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Systemic sclerosis (scleroderma: SSc) is a multisystem, connective tissue disease of unknown aetiology characterized by vascular
dysfunction, autoimmunity, and enhanced fibroblast activity resulting in fibrosis of the skin, heart, and lungs, and ultimately
internal organ failure, and death. One of the most important and early modulators of disease activity is thought to be oxidative
stress. Evidence suggests that the free radical nitric oxide (NO), a key mediator of oxidative stress, can profoundly influence the
early microvasculopathy, and possibly the ensuing fibrogenic response. Animal models and human studies have also identified
dietary antioxidants, such as epigallocatechin-3-gallate (EGCG), to function as a protective system against oxidative stress and
fibrosis. Hence, targeting EGCG may prove a possible candidate for therapeutic treatment aimed at reducing both oxidant stress
and the fibrotic effects associated with SSc.

1. Introduction: Nitric Oxide and
Systemic Sclerosis

The free radical nitric oxide (NO) is an important physio-
logical signalling molecule, potent vasodilator, and mediator
of oxidative stress. Nitric oxide is synthesised from L-ar-
ginine by NO synthase (NOS), and three main isoforms of
NOS have been identified with a constitutive expression in
neuronal (nNOS or NOS 1), endothelial (eNOS or NOS 3),
and several other cell types including fibroblasts. Further-
more, an inducible expression (iNOS or NOS 2) in response
to a variety of inflammatory stimuli is possible [1]. Although
NO is a gas, it is a highly reactive, short-lived, molecule
able to rapidly diffuse across cell membranes. Nitric oxide
exerts its biological effects by the reaction of NO with a
diverse range of targets such as haem groups, iron and
zinc clusters, and cysteine residues. Since the discovery of
NO as a key endothelial-derived vasodilator molecule in
cardiovascular physiology and the award of the Nobel Prize
in 1998 to Robert F. Furchgott, Ferid Murad, and Louis
J. Ignarro, the field of NO research has rapidly expanded
to encompass many biomedical areas. Subsequently, NO

has been demonstrated to act as a signalling molecule in
many other tissues and regulates physiological and cellular
processes in a variety of pathologies such as hypertension,
cancer, diabetes, and male impotence [1].

In the disease scleroderma (SSc: systemic sclerosis), the
metabolism of NO appears to be profoundly disturbed.
There is considerable evidence implicating overproduction
of NO [2–5] and reactive oxygen species (ROS) such
as superoxide anions (O2

.−) and peroxynitrite (ONOO−)
[3, 4, 6–8] in the pathogenesis of SSc, an often fatal
rheumatic disease of unknown aetiology. Regulation of NO
by endogenous levels of the NOS inhibitor asymmetric
dimethylarginine (ADMA) has also recently been proposed
[9]. Major features of SSc are enhanced fibroblast activ-
ity, collagen overproduction, autoimmunity, and vascular
dysfunction [10–12]. There are several classified clinical
subgroups, including limited (lSSc) and diffuse (dSSc)
cutaneous SSc, which reflect the nature of the disease in
their degree of skin sclerosis, immunological profile, and
microvascular dysfunction [13, 14]. Endothelial activation
and damage are also an early part of this process [14–17]. The
nature of the factors that induce endothelial dysfunction is
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still unclear; however, there are several serological biomark-
ers that reflect the vasculopathy of the disease. These include
the vasoconstrictor endothelin [18], cell adhesion molecules
such as selectin [19], anti-endothelial antibodies [20], and
the vasodilator nitric oxide [2, 3, 5]. While indeed an early
modulator of disease activity is thought to be oxidative stress,
the etiology of events and role of NO remain unknown.
Recent reports suggest that the abnormal production of ROS
is linked to fibroblast activation by the increased expression
of stimulatory serum autoantibodies to the platelet-derived
growth factor receptor in SSc [21].

2. Fibrosis and Oxidative Stress in
Systemic Sclerosis

In SSc the excessive connective tissue fibrosis is the most
characteristic pathological manifestation of the disease [10].
The fibrosis is especially prominent in the diffuse cutaneous
form of SSc, where excessive connective tissue accumulation
is due to overproduction of the extracellular matrix by
fibroblasts and myofibroblasts, activated by soluble factors
such as transforming growth factor beta (TGF-β) [22–26]
and connective tissue growth factor [27]. Myofibroblasts are
a differentiated and activated form of fibroblast which have
been shown to persist in SSc fibroblast cultures and are
responsible for increased collagen synthesis and deposition.
The molecular mechanisms underlying the origin of the
myofibroblast are complex; however, they play a crucial role
in wound healing and the development of fibrosis [28, 29].
The fibrotic process is most prominent in the skin, lungs,
heart, gastrointestinal tract, kidney, tendons and ligaments,
and endocrine glands; widespread perivascular fibrosis also
occurs. Fibrotic damage to these affected organs accounts for
much of the morbidity and mortality associated with SSc.

The scleroderma phenotype at the cellular level has
also been shown to be characterized by oxidative stress,
an imbalance between the elevated level of ROS and/or
the impaired function of the antioxidant defence system
[30]. ROS usually include O2

.−, hydrogen peroxide (H2O2),
hydroxyl radicals ( .OH), and ONOO−. The sources of
oxidative stress in SSc are complex and interactive and
likely to be due to ischaemic-reperfusion injury, dysregulated
metabolism of the free radical NO [2–5], and generation
of ROS by fibroblasts [6] and activated leukocytes such
as monocytes via the NADPH oxidase system [31]. ROS
have been demonstrated to be cell transducers of fibroblast
proliferation [6], collagen-gene expression, and myofibrob-
last phenotype conversion in SSc [6, 8, 21]. During the
1990s–early 2000s clear evidence for oxidative stress in SSc
emerged by the enhanced oxidation of lipids and lipoproteins
(oxLDL) [32, 33], increased isoprostane production [34–
37], and also the presence of modified, nitrated proteins in
the plasma and skin [4, 7]. In SSc what is less certain is
the exact stage at which increases in free radicals and other
reactive species occur, the potential counteractive role of
the antioxidant defence system or how both elements are
linked to the main events of the disease such as the vascular
abnormalities, and the increased synthesis of extracellular

matrix, leading to fibrosis. Early studies demonstrated that
there is reduced antioxidant capacity in SSc; plasma ascorbic
acid (vitamin C), α-tocopherol, β-carotene, and selenium
were found to be lower in patients than in controls [30,
32, 38]. Additionally, the beneficial effects of the antioxidant
probucol in patients with Raynaud’s phenomenon, a vascular
pathology which is associated with SSc, have been shown
[39]. Subsequently, antioxidant therapy was proposed as a
possible treatment in SSc [30, 38, 39] and also in other
diseases [40, 41] with the focus being on the antioxidants
counteracting the ROS-induced endothelial damage and
vasculopathy that occur. More recently, natural antioxidants
such as polyphenols from green tea (Camellia sinensis)
extracts, a popular beverage consumed worldwide, have
attracted attention due to their potent antioxidant effects,
particularly that of one component, (-)-epigallocatechin-3-
gallate (EGCG). In this paper, we will discuss findings about
the mechanisms of NO-mediated modulation of fibrosis
as well as evidence suggesting that the dietary antioxidant
EGCG could be a therapeutic target for SSc.

3. Nitric Oxide as a Regulator of the
Fibrogenic Response.

The versatile free radical NO has been implicated in the
pathogenesis of SSc. In most biological situations NO is
largely oxidized to nitrate (NO3

−) and nitrite (NO2
−),

with the measurement of total nitrate and nitrite NO(x)

production, as well as ADMA levels, seen as a reflection
of endothelial dysfunction in many diseases [1, 9, 42].
Early studies involving NO(x) production in SSc have shown
conflicting results [2, 3, 5, 43, 44]; however, the discrep-
ancy in these results could be explained by differences in
the degree of inflammatory disorder, disease subset, and
treatment of the patients. Furthermore, modifications in the
dietary NO(x) intake were not attempted in many of these
studies. Later on other groups [2, 4, 5, 45, 46] demonstrated
evidence implicating overproduction of NO, with increased
plasma NO3

−/NO2
− levels, together with elevated nitration

of plasma proteins, a marker of ONOO− production [4].
Nitrated proteins [47, 48] are also found in the skin in
SSc associated with sites of inflammation [3, 4]. There is
a growing literature showing strong tissue localization of
nitrotyrosine staining or increased levels of free and protein-
bound nitrotyrosine in inflammatory diseases. For example,
strong staining of nitrotyrosine has been found in lung
sections from patients with lung injury [49], while significant
amounts of 3-nitrotyrosine have been reported from patients
with rheumatoid arthritis [50] and chronic renal failure
[51, 52].

Interestingly, in SSc there is the paradoxical situation
in which NO production by eNOS in endothelial cells
is decreased possibly due to the rapid reaction of NO
and O2

.− to generate the reactive intermediate ONOO−

[53, 54] or due to the presence in the circulation of
natural inhibitors of NOS activity such as ADMA [9, 42]
(Figure 1). Therefore, in SSc reduced eNOS expression and
microcirculatory dysfunction are in part contributory to the
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Figure 1: Schematic diagram depicting the possible pathways in which NO modulates collagen type I gene expression to affect fibrosis. In
the first hypothesis (1), the rapid reaction between NO and O2

.− leads to decreased NO bioavailability. NO regulation by ADMA may also
occur. NO normally can directly activate transcription factors such as NFκB, SP-1, and AP-1 to inhibit collagen gene expression. The second
possibility (2) is that NO normally by activating the protective stress enzyme HO-1 can negatively modulate the NADPH oxidase pathway.
In fibrosis, activation of the NADPH oxidase pathway has been shown to increase collagen synthesis and myofibroblast differentiation. The
third plausible pathway (3) is that there is signalling crosstalk following TGF-β binding to a receptor. Signal pathways potentially important
here include the MAP kinase JNK. This would synergise with the Smad signalling pathway and decrease the activation of downstream TGF-
β-dependent genes. Alternatively, NO could enhance the proteasomal degradation of SMAD. In the fourth pathway (4), NO indirectly exerts
its effects by modulating oxidative stress through upregulation of antioxidant/redox defence genes such as Nrf2 leading to regulation of the
extracellular matrix.

associated Raynaud’s Phenomenon that is well described in
these patients [3, 14–16, 55]. In contrast at inflammatory
sites the formation of NO, by iNOS, and O2

.− are increased
by the presence of inflammatory cells such as macrophages
or activated fibroblasts [56]. Immunohistological studies of
scleroderma skin also show that, as the disease progresses to
the later fibrotic stages, the production of eNOS is down-
regulated, while iNOS is upregulated [3]. Furthermore, stud-
ies suggest that under conditions when NO overproduction
occurs, S-nitrosylation of the ADMA regulating enzyme
dimethylarginine dimethylaminohydrolase (DDAH) dimin-
ishes DDAH activity, leading to an accumulation of ADMA.
Subsequently, NOS inhibition as a type of regulatory feed-
back mechanism may result [57] (Figure 1). Indeed, there
is further evidence to indicate increased circulatory levels of
ADMA in the serum of diffuse SSc patients, suggesting an
NOS regulatory mechanism later on in the disease [4].

NO has also been reported to act as an antifibrotic
effector in animal models of experimental fibrosis [58, 59].
For example, in a murine model of pulmonary fibrosis, a

loss of NO bioactivity, in eNOS knock-out mice, resulted
in prolonged fibrosis [58]. Furthermore, another study also
demonstrated that overexpressing eNOS, using transgenic
mice, reduced fibrotic content after bleomycin-induced fi-
brosis [59]. In rats, the long-term inhibition of the inducible
form of NOS (iNOS) has also been shown to favour the de-
velopment of fibrosis [60]. Additional studies assessing NO
metabolism in the tight-skin 1 (Tsk-1/+) mouse, which
is predisposed to SSc and often used as an experimental
animal model for fibrosis, reported that while type I collagen
protein expression was elevated in Tsk-1/+ skin tissue, eNOS
protein and gene expressions were reduced compared to
wild-type controls [61]. Furthermore, there was decreased
NOS activity in Tsk-1/+ skin tissue [61]. Correspondingly,
the protective antioxidant enzyme haemoxygenase-1 (HO-
1) and the associated transcription factor nuclear factor
erythroid-2-related factor 2 (Nrf2) showed reduced protein
and gene expression levels in Tsk-1/+ skin, while there
was also less total antioxidant activity [61]. The findings
suggested that there was also abnormal NO metabolism in
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the Tsk-1/+ mouse, particularly in the skin, while expression
and activity of protective antioxidants were reduced.

Several studies have gained insights into the intracellular
mechanisms by which NO might further modulate a fibrotic
phenotype. Nitric oxide can induce HO-1, which is also
induced by a variety of cellular stress, including free-radical-
mediated stresses and oxygen deprivation [62]. HO-1 in
turn can also increase oxidative-stress-related transcription
factors such as Nrf2. Because of high similarity between the
Nrf2-binding sequence (NF-E2 motif) and the antioxidant
response element (ARE) in regulatory regions of sev-
eral phase 2 antioxidant enzymes, Nrf2 is a putative medi-
ator of ARE responses. Consequently, other ARE-bearing
protective phase 2 antioxidant/redox enzymes such as
glutathione peroxidase, and classical antioxidant enzymes
such as superoxide dismutase [SOD] and catalase as well
as HO-1 induce Nrf2 gene expression (Figure 1). There
is a large body of evidence suggesting that HO-1 is a
cytoprotective enzyme, and its induction in the setting
of increased cellular stresses helps maintain physiological
homeostasis [63]. Thus, embryonic fibroblasts derived from
HO-1−/− knock-out mice are significantly less resistant to
the cytotoxicity induced by H2O2 and paraquat than wild-
type controls [64, 65]. Conversely, cells overexpressing HO-
1 have been reported to be more resistant to oxidant-
induced toxicity than controls [64]. Indeed, other groups
which examined Nrf2−/− knock-out mice reported increased
bleomycin-induced pulmonary fibrosis [66] and expression
of extracellular matrix genes such as collagens after hyperoxic
exposure [67] when compared to wild-type controls. It has,
thus, been suggested that an increased oxidative burden by
suppression of antioxidant defence mechanisms in Nrf2−/−

mice secondarily triggers regulation of extracellular matrix
genes for repair responses [67]. Interestingly, recently studies
in SSc have also suggested Nrf2 as a target for antifibrotic
therapy [68].

Other studies suggest that NO influences fibrosis through
modulatory effects on the TGF-β pathway [69–71], initiation
of fibroblast apoptosis and myofibroblast differentiation
[60, 72, 73], and/or neutralization of profibrotic ROS [53,
54] (Figure 1). Additionally, NO can modulate collagen
synthesis; however, at present, the mechanisms and signalling
pathways of NO-mediated inhibition of collagen are not
clear. NO inhibition of collagen in dermal SSc fibroblasts
has been reported to be by cGMP-independent regulatory
mechanisms and in part may be due to up-regulation of
matrix metalloproteinase-1 (MMP-1, an essential collage-
nase involved in collagen degradation) protein and activity
levels and/or inhibition of prolyl hydroxylase activity (an
enzyme important in the posttranslational processing of
collagen) [74]. Similarly, further evidence has also confirmed
a role for NO in regulation of the extracellular matrix in
other fibrotic diseases and cell types [70, 73, 75–80]. It was
initially discovered in vascular smooth muscle cells [77, 78]
and in mesangial cells [70, 80]. Recently, this downregulation
has also been found in human dermal [69, 74], intestinal
[81], and rat cardiac [76] fibroblast cells. From the view
of the signalling pathway, it has been shown that NO
downregulation of collagen synthesis in other cell types can

occur in a cGMP-dependent [69, 76] or independent manner
even though addition of NO could increase intracellular
levels of cGMP [75, 82]. Furthermore other investigators
using rat mesangial cells show that it is possible that the
suppression of collagen synthesis by NO could involve an
increase in MMP production and activity [80, 83]. Indeed,
NO regulation of prolyl hydroxylase has been postulated
in lapine articular chondrocytes [75]. Prolyl hydroxylase
catalyses the formation of 4-hydroxyproline in collagens by
hydroxylation of proline, and the reaction, in particular,
requires Fe2+ and ascorbate and generates free radicals,
all of which are sensitive to NO [84]. Under-hydroxylated
procollagens do not form stable triple helices at body tem-
perature and, thus, remain partially unfolded, where they are
presumably more susceptible to degradation by intracellular
collagenases. An additional number of intracellular targets
for NO have been described [85], including NO regulation
of NADPH oxidase [86], MAP kinases (e.g., JNK, ERK) [87],
SMADs [71], and transcription factors (e.g., NFκB, AP-1,
SP-1) [88] which are key signalling pathways of fibroblast
proliferation and collagen gene expression [6, 8, 25, 89, 90]
(Figure 1). Taken together these studies strongly suggest a
definitive link between NO expression and modulation of
fibrosis.

4. Antioxidants, (-)-Epigallocatechin-3-Gallate,
and Systemic Sclerosis

In systemic sclerosis clear evidence for oxidative stress has
been shown by increased levels of O2

.− [6], antibodies against
oxLDL [91], enhanced lipid peroxidation [32, 33], increased
F2-isoprostanes [35–37], and increased circulatory levels of
nitrotyrosine [4, 7]. Additionally, ROS-induced endothelial
damage occurs as well as the underlying vasculopathy
associated with SSc known as Raynaud’s Phenomenon.
Raynaud’s Phenomenon is characterised by transient attacks
of cold-induced digital ischaemia associated with intense
vasospasm in the fingers [55, 92, 93]. It occurs as a primary
condition and as secondary to SSc. Currently, the underlying
disorder of Raynaud’s Phenomenon is thought to be related
to the abnormal regulation of peripheral vascular tone at the
level of the digital microcirculation [55, 92, 93]. Although
nearly all patients with SSc exhibit Raynaud’s Phenomenon,
it is still uncertain whether their pathogenesis is identical to
patients with Raynaud’s Phenomenon alone. Furthermore,
in SSc, it is not only the digital and peripheral vessels
that exhibit vasospasm but also the vessels of the internal
organs [13]. The pathophysiology underlying the cold-
induced vasospasm characteristic of Raynaud’s Phenomenon
remains confused [55, 92]. Initially, it was suggested that
α2-adrenoceptors accounted for the supersensitivity [94].
Further studies found that α1-adrenoceptors appears to pre-
dominate in the physiological control of cold-induced digital
vasoconstriction whereas both α1- and α2-adrenoceptors
play an equal role in Raynaud’s subjects [15]. However,
selective antagonism of these receptor subtypes in both
normal and Raynaud’s subjects did not abolish vasoconstric-
tion suggesting that nonadrenergic mechanisms may also
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contribute to this response. Other studies in the dorsal hand
vein [95], digital arteries [96], as well as isolated gluteal
subcutaneous resistance arteries [97] of primary Raynaud’s
subjects show an impairment of endothelium-dependent
relaxation.

Although the vasospastic condition in Raynaud’s Phe-
nomenon may arise as a result of a functional disturbance
at the level of the vessel wall, it is possible that circulating
factors in the blood that alter the release of endothelial
cell mediators, such as prostacyclin, NO, endothelin, or in-
crease ROS and oxidative stress may contribute to the dis-
ease [93]. Early clinical trials, however, indicate limited
success in treatment of patients with Raynaud’s Phenomenon
secondary to SSc with antioxidants such as α-tocopherol
or vitamin C, which did not decrease urinary markers
of oxidative stress such as F(2)-isoprostanes nor improved
microvascular perfusion after cold exposure [98, 99]. More
hopeful has been the use of the potent antioxidant N-
acetylcysteine which has been shown to improve the vascular
symptoms of Raynaud’s Phenomenon in patients with SSc
[100, 101]. The type of antioxidant used, phase of the
disease, and duration of use may be key factors in successful
treatment therapies involving antioxidants in both SSc and
the associated Raynaud’s Phenomenon.

Natural antioxidants, such as polyphenols from green
tea extracts, are now being considered and investigated in
particular (-)-epigallocatechin-3-gallate (EGCG). Other less
active polyphenol constituents of green tea are believed to
be (-)-epigallocatechin (EGC), (-)-epicatechin (EC), and (-)-
epicatechin-3-gallate (ECG). The prominent antioxidant ef-
fects of EGCG derive from the phenol rings that can act as
electron traps to scavenge free radicals, inhibit the formation
of ROS such as O2

.− and ONOO−, and reduce oxidative
stress [102, 103]. EGCG has a higher potent antioxidant
capability than α-tocopherol or vitamin C [104], and has
been demonstrated to be an effective inhibitor of oxidative-
stress-induced protein tyrosine nitration during isolation of
platelets [48, 105].

Studies have also shown that EGCG may directly inhibit
molecular targets and regulate multiple signal transduction
pathways such as MAP kinases (PI3-kinase, ERK) and
transcription factors (Nrf2, NF-κB, AP-1) and/or induce
antioxidant enzymes such as HO-1 [106, 107]. In addition
to its antioxidant properties, it has been shown to possess
antifibrotic, anticancer, and anti-inflammatory activities reg-
ulating both TGF-β and PDGF-induced α1(I) collagen, fi-
bronectin, α-smooth muscle actin (α-SMA), and prolifera-
tion in activated human and rat hepatic stellate cells [108–
110], rat pancreatic cells [111, 112], human keloid fibroblasts
[113], and SSc dermal fibroblasts [114]. Additionally, EGCG
can counteract TGFβ-induced ROS in human dermal fibrob-
lasts from healthy controls, SSc patients, and in a dermal
fibroblast cell line, indicating its potential effectiveness as
an antioxidant to reduce oxidant stress in the disease scle-
roderma [114]. Interestingly, other studies have shown data
that EGCG can beneficially inhibit ROS through attenuating
NADPH oxidase expression [115, 116]. Furthermore, topical
administration of EGCG has successfully been shown to
inhibit ultraviolet radiation-induced oxidative stress and

tumorigenesis in human and animal skin models [117, 118].
Particularly useful will also be animal models of fibrosis
where recently, in the case of bleomycin-induced pulmonary
fibrosis and carbon tetrachloride-induced hepatic fibrosis,
EGCG has been promisingly shown to exert anti-fibrotic
effects [119–121].

In summary, it is clear that further studies are needed
to delineate the key NO-mediated signal transduction and
transcription pathways that facilitate type I collagen produc-
tion and fibrosis in the disease scleroderma. Studies such as
these will help define key targets and candidates for therapy.
Furthermore the dietary antioxidant EGCG, with its long
history of safe beverage consumption in green tea together
with its demonstrated potent antioxidant capability, is a
good candidate for therapeutic treatment targeting oxidative
stress and fibrogenesis in patients with SSc. Further clinical
studies, to confirm its efficacy, determine optimal dosage and
duration of use, and treatment indicators are required.
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