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a b s t r a c t

One of the most common drivers in human cancer is the mutant KRAS protein. Not so long ago KRAS was
considered as an undruggable oncoprotein. After a long struggle, however, we finally see some light at the
end of the tunnel as promising KRAS targeted therapies are in or approaching clinical trials. In recent
years, together with the promising progress in RAS drug discovery, our understanding of KRAS has
increased tremendously. This progress has been accompanied with a resurgence of publicly available
KRAS structures, which were limited to nine structures less than ten years ago. Furthermore, the ever-
increasing computational capacity has made biologically relevant timescales accessible, enabling molec-
ular dynamics (MD) simulations to study the dynamics of KRAS protein in more detail at the atomistic
level. In this minireview, my aim is to provide the reader an overview of the publicly available KRAS
structural data, insights to conformational dynamics revealed by experiments and what we have learned
from MD simulations. Also, I will discuss limitations of the current data and provide suggestions for
future research related to KRAS, which would fill out the existing gaps in our knowledge and provide
guidance in deciphering this enigmatic oncoprotein.

� 2019 The Author. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

GTPase KRas (KRAS) is a signal transducer protein, which plays
an important role in various cellular signalling events such as in
regulation of cell proliferation. It is a critical hub in the cell cir-
cuitry, as upon an upstream stimulus it transduces activating sig-
nals to several cellular signalling pathways, including the
mitogen-activated protein kinase (MAPK) pathway [1]. KRAS cycles
between inactive guanosine diphosphate (GDP)-bound and active
guanosine triphosphate (GTP)-bound states [2]. Only in the GTP-
bound state, KRAS is able to bind and activate its effector proteins,
such as RAF-kinases, PI3K and RalGDS. KRAS itself becomes acti-
vated when a guanosine exchange factor (GEF) protein displaces
GDP from the nucleotide binding site, resulting eventually in GTP
binding, as there is a higher intracellular concentration of GTP than
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GDP [3]. Inactivation of the active KRAS occurs upon GTP hydroly-
sis to GDP. On its own KRAS has low intrinsic GTPase activity,
which is greatly enhanced by GTPase activating proteins (GAP) that
catalyse the hydrolysis reaction [3,4].

Hyperactivation of RAS signalling, which may occur via a direct
mutation of RAS or indirectly via other proteins in RAS pathways,
plays a significant role in cancer and in particular rare diseases
such as RASopathies [5]. There are three closely related RAS iso-
forms: HRAS, KRAS and NRAS. From all of the RAS isoforms, KRAS
is the most oncogenic with its 85% share of all mutated RAS pro-
teins observed in cancer [5,6]. KRAS missense mutations are partic-
ularly frequent in the pancreatic, colorectal and lung cancers
(COSMIC v.90) [7]. In cancer, three mutation hotspots: G12, G13
and Q61 are observed in RAS genes. In this regard, KRAS differs
from the NRAS and HRAS, as it is the only RAS isoform where the
position 12 mutations are predominant [6].

The G domain of KRAS, comprised of residues 1–166 (Fig. 1A),
forms the basis of biological functionality of the GTPase proteins
[8]. This domain encompasses six beta-strands, forming the pro-
tein core, surrounded by five alpha-helices (Fig. 1B). In addition
to the G domain, KRAS has a flexible C-terminal structural element,
named the hypervariable region (HVR), which plays a crucial role
in anchoring RAS to the membrane [9–11]. Other important func-
tional elements of KRAS are the switch-regions, so-called switch-
I and switch-II. These switches form the binding interface for effec-
tor proteins, as well as for RAS regulators (GAPs and GEFs). To point
out, several residue definitions are used for the switch regions in
the literature, which are rather arbitrary, due to high intrinsic flex-
ibility of these regions. For instance, in switch-II definitions, the
beginning falls between residues 58–60 and ends among residues
67–76, excluding or including partially or fully the helix a2. Here,
for the illustrative purposes only, a definition of residues 30–40 for
switch-I, residues 58–72 for switch-II and residues 10–14 for P-
loop is used (although P-loop, also known as Walker A motif [12],
extends to the S17 [13]). The mutation hotspots in cancer are
located in P-loop or in switch-II (Fig. 1C).

The gene KRAS may undergo alternative splicing and thus result
in two isoforms: KRAS4A and KRAS4B (also known as isoform 2A
and 2B, respectively). These isoforms differ mainly in their HVR
residues 167–189, but also residues 151, 153, 165 and 166 are
dissimilar.
Fig. 1. Structure and sequence of KRAS4B. (A) Crystal structure of wild-type (WT) KRA
structure (residues 1–169 were used in the protein construct). (B) 2D depiction of the
(Uniprot: P01116-2). The most common mutation hotspots are depicted with arrows. Sel
loop (residues 10–14), orange; switch-I (residues 30–40), red; switch-II (residues 58–72)
in this figure legend, the reader is referred to the web version of this article.)
Active KRAS signalling occurs at the membrane. In order to
become associated to membrane, KRAS’ membrane anchoring
HVR needs to undergo a few post-translational modifications
[15]. First, the C-terminal CAAX sequence (CVIM in KRAS4B) is far-
nesylated at C185, which is followed by proteolytic cleavage of the
three terminal residues. Finally, the terminal carboxyl group of
C185 is methylated. A polybasic region of the HVR, composed of
multiple lysine residues, is also important for the membrane asso-
ciation [9]. As KRAS4A does not contain this polybasic region, it is
further palmitoylated at an additional cysteine residue C180 [15].

Also, other post-translational modifications of KRAS have been
described. For instance, phosphorylation of S181 was demon-
strated, which influences to KRAS interaction with Calmodulin
(CaM) and also to tumour growth [16,17]. Monoubiquitination of
K147, which is located in the nucleotide binding site, was shown
to increase KRAS’ activity [18]. Furthermore, KRAS acetylation
was observed at lysine residues K101, K104, K128 and K147
[19,20]. Recently, excision of the initiator methionine (M1) accom-
panied with acetylation of the N-terminal threonine (T2) was dis-
closed [21]. The acetylation of T2 appears important for switch
stability upon the excision of M1 residue, which by itself makes
the N-terminus unstable.

Due to its crucial role in cancer biology, KRAS is sometimes
referred as the Holy Grail of drug discovery [22]. Formerly, it was
considered as an undruggable protein, but now is rather cogitated
as a challenging target, which is difficult to drug [23]. Currently,
Amgen’s KRAS G12C inhibitor AMG 510 is in clinical trials
[24,25]. Recent substantial progress in KRAS drug discovery, how-
ever, is limited to G12C-specific inhibitors, excluding other onco-
genic KRAS mutants that form the majority in other tissues than
in the lung [26,27]. In fact, we still do not fully understand the
underlying reasons of specific mutation frequencies [28]. Discrep-
ancy in KRAS mutations exist, e.g. in their GTP hydrolysis rates, and
even mutations at the same position display tissue-specific abili-
ties to drive tumorigenesis in vivo [4,29,30]. These complex issues
and lack of understanding of the underlying principles, still require
major efforts to be resolved in future.

In order to tackle these issues, thorough understanding of KRAS
structure and dynamics comes into play. This could provide an
extra leverage to the drug discovery efforts against KRAS. The
aim of this minireview is to provide an overview of the current
S with GDP-bound (PDB ID: 4obe) [14]. The C-terminal HVR is not present in the
secondary structure of KRAS. (C) Sequence of KRAS4B, also known as isoform 2B
ected structural regions in all A–C highlighted with the following colour scheme: P-
, blue; HVR (residues 167–188), green. (For interpretation of the references to colour
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understanding of KRAS structure and conformational dynamics.
Furthermore, limitations of the structural data regarding to this
matter are highlighted and lessons learned frommolecular dynam-
ics (MD) simulations are revealed. Finally, future perspectives
regarding to structural and dynamical aspects of KRAS are
discussed.

2. Publicly available KRAS structural data

For long, the publicly available structural data of RAS proteins
were dominated by HRAS. In 2011, most of the available RAS struc-
tures were HRAS (91%), as there were in total 99 HRAS, nine KRAS
and one NRAS structures available in the Protein Data Bank (PDB)
[31]. Only recently, as differences among RAS isoforms have been
realised and the isoforms are not considered equal anymore, we
have observed a resurgence in KRAS structures. As a result, on
December 2019 there was 150 publicly available KRAS structures
(Fig. 2A, Table 1). From these, 144 structures are solved by X-ray
crystallography and six structures are NMR-data driven models.

From all of the available KRAS structures, eight are HVR pep-
tides co-crystallized with farnesyltransferases (Fig. 2B). In the
remaining 142 structures, most are indeed lacking the flexible
HVR region and represent only the G domain. The median size of
these structures is 168 residues. More than half of the KRAS struc-
tures are GDP-bound and above third of all structures are bound to
GTP or its non-hydrolysable analogue: GCP; GNP or GSP (Fig. 2C).
Structures that are missing the nucleotide include HVR peptide
Fig. 2. Publicly available KRAS structural data in the Protein Data Bank. (A) Timeline
deposited in 1999 and a sharp increase in the number of structures has occurred during t
structures have been deposited yearly. (B) The maximum number of observed residues
KRAS, whereas in the majority of structures only the G domain is present and the HVR reg
length (185 residues) structures are NMR-data driven models and the only crystal struct
where the HVR is stabilized by PDEd [32]. (C) Bound nucleotide in the KRAS structures
hydrolysable GTP-analogues. The ‘‘Other” group include structures without nucleotides o
only structures excluded). Almost half of the structures (46.5%) contain engineered mut
structures, contain GDP/GTP competitive ligands or are from
nucleotide exchange complexes (KRAS–SOS1).

Various mutations are present in the available structures. From
the common oncogenic KRAS mutations, G12A, G12C, G12D, G12R,
G12V, G13D and Q61H structures are represented (Fig. 2D). Addi-
tional engineered mutations are also quite common. Especially,
the engineered C118S mutation is highly frequent (40%). C118 is
the only cysteine residue in KRAS that is located on the protein sur-
face. Moreover, in majority of the G12C structures, which contain a
covalently bound ligand to C12, all other cysteine residues have
been also mutated (C51S, C80L, C118S) (Fig. 2D, Table 1). Only in
three structures with a C12 bound ligand, KRAS appears without
additional mutations (PDB IDs: 5v71 [64], 5v9l [65], 5v9o [65]).

KRAS structural data may easily lead one to the false assump-
tion that the switches appear in stabilized conformations. Only in
quarter of available KRAS structures switch-I is disordered and in
37% switch-II is disordered (in one or more of the chains). In 19%
of the structures both switch regions exhibit disorder. However,
with a closer inspection of the crystal structures, it is quite evident
that the switches, if not disordered, are stabilized via crystal con-
tacts (Fig. 3). Various configurations of different crystal contacts
are observed in structures that display ordered switch regions. To
note, as the switch regions are in close proximity of each other
and are connected via the beta-sheet b2–b3, the stabilization of
one via crystal contacts may also affect the other. A crystal struc-
ture is always a spatiotemporal average of the protein structure,
where crystal-packing contacts, which are crystal artefacts, may
of the evolution of publicly available KRAS structures. First KRAS structures were
he recent years. In 2017, the number of KRAS structures doubled and since dozens of
in the available KRAS structures. Eight structures describe only the HVR-region of
ion is disordered or was not present in the protein construct. Note that six of the full-
ure where all residues are observed is from the KRAS–PDEd complex (PDB ID: 5tar),
. Majority of structures contain GDP and GNP is the most frequent from the non-
r appear with GDP/GTP competitive ligands. (D) Mutations in KRAS structures (HVR-
ations that are biologically irrelevant.



Table 1
PDB IDs of the publicly available KRAS structures. Entries are coloured based on the bound nucleotide (see Fig. 2C) and ordered by their mutations
(see Fig. 2D) [4,14,21,25,32–72].
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affect loop region conformations [73,74]. In addition, stabilization
of the switches may arise from crystallization conditions, as data
acquisition for the X-ray crystallography-based model occurs typ-
ically in low temperature, further decreasing movement and
dynamics of the protein. To point out, KRAS interacts with its effec-
tor proteins on top of these switch regions [5]; therefore, it is per-
haps not surprising that KRAS tends to form protein–protein
contacts in this interface also in the crystal environment.
Nevertheless, distinct switch conformations are represented by
the available structures. Only recently, structures displaying
totally open switch-I conformation were published (PDB IDs:
6mqg [55], 6m9w [21], 6bof [68]). Generally, dynamics in
switch-I and switch-II regions is not fully captured by the struc-
tural data.
3. Insights into KRAS dynamics from experimental data

Insights into the switch regions’ dynamical behaviour were first
obtained via NMR spectroscopy [77]. Based on the results of NMR
studies, it has been defined that switch-I appears in two distinct
conformations, named as state 1 and state 2, where the former
reflects to an open conformation and the latter to an closed confor-
mation that is also found when RAS is in complex with an effector
protein [78]. Initially these results were obtained by using HRAS
proteins, but these states also occur in KRAS [46].

Interestingly, the GTP analogues, GCP and GNP (where the oxy-
gen between the beta and gamma phosphate is a CH2 or NH,
respectively), shift this switch-I conformational equilibrium
towards state 1 [79]. These analogues are used in the majority of



Fig. 3. Crystal contacts stabilize the ordered switch regions. As an example, GNP bound G12D mutant (A) and GDP bound WT KRAS with engineered mutation C118S (B) are
shown. Crystal contacts on top of the switch regions appear in various configurations among KRAS structures with ordered switches. Individual KRAS proteins depicted with
cartoon in different colours. Electron density map, 2Fo-Fc r = 1, is displayed in the switch region interface (blue). Images created with LiteMol [75] in PDBe [76]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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GTP-state mimicking crystal structures (Fig. 2C, Table 1). Moreover,
the full length RAS shifts the equilibrium towards state 2, when
compared to structures consisting only of the G domain [79].

Specific mutations in the switches, D33E in switch-I or A59G in
switch-II, induce KRAS to crystallize in state 1 conformation, where
switch-I is in an open conformation [58]. Also, NMR results indi-
cated that replacing Y32 in switch-I to other amino acids shifts
the equilibrium towards state 1 [79]. Of note, all RAS isoforms
are identical in their amino acid composition in these regions.
Thus, it seems that switch dynamics are quite sensitive to changes
in their amino acid composition.

Although it is commonly stated in the literature that state-I is
the inactive GTP-bound conformation, these D33E or A59Gmutants
display similar RAF-RBD (RAS binding domain) affinity as WT
KRAS [58]. This perhaps highlights the fact that even though state 1
is not the end-point conformation of KRAS when bound to an effec-
tor protein, it may play a role in the association process of these
protein–protein interactions. Therefore, state 1 should not be
defined explicitly as an inactive KRAS state.

Recently, an additional layer of complexity to switch-region
dynamics was identified, which provides another potential supple-
mentary regulation mechanism of KRAS activity. The tyrosine resi-
dues Y32 and Y64, in switch-I and switch-II, respectively, can be
phosphorylated via c-Src [80]. This phosphorylated state induces
conformational changes in the switch regions and most likely traps
KRAS into an inactive GTP-bound state, where a decreased affinity
towards effector protein Raf-1 was observed. This switch-
phosphorylation is reversible by SHP2 phosphatase, which is cap-
able to dephosphorylate these tyrosine residues.

Not only are KRAS switch regions dynamic, but also a higher
level rotational and translational dynamics exist in its native envi-
ronment on the membrane, where the active KRAS signalling
occurs [81]. The NMR-data driven models of KRAS on lipid nan-
odiscs revealed rotational complexity in KRAS’ membrane orienta-
tion [33]. These results suggested that KRAS occurs in occluded and
exposed configurations on the membrane. These configurations
were named based on the orientation of the effector protein bind-
ing interface of KRAS. In occluded configurations this interface is
facing toward lipids and in exposed configurations it is pointing
away from the membrane, allowing effector protein binding. To
note, tethering of KRAS to the lipid nanodisc was achieved by
maleimide-functionalized lipid (PE-MCC) at the C185 in its C-
terminus and KRAS contained a C118S mutation. Regarding to
translational dynamics of KRAS on the membrane, one of the main
questions is the oligomerization state of KRAS. This is still some-
what unclear, as KRAS have been suggested to occur on the mem-
brane as: monomer only [82]; monomers, dimers, oligomers [83];
dimer [84] or a trimer [85]. Overall, the data is still too scarce to
understand the KRAS lateral mobility and the diffusion related to
KRAS signalling [86].
4. Lessons from MD simulations

As experimental methods are still unable to fully describe pro-
tein dynamics, a deeper insight may be achieved by MD simula-
tions [87]. Initial RAS MD simulations were conducted already in
the 1990s. Although these simulations provided first insights to
the RAS dynamics, they were too short to provide any reasonable
insights into biologically relevant timescales in protein dynamics,
which occur in microsecond timescale [88]. Additional issue with
these simulations was the lack of available high-quality crystal
structures at the time (Fig. 2A), for which especially the shorter
simulations are more sensitive (as the starting configuration is
decisive for the observations from short simulations). For this rea-
son, these earlier RAS related simulations are not discussed here
and the reader is recommended to read the comprehensive review
by Prakash and Gorfe [89]. Simulations related to the enzymatic
activity of RAS (GTP hydrolysis), mainly studied by QM/MM simu-
lations, and simulations carried out with other methods than clas-
sical all-atom MD are out of the scope of this minireview (e.g.
coarse grained or simulations conducted with enhanced sampling
methods).

Kapoor and Travesset investigated different RAS isoforms’
(HRAS, NRAS and KRAS) dynamics with both of native ligands,
GDP and GTP [90]. They simulated each individual system for hun-
dred nanoseconds in two temperatures (300 K and 360 K) with
four replicas, resulting in an aggregate of 5.46 ls simulation data.
These simulations displayed high flexibility of the switch regions
and that this flexibility was dissimilar among RAS isoforms. Since,
it has been confirmed that the different isoforms exhibit distinct
biochemical profiles [91]. These RAS simulations, however, were
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conducted with the G domain only, excluding the intrinsically dis-
ordered HVR, which indeed plays an important role in oncogenic
signalling [92].

Simulations with the full-length KRAS with HVR in solution dis-
closed that the HVR may fold on top of the switch regions. This was
first observed in simulations with the length of 100 ns [93], and
later demonstrated in another study with 200 ns simulations in
solution and also at the membrane [94]. These results are in agree-
ment with the experimental NMR studies, as the observed shift
with the full-length RAS in the equilibrium towards state 2 can
be explained by the HVR folding on top of the switches in solution
[79]. The oncogenic mutation influence to the full-length KRAS
dynamics in solution was further investigated in total of 6.4 ls
simulations, with the individual simulations lengths being 200 ns
with two starting configurations (models) for each system [95].
Interestingly, some common oncogenic mutations, such as G12C,
G12V and Q61H, displayed weakened HVR–G domain association.
Furthermore, as there is a notable difference among the KRAS iso-
forms (see Introduction), an investigation of full length KRAS4A
and catalytic domain only in solution with individual simulations
of 100 ns length (total of 1.4 ls simulation time) suggested that
KRAS4A is overall more dynamic when compared to KRAS4B [96].

KRAS’ rotational dynamics on the membrane have been also
observed in the simulations where the membrane has been
included. Prakash et al. demonstrated that KRAS appears in multi-
ple distinct rotational conformations at the membrane with total
simulation time around 8 ls, where individual replicas were sim-
ulated for 100–800 ns [97]. Comparably, KRAS4A simulations in
diverse membrane environments with the length of 200–400 ns
for individual systems (total of 5.8 ls) displayed distinct orienta-
tions at the membrane [98]. Recently, substantially longer
microsecond timescales in the membrane simulations of KRAS
were achieved. In a single 20 ls simulation of G12V mutant at
the membrane three distinct conformations were observed [99].
Furthermore, G12D and Q61H mutants also displayed similar con-
formations in single 20 ls simulations, but also subtle differences
how they populate these configurations [100]. Overall, based on
these simulations it is quite clear that the monomeric KRAS dis-
plays rotational dynamic behaviour on the membrane, agreeing
with the experimental data.

Differences in G domain dynamics of KRAS oncogenic mutants
in solution have also been investigated. Sayyed-Ahmad et al. con-
ducted single 1 ls simulations for WT KRAS, G12D, G12V and
Fig. 4. Metastable states of KRAS. The observed seven metastable states are mainly de
conformations for each state are shown and the switches are coloured by individual colo
differently. For further details see Ref. [27]. (For interpretation of the references to colo
G13D mutants (and also for HRAS) [101]. Discrepancy among
mutants in their dynamics was observed, which was highlighted
by differences in residue contact probability networks. Also, local
conformational shift of the G12D mutant compared to WT KRAS
was observed in microsecond simulations (total simulation time
of 8 ls) [102]. To assess differences among WT and selected onco-
genic mutants (G12C, G12D, G12V, G13D and Q61H), Lu et al. con-
ducted a total of 6.4 ls simulations with KRAS4B catalytic domain
[103]. The individual systems’ trajectory lengths were between
200 and 400 ns. As the main result, an individual shift in the
dynamics occurred by the mutants. To get a comprehensive pic-
ture of the putative position 12 missense mutant differences in
their conformational dynamics, we simulated all KRAS G12 mis-
sense mutants with a total simulation time of 170 ls (85 individ-
ual 2 ls simulations) [27]. To note, this comprehensive sampling
covered the cryptic state 1 conformations, excluding the closed
state 2 conformation. Further analysis with Markov state models
(MSMs), which allow assessment long-time statistical dynamics
and transition probabilities of protein conformational ensembles
(reviewed in [104]), revealed seven metastable states highlight-
ing different conformational sub-states of the switches (Fig. 4).
Notably, structural biology has been unable to capture all of these
state configurations, and most likely will not be able to. These
simulations also suggest that the state 1 should not be defined
as a single conformation, which it is most often referred in the lit-
erature, but rather an ensemble of conformations. Strikingly, G12
missense mutants shift specifically KRAS dynamics, especially in
the effector protein binding interface. For instance, the observed
metastable states are populated differently, not only between
WT and mutants, but also discrepancy among G12D, G12R and
G12V mutants exist. Interestingly, G12D, which is the most fre-
quent KRAS mutant in cancer, appears most similar in its dynam-
ics compared to WT. These results indicate that the shift in KRAS
dynamics occurs in allosteric manner and that a mutation can
inflict changes in the protein dynamics in distant regions.
Remarkably, we also observed highly opened short-lived
switch-I conformations in the simulations, which should not be
confused with metastable state conformations. Recent crystal
structures of KRAS, which were published after these simulations,
demonstrated extremely open switch-I conformations and thus
support the validity of highly open switch configurations
observed in simulations (PDB IDs: 6bof [68]; 6mqg [55]; 6mqn
[55]; 6m9w [21]).
fined by different conformational ensembles of the flexible switch regions. Three
urs for each state. Different G12 missense mutants populate these metastable states
ur in this figure legend, the reader is referred to the web version of this article.)
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Not only have MD simulations brought insights to KRAS dynam-
ics, but also our understanding of how KRAS binds and activates its
effector proteins is starting to unravel. For instance, the KRAS
mediated activation of PI3Ka occurs in allosteric manner
[105,106]. Here, the KRAS4B–PI3Ka-RBD interaction was investi-
gated in solution with total of 10 ls simulations. Recently, KRAS
interaction with Calmodulin was also investigated, with and with-
out membrane in a total of 20 ls simulations [107]. These simula-
tions suggest that the interaction between KRAS and Calmodulin is
not static but rather dynamic, displaying various conformational
ensembles.
5. Summary and outlook

The peculiar dynamics of the switches combined with intrinsi-
cally disordered HVR makes KRAS truly an enigmatic protein.
Although the publicly available structural data of KRAS has been
quickly evolving in the recent years, it is still far from complete.
For instance, there are no structures available for the KRAS
mutants G12S (7% of all KRAS G12X mutations observed in cancer),
G13C (6% of all KRAS G13X mutations), Q61R and Q61K (19% and
8% of all KRAS Q61X mutations, respectively) (COSMIC v.90) [7].
Moreover, we are still lacking KRAS–effector protein functional
complexes. Currently, we only have isolated pieces of the puzzle,
which dramatically hinders our understanding of KRAS mediated
signalling. To this end, a structure of more complete functional sig-
nalling complex, i.e. KRAS in complex with a full-length effector
protein on the membrane, is required. This is most likely beyond
X-ray crystallography and would require another method, e.g.
Cryo-EM [108]. Furthermore, this type of structural information
could provide insights to active KRAS’ oligomerization state, which
would be extremely important, as there is emerging evidence that
the nanoclustering and dimerization may play a significant role in
oncogenic KRAS signalling [109].

Growing evidence is indicating that discrepancy among onco-
genic KRAS mutants exist [4,29,30]. These putative subtle differ-
ences of the mutants and their differences in dynamics are
experimentally difficult to address. For instance, even though the
RAS mutants exhibit altered binding profile for the effector pro-
teins, diminished or enhanced binding, a clear on/off binding
changes are not observed [4,110]. Overall, MD simulations have
demonstrated that discrepancy among the mutants in their
dynamics exist [27,100,103], especially in regions located in the
effector protein binding interface, but these subtle differences
and their biological consequences are still not properly
understood.

Even though KRAS dynamics is extremely complex it should not
be overlooked, as it could be the only way to gain proper under-
standing of its functions. This being said, more care should be
put on the validity of the conducted MD simulations. Especially
in the field of KRAS, where the underlying biology is so complex,
overinterpreting MD simulation results is a true risk [111]. Fur-
thermore, the sampling quality and the uncertainty quantifications
of the future simulations should not be overlooked [112]. Even
though breakthrough results are on high demand, simulations
should never be conducted at the expense of the quality. To escape
subjective observations from the trajectories, one should apply
state-of-the-art methods, such as MSMs, to acquire more reliable
long-time statistical dynamics of the biomolecules [113]. In addi-
tion, a great emphasis should be placed on careful planning to
reach the timescale of conformational interest [88]. To achieve suf-
ficient sampling, extra care should be taken in future as the system
sizes increase due to inclusion of more components with the mem-
brane to the simulations. For instance, diffusion events are slower
with larger systems [114,115], which implies that even longer sim-
ulation times are required with larger systems.

In future, the dynamics of KRAS dimeric and oligomeric com-
plexes should be investigated in long timescale MD simulations.
Moreover, the KRAS–effector protein association pathways would
be important to study in more detail. Valid dynamics of these,
however, might be difficult to capture before there is a clear sup-
port from the experiments ensuring that a structurally relevant
complex is simulated.

To conclude, the understanding of KRAS structure and dynamics
has a substantial role in deciphering its cryptic nature. The
enhanced knowledge of these will aid us to connect the complex
RAS biology to the molecular scale. These profound insights into
KRAS functionality will support the drug discovery efforts against
this difficult-to-drug target in future.
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