CI.

Figure 6. Time-average structures for the bound state of the host−
guest systems presented in Table 2. (Left) Superposition of each CB7-
All8 host−guest system. (Right) Superposition of the βCD-HexTemp
host−guest system at 300 K in both the primary and secondary
orientations.
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3.2. Direct and van’t Hoff Binding Enthalpy. The
binding enthalpy can be computed directly, i.e., from potential
energies, or via the van’t Hoff equation, which exploits the
temperature dependence of the binding free energy.35 Since we
can now calculate both binding free energies and direct binding
enthalpies at high precision, we have the opportunity to test for
self-consistency by comparing binding enthalpies obtained
directly with those obtained from binding free energy
calculations at several temperatures. We explored this in the
CB7-B2Temp and βCD-HexTemp simulation sets, wherein
binding free energies were calculated at seven and five
temperatures, respectively, centered at 300 K (Figure 7, top).
The consistency between the direct and van’t Hoff binding
enthalpy results, shown in Table 3, supports the validity of both
the binding free energies and the direct enthalpies. It is also of
interest that convergence plots of the binding enthalpies from
both approaches (Figure 7, bottom) show that the van’t Hoff
approach is much more sensitive to extending the simulation

time and hence is significantly more difficult to converge than
the direct approach. Also, for both systems tested, the final
statistical uncertainty is much larger for the van’t Hoff approach
(Table 3) and comes at a much higher computational cost in
terms of simulation time (Tables S1 and S2).
Careful inspection of Table 3 shows that the uncertainty

values produced by the blocking method are consistently larger
than those from the StIn method. Although our automated
implementation of the blocking method is expected to produce
slightly larger values than an investigator-performed analysis in
which the SEM would be assigned based on a plateau in the
SEM as a function of block size, the large difference between
the two uncertainty estimates was surprising. This difference
could lead to alternate interpretations of the data. For example,
when comparing the direct and van’t Hoff binding enthalpies of
CB7-B2Temp, a two-sample t-test for equal means (α = 0.05)
would not indicate a significant difference based on the
blocking uncertainty values, but it would indicate a significant

Figure 7. Demonstration of the temperature dependence of the binding free energy (top) and the convergence of the van’t Hoff and direct binding
enthalpy calculations at 300 K (bottom). Data is shown for the CB7-B2Temp (left) and βCD-HexTemp (right) simulation sets. Error bars are 95% CI.

Table 3. Thermodynamic Binding Values for Validation and Internal Consistencya

ΔGbind at 300 K direct ΔHbind at 300 K van’t Hoff ΔHbind at 300 K

simulation set host, guest TI/Block MBAR/StIn Block StIn TI/Block MBAR/StIn

CB7-All8 CB7, B2 −21.25 ± 0.22 −21.22 ± 0.26 −21.59 ± 0.41 −21.59 ± 0.36
CB7-B2Temp CB7, B2 −21.32 ± 0.13 −21.36 ± 0.07 −21.65 ± 0.47 −21.65 ± 0.28 −20.78 ± 1.09 −20.66 ± 0.67
CB7-B2HMR CB7, B2 −21.27 ± 0.41 −21.33 ± 0.12 −21.78 ± 0.44 −21.78 ± 0.31
βCD-HexTemp βCD, Hex −3.86 ± 0.17 −3.86 ± 0.09 −1.13 ± 0.66 −1.11 ± 0.41 −0.81 ± 1.72 −0.38 ± 0.89
βCD-HexHMR βCD, Hex −3.98 ± 0.21 −3.92 ± 0.09 −0.27 ± 0.64 −0.26 ± 0.39
K-ClTemp K, Cl −1.94 ± 0.06 −1.94 ± 0.04 3.68 ± 0.28 3.68 ± 0.23 3.35 ± 0.55 3.58 ± 0.42
K-ClSimple K, Cl −1.92 ± 0.14 −1.86 ± 0.10 3.45 ± 0.39 3.45 ± 0.35

aUncertainty values are 95% CI.
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difference when using the StIn uncertainties. This concern led
us to develop a toy model that would allow an even more
precise validation of our computational calorimetry methods
(see Section 3.3) and a deeper investigation into the
uncertainty estimation procedures (see Section 3.5).
3.3. Modified Ion-Pair Test Case. Although the agree-

ment between the direct and van’t Hoff binding enthalpies for
the two host−guest systems was strongly encouraging, we
wanted to test the comparison to even finer precision in order
to detect any potential subtle pathologies. Using a modified K-
Cl ion pair, which was tuned to exhibit favorable binding during
simulation, we performed several further simulation studies to
validate the present approach, as follows.
First, we established that the use of noninteracting anchor

particles to align the pulling coordinate did not influence the
results. The K-ClSimple simulation set, which used a single
distance restraint in a large water box, produced binding values
statistically indistinguishable from the anchor particle aligned
K-ClTemp simulation set (see Table 3 for results, and see Figure
S2 for the anchor particle approach with ions). Additionally,
comparison between the K-ClSimple and K-ClTemp results
suggests that use of a smaller rectangular simulation box
aligned to the pulling axis does not introduce error into the
binding results (Table 3). The binding free energies and direct
enthalpies showed excellent agreement to high precision, with
confidence intervals of less than 0.15 and 0.40 kcal/mol,
respectively. Our modified K-Cl system could be considered
particularly challenging due to the rather large charges that we
placed on the ions (±1.3). Thus, it is reassuring that the
optimized rectangular box (with alignment via anchor particles)
did not incorrectly treat the electrostatics of the system.
Finally, we also observed excellent agreement between the

direct and van’t Hoff binding enthalpy for this simple test case
(Table 3). The small uncertainties in the van’t Hoff binding
enthalpies, relative to those for the full host−guest systems, can
be attributed to the better behaved temperature dependence of
the binding free energy (Figure S5, top), and the convergence
behavior of both binding enthalpy methods is correspondingly
smooth (Figure S5, bottom).
Interestingly, we noticed that, although the MBAR/StIn

uncertainties are consistently smaller than the TI/blocking
uncertainties for the K-Cl data, the ratio between the two values
is smaller than the ratio observed for the host−guest values
(Table 3). Although a slight overestimation of the error is
expected by our implementation of the blocking method, the
variability of the ratio between the two uncertainty estimates
suggests the difference might be influenced by the nature of the
system being simulated. Here, the simplicity of the K-Cl
systems possibly minimizes the apparent difference in the
uncertainty.
Taken together, the results of the K-Cl simulations strongly

suggest that the theory and implementation of the APR
computational calorimetry framework is valid and numerically
sound. As a consequence, it seems likely that the modest
deviations between the direct and van’t Hoff binding enthalpies
for the host−guest systems arise from statistical, rather than
methodological, error. Curiously, however, there is still a
systematic tendency for the blocking estimate of error to exceed
the StIn estimate. We investigate this further in a subsequent
section (see Section 3.5).
3.4. Accelerating Computational Calorimetry with

Hydrogen Mass Repartitioning. The HMR technique is
appealing because it allows one to double the simulation time

for a given elapsed wall-clock time, by going from a 2 fs to a 4 fs
MD time step without inducing numerical instabilities.36 It
should be noted that, because we are working within the
classical approximation of statistical thermodynamics, the
quantities that we aim to compute are independent of the
atomic masses. Therefore, any error introduced by HMR would
derive from changes in the numerical properties of the
simulations. In particular, increasing the time step can increase
error by increasing the mean spatial excursion the atoms make
in one time step; conversely, increasing the masses of the fastest
atoms, i.e., the hydrogens, reduces their mean velocities and
hence their mean excursions, for a given temperature, and thus
compensates, at least partially, for the increased time step. The
net effect could be to influence the values that the computed
quantities approach, in the limit of a long simulation. In
addition, changing the masses and time step influences the
dynamics of the simulations38 and hence can influence the rate
of convergence. The net effect of HMR on accuracy and
precision is hard to predict.
Therefore, we carried out an empirical evaluation of the

feasibility of speeding thermodynamic calculations, while
maintaining reliable results, by performing several binding
free energy and binding enthalpy calculations with HMR and a
4 fs time step. The results for the CB7-B2HMR and βCD-
HexHMR simulations sets, given in Table 3, indicate generally
excellent agreement between the standard approach and HMR.
(We did not carry out van’t Hoff binding enthalpy measure-
ments, given the excellent agreement between HMR and the
traditional approach for the free energy calculations at 300 K.)
The one potential outlier is the comparison of the direct
binding enthalpy for βCD-Hex. Although a t-test (α = 0.05)
would not indicate a significant difference between the binding
enthalpy means for βCD-HexTemp and βCD-HexHMR when
using blocking uncertainties, the StIn uncertainties are smaller
and thus indicate that the difference in the means is potentially
significant. In the following section, we investigate this
difference further, show that the difference is due to random
statistical chance, and offer evidence that the StIn uncertainty
estimate can sometimes be deceptively small.
As noted by others,36 the speedup from HMR does not

always double the effective sampling rate due to alterations in
the viscosity of the system. Possible evidence of this effect can
be found in our data. For example, with a traditional 2 fs time
step, the blocking uncertainty values in the βCD-HexTemp direct
binding enthalpy for the primary and secondary guest
orientations are 0.56 and 0.52 kcal/mol, respectively (Table
S2). With HMR and the same simulation time (ns), and double
the number of data points due to reducing the interval between
data writing by one-half, the blocking uncertainty increases to
0.60 and 0.64 kcal/mol. (Note, however, that the real time
expenditure of GPU hours for HMR was roughly 60% of the
traditional approach.) This suggests that HMR may influence
the effective sampling rate to some degree, but the result could
be due to random chance and thus requires further study to
make a definitive conclusion. The same trend is not always
evident for similar comparisons elsewhere in our data, possibly
because the effect is clouded by our evolving methodology for
performing the calculations.
Overall, HMR does seem to offer an effective increase in

sampling rate without impacting the fidelity of the calculations,
but the effective speed up is not always straightforward to
determine.
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3.5. Comparison of Uncertainty Measures. As discussed
in prior subsections, the two approaches we employ to estimate
uncertainty, blocking analysis and StIn, can give very similar
estimates for the SEM of a time-averaged quantity obtained
from MD simulations, especially for simple systems, such as our
K-Cl model (Figure 8, top). However, we noticed that the two

approaches can disagree substantially for more complicated
systems, such as a host−guest complex (Figure 8, bottom). In
the latter case, it appears that the StIn approach may register
relatively fast fluctuations while missing the consequences of
slower processes, leading to underestimates of the SEM.
In the present context, it was of particular concern that

comparison of the direct binding enthalpy values obtained from
the βCD-HexTemp and βCD-HexHMR simulation sets (Table 3)
shows a discrepancy in the uncertainty values, which could
impact the conclusions drawn about the difference in the
means, as noted above. We traced the primary difference
between the two binding enthalpy values to a single source: the
average potential energy value of the bound state in the
secondary orientation. There were no structural indications to
suggest that the sampling had been biased, so we reran one
replicate of this particular simulation for each simulation set.
The mean of the βCD-HexHMR replicate was less than 0.1 kcal/
mol from the original value, whereas the βCD-HexTemp replicate
differed from the original by 0.6 kcal/mol, and four additional
βCD-HexTemp replicates differed from the original by 0.3−0.7

kcal/mol. Thus, it appeared that the original βCD-HexTemp

mean value was simply a low probability, but reasonable, value
from the tail of the expected normal distribution of mean
values. Using the βCD-HexTemp replicates, we compared the
observed SEM value with the average blocking SEM value and
average StIn SEM value. The observed SEM for the six
calculations (i.e., the standard deviation of the means for the
one original value and five additional replicates) was 0.24 kcal/
mol, the average blocking SEM was 0.20 kcal/mol, and the
average StIn SEM was 0.14 kcal/mol. The results show closer
agreement between the blocking SEM and the observed SEM
and suggest that there is no statistical difference between the
βCD-HexTemp and βCD-HexHMR direct binding enthalpy values
(according to the t-test), whereas the StIn uncertainty values
would indicate a statistical difference.
In order to test more systematically whether the StIn method

underestimates the uncertainty in some cases, we developed a
Python script (Figure S6) that generates artificial simulation
data containing a short-correlation/large-variance process,
mixed with several long-correlation/small-variance processes.
The resulting time-series data (Figure S7, top) yield blocking
analysis graphs (Figure S7, bottom) similar to those from real
host−guest data (Figure 8, bottom). By using this method to
generate 500 distinct, artificial simulation data sets, we were
able to calculate the actual SEM as a function of simulation
time and use this to test the ability of the blocking and StIn
methods to estimate this observed SEM. In order to generate a
summary comparison, we averaged the results from blocking
analysis and StIn over the same 500 artificial time series (Figure
9). Early in these runs (<10% of the simulation length), both
SEM estimators underestimate the observed SEM. However,
for the remainder of the data collection, the blocking method
closely tracks (and slightly overestimates by 10−15%) the

Figure 8. Typical blocking curves for the potential energy of the
bound state for a K-ClTemp simulation (top) and a βCD-HexTemp
simulation (bottom). Error bars are an estimate of the uncertainty in
the SEM; see Flyvbjerg et al.40 for further details. The SEM predicted
by the statistical inefficiency method (StIn) is indicated with a red line.

Figure 9. Comparison of the observed SEM (black) with the average
StIn SEM (red) and average blocking SEM (blue) for a data set
consisting of 500 artificial simulations, each containing 500 000
correlated data points. The artificial simulations contain similar
correlation patterns to those observed for real host−guest data
(compare Figure 8, bottom, with Figure S7).
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observed SEM, whereas the StIn method underestimates the
SEM by roughly 50%.
A possible explanation for the underestimate by the StIn

method can be traced to its approach for computing the
integrated correlation time. As detailed previously,39 the tail of
the correlation function is generally dominated by noise, which,
if included in the integration, tends to make the computed
correlation time inaccurate. Following prior practice,39 we
addressed this issue by truncating the correlation function when
it first crosses zero. To check whether this approach misses
useful long-range correlation signals, we performed several tests
on the artificial data sets in which the correlation function was
not truncated. In each case, however, the estimated uncertainty
was even smaller than that obtained with the truncation
approach, which itself underestimated the observed uncertainty.
Therefore, regardless of whether or not truncation is used, the
StIn method appears to be unreliable for the data sets that we
studied in this work. We suspect that better reliability of the
blocking method can be attributed to two features: (1) the
blocking method seems to be sensitive to long-correlation/
small-variance signals even when they are obscured by short-
correlation/large-variance signals, whereas the StIn method
seems to recognize only the latter in the same situation; (2) our
automated implementation does not search for a plateau, as in
the canonical approach, but reports the largest estimated SEM
from the entire blocking curve. The second feature is likely
responsible for occasional overestimation of the SEM, but it
seems to be the simplest and most conservative method for
automation.

4. DISCUSSION
4.1. Computational Calorimetry. Examples of binding

affinity calculations are numerous in the literature since they are
typically the most sought after value in lead optimization
studies. Our computational calorimetry approach provides
additional insight simply by extending the end point simulation
windows of the APR binding free energy calculation and
extracting the binding enthalpy from the difference in mean
potential energies. As detailed previously,20 binding enthalpies
obtained by the direct method may also be easily decomposed
to provide information on the force field terms and/or
structural elements that drive binding. As a larger set of
host−guest analyses is collected, a more detailed understanding
of the role each chemical moiety plays can be established.
Comparison of the calculated and experimental binding free

energies, enthalpies, and entropies shows good correlations but
large systematic deviations. Given the correlations, one might
wonder whether the systematic deviations should be regarded
as problematic since, at least in the field of computational
ligand design, predicting a correct ranking of ligand affinities is
nearly as useful as predicting absolute affinities. However, it is
difficult to escape the conclusion that errors of up to ∼10 kcal/
mol point to significant problems with the force field that
require corrective action, especially given the high precision of
the results. Moreover, the types of errors observed here could
generate serious practical problems in the more complex setting
of protein−ligand binding. In particular, there is no reason to
expect that chemically varied ligand moieties interacting with
varied subpockets of a protein binding site will be uniformly
scaled by whatever factor is generating the systematic bias seen
here. As a consequence, there is no assurance of obtaining a
good correlation with experiment in such complex systems.
Moreover, despite their simplicity, the host−guest systems

studied in this work share key attributes of protein−ligand
systems, including deep binding cavities with the potential to
generate structured water, steric barriers to entry and exit,
conformational fluctuations with long time scale correlations,
and multiple binding poses. We would argue, therefore, that
careful force field optimization to improve the agreement of
absolute binding thermodynamics for host−guest systems, in
combination with more traditional target data, is a useful path
to improve the reliability of protein−ligand modeling for drug
discovery.

4.2. Self-consistent Calculations of Binding Thermo-
dynamics. The demonstration of good agreement between the
direct and van’t Hoff binding enthalpies for host−guest
systems, and of even greater precision for the ion model
systems, offers more than a consistency check. Given that
robust agreement between the direct and van’t Hoff methods
has seemed to be elusive for not only computational
investigations18 but also experimental studies,69 there is value
in a clear demonstration that rigorous consistency can, in fact,
be achieved. Second, consistency between the direct and van’t
Hoff binding enthalpy calculations arguably provides strong
support for the validity of the binding free energy method
employed. This suggests that, as an alternative to assessing
error by performing multiple free energy simulations which
close a thermodynamic cycle, as is frequently done for
alchemical transformations,70 one could instead compare direct
and van’t Hoff binding enthalpies along a single path. Whether
this approach is advantageous will depend on the specifics of
the system and the free energy calculation.
The present study also sheds light on the relative merits of

the direct versus van’t Hoff binding enthalpy methods. Our data
clearly indicate that, for small host−guest systems, the direct
binding enthalpy requires less net simulation time to reach a
given level of statistical uncertainty. In addition, the direct
approach is far simpler to implement than the van’t Hoff
approach, at least when the system does not have multiple
noninterconverting configurations. The van’t Hoff approach
may still be numerically favorable for larger systems, where the
potential energy fluctuations are so large that reducing the
uncertainty of the mean to a useful level requires extremely
long simulations. On the other hand, the challenge of achieving
binding free energies that are sufficiently tightly converged to
yield meaningful temperature derivatives is not trivial; and the
mere technical simplicity of the direct enthalpy approach, which
does not require a pathway or lambda windows, is itself a
powerful argument in its favor.

4.3. Automation, Sampling, and Timing. With over 438
μs of total sampling across 4434 independent simulations,
automation in nearly every aspect of this project was necessary.
This included generating the initial coordinates for each
simulation along the APR path, solvating the systems with
precisely the desired number of water molecules (a feature that
is not currently available in AMBER’s LEaP program),
determining the correct target values for restraints, and writing
all of the input files necessary to perform the simulations.
Additionally, our heterogeneous set of computational resources
(desktop machines, local clusters, and national clusters)
motivated us to develop execution/queuing scripts that
simultaneously optimized usage of each resource while
maintaining compatibility with the generalized input scripts.
Of particular importance was implementation of an automated
scheme to determine whether an individual free energy
simulation window had reached a predetermined uncertainty
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threshold in the force uncertainty. Our initial simulation set
(CB7-B2Temp) did not use this feature and, because all windows
used the same amount of sampling time, likely oversampled
many of the easy-to-converge windows near the pulled-free
state. Implementation of our adaptive scheme, which involved
iteratively running a short 5 ns simulation followed by checking
the uncertainty value of the mean force, improved the sampling
efficiency of our other simulation sets. We also note here that
the free energy simulation times listed in Tables S1−S3 all
include the entire direct binding enthalpy simulations in which
the two end point simulations were extended to at least 1 μs
each. If one were interested in only computing the binding free
energy, then this extra sampling at the end points would not be
required, so the aggregate simulation time for a free energy
calculation would be lower. Nonetheless, in the cases presented
here, removing the additional sampling from the binding free
energy simulations would not tilt the balance in favor of the
van’t Hoff binding enthalpy approach. For example, Table 1
shows that the extended end point sampling in the CB7-B2Temp
simulation set contributed only, at most, 2.7% of the total
sampling time for the van’t Hoff calculations.
This study was feasible in large part to the availability of

GPUs, both the commodity and research-grade varieties.
Typical simulation speeds for the systems studied here ranged
between 150 and 200 ns/day without HMR and up to 350 ns/
day with HMR, depending on which generation of hardware
was used. With a small cluster of GPUs, both binding enthalpy
and free energy values can be computed within a matter of days
to highly precise values, with 95% confidence intervals in the
range of 0.5 kcal/mol.
As noted in the Methods section, each host studied here

posed a distinct challenge to the calculation of well-converged
binding free energies. For rigid CB7, the constrictive portal can
generate a cork popping problem, whereas flexible βCD can
catch on the exiting guest and be pulled into long-lasting
distorted conformations. We solved these problems by
imposing restraints during the attach phase and lifting them
during the release phase, but a variety of enhanced sampling
technologies71−84 might also have been brought to bear.
Indeed, given broad current interest in binding free energy
calculations, the computational tractability of these host−guest
systems, and the fact that each host examined here exemplifies a
different type of sampling challenges, these could be valuable
test cases for testing and improving enhanced sampling
algorithms.
4.4. Directions. Broader use of the methods laid out here

should be facilitated by the fact that our implementation of the
APR binding free energy method, and the associated direct
calculation of binding enthalpy, is naturally suited to run with
nearly all simulation packages that support restraints. No
specialized code is required. Automation of the simulation
setup still remains a challenge, as it is difficult to foresee a
generalized approach for determining the ideal pulling pathway
and implementing it with an appropriate restraint setup.
However, in most cases, automation for a given host or protein
will require setup only for an initial guest or ligand, which can
then be used as a template for subsequent compounds.
As noted above, we expect a primary application of

computational calorimetry to be force field validation and
development. In anticipation of this, we are currently
generating a larger data set of calculated host−guest binding
values, with multiple force field and water model variants. We
anticipate that this approach will be informative since most

force fields are not optimized against experimental binding data,
even though the calculation of binding affinities, in the context
of computer-aided drug design, is one of their most important
and prevalent uses. Moreover, the fact that a relatively advanced
force field can yield serious errors in binding thermodynamics,
as clearly demonstrated here, means that the experimental data
traditionally used to adjust force field parameters, such as the
hydration free energies of small molecules and the properties of
neat liquids, do not suffice when one’s goal is to compute the
thermodynamics of noncovalent association. We anticipate that
the use of binding data as a force field optimization target, in
combination with more traditional targets such as ab initio
quantum data, neat liquid properties, and hydration free
energies, will be a powerful new tool to improved simulation
accuracy.

5. APPENDIX
The uncertainties in the values obtained directly from
simulation (such as mean potential energies and mean forces)
are propagated into the thermodynamic values we report. Our
approach to this propagation is described below.
5.1. Uncertainty in Thermodynamic Integration Work
We use Ni samples to evaluate the uncertainty of the work
terms that yield the binding free energy. For each sample, i, we
draw a value of the force in every simulation window from a
Gaussian distribution whose average is the mean force and
whose standard deviation is the SEM of the mean force (see
Section 2.4). We then compute a spline function across the
windows, Fi

spl(λp,λc), and integrate the spline to obtain the ith
values of the work. Note that although the scaling factor for the
pose restraints and the conformational restraints could be
varied independently we scale them simultaneously during the
attachment phase. The mean and SEM of the work are
computed from the Ni iterations of this procedure. The value of
Ni was set to a value, here 10 000, at which added samples did
not generate changes in the results to within the precision
desired. For the attachment phase:
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For the pulling phase, the equilibrium length of the host-guest
distance restraint, x0,1

p is varied, and the spline is fit over discrete
windows of this variable:
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For releasing conformational restraints
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Note that the release of guest translational and rotational
restraints is performed analytically and therefore is not
associated with a statistical uncertainty.
5.2. Uncertainty in MBAR Work
As noted earlier, we couple the StIn uncertainty approach with
the MBAR free energy calculations. The StIn value is calculated
for the restraint potential energy time series at each simulation
window along the free energy path. The data series is then
subsampled according to the StIn value, as previously
described,39 and the putatively uncorrelated data points are
passed to the MBAR algorithm. The estimated work to move
between states, as well as an estimate of the uncertainty, is
obtained directly from the MBAR analysis.55 Although a single
MBAR calculation could be performed for the entire APR
pathway, for consistency with the TI approach, we calculated a
mean work and SEM for each APR phase.
5.3. Uncertainty in Binding Free Energy
The binding free energy is found by summing the APR work
terms, as in eq 1:

Δ ° = − + + +− −G W W W W( )bind attach pull release conf release std

(A10)

Because variances are additive, the SEM uncertainties add in
quadrature:

σ σ σ σ= + +Δ ° −G W W W
2 2 2

bind attach pull release conf (A11)

Note that this assumes the variances are not correlated, which is
valid for our data given that each simulation window is
independent. The work of releasing the guest to standard
concentration (Wrelease‑std) does not contribute any uncertainty
because it is an analytical calculation.
In cases where multiple distinct binding poses are possible,

the combined binding free energy mean and SEM are
computed as follows:
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Here, Ni is the number of evaluations (we used 1 000 000), Nb
is the number of poses (βCD with hexanoate has two), and
ΔGi,j is a random binding free energy selected from a normal
distribution defined by the mean and SEM of the value for jth
pose and included in the ith evaluation of the equation.
5.4. Uncertainty in Direct Binding Enthalpy
The mean and uncertainty in the direct binding enthalpy
calculation is straightforward. The mean is simply the difference

between the means of the bound and unbound potential
energies.

Δ = ⟨ ⟩ − ⟨ ⟩−H U Ubind bound pulled free (A14)

The uncertainty of the mean is obtained by adding in
quadrature the uncertainties of the individual values:

σ σ σ= +Δ −H U U
2 2

bind bound pulled free (A15)

The combined binding enthalpy for multiple poses is
determined in a similar fashion to the free energy except that
the form of the equation requires random sampling of both the
enthalpy and free energy for each pose. The number of
evaluations, Ni, and number of poses, Nb, was the same.
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5.5. Uncertainty in van’t Hoff Binding Enthalpy
The mean and SEM of the van’t Hoff binding enthalpy were
calculated from Ni iterations (we used 100 000) of fitting to eq
14, which we denote ΔHi

nonlim:
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