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Abstract

The EGF-induced MAP kinase cascade is one of the most important and best characterized networks in intracellular
signalling. It has a vital role in the development and maturation of living organisms. However, when deregulated, it is
involved in the onset of a number of diseases. Based on a computational model describing a ‘‘surface’’ and an ‘‘internalized’’
parallel route, we use systems biology techniques to characterize aspects of the network’s functional organization. We
examine the re-organization of protein groups from low to high external stimulation, define functional groups of proteins
within the network, determine the parameter best encoding for input intensity and predict the effect of protein removal to
the system’s output response. Extensive functional re-organization of proteins is observed in the lower end of stimulus
concentrations. As we move to higher concentrations the variability is less pronounced. 6 functional groups have emerged
from a consensus clustering approach, reflecting different dynamical aspects of the network. Mutual information
investigation revealed that the maximum activation rate of the two output proteins best encodes for stimulus intensity.
Removal of each protein of the network resulted in a range of graded effects, from complete silencing to intense activation.
Our results provide a new ‘‘vista’’ of the EGF-induced MAP kinase cascade, from the perspective of complex self-organizing
systems. Functional grouping of the proteins reveals an organizational scheme contrasting the current understanding of
modular topology. The six identified groups may provide the means to experimentally follow the dynamics of this complex
network. Also, the vulnerability analysis approach may be used for the development of novel therapeutic targets in the
context of personalized medicine.
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Introduction

Cells use intracellular signalling pathways to dynamically

respond to external and internal stimuli [1]. The activation of

these pathways, usually through a cascade of protein phosphor-

ylations, alters the cell’s transcriptional and/or metabolic activities

to accommodate to new environmental needs. The great

importance of intracellular signalling in development, normal

function and disease has attracted an ever increasing scientific

interest in understanding and regulating its role.

One of the most important and best studied networks is the

epidermal growth factor receptor (EGFR) signalling pathway.

EGFR belongs to a family of receptor tyrosine kinases that

includes three other members (erbB2/HER-2, erbB3/HER-3, and

erbB4/HER-4) [2]. It is anchored in the cytoplasmic membrane,

composed of an extracellular ligand-binding domain, a short

hydrophobic transmembrane region, and an intracytoplasmic

tyrosine kinase domain (reviewed in refs. [3,4]).

EGFR becomes activated by ligand-dependent as well as ligand-

independent mechanisms and receptor upregulation (frequent in

cancer). The epidermal growth factor (EGF) is one of the seven

known ligands that bind to the EGFR [2]. EGF binding induces a

conformational change of the receptor ectodomain that allows for

receptor homodimerization (or heterodimerization with one of the

other members of the family), and autophosphorylation of several

tyrosine residues within the COOH-terminal tail of the receptor

[5,6]. As a means of signal attenuation, activated EGFR is down-

regulated by internalization and degradation [7]. However, it may

also recycle back to the plasma membrane and it has been

reported that internalized activated EGFR continues to signal in

endosomal compartments forming a second, internalized pathway,

parallel to the cytoplasmic one [8]. EGFR autophosphorylation

elicits downstream activation and signalling by several other

proteins that associate with the phosphorylated tyrosines through

their own phosphotyrosine-binding domains. These downstream
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proteins initiate several signal transduction sub-pathways, includ-

ing the mitogen-activated protein kinase cascade (MAPK) [9].

Numerous experimental studies have provided us with a

modular view of the MAPK organization. Within the cascade,

two principal routes are activated following EGFR activation, a

Shc-dependent and a Shc-independent, leading to the activation of

Ras subfamily members [10,11]. Activated Ras activates the

protein kinase activity of Raf kinase [12]. Raf kinase phosphor-

ylates and activates MEK (MEK1 and MEK2) which then

phosphorylates and activates a mitogen-activated protein kinase

(ERK). Finally, activated ERK activates and regulates several

cellular proteins and nuclear transcription factors to promote

MAPK function which includes cell proliferation, differentiation,

growth, migration, adhesion and survival [13]. EGFR activation

and the subsequent MAPK activation have therefore a central role

in the organism’s development and maturation processes [14].

This pathway, when deregulated, results in the development of a

number of malignancies [4]. Specific antibodies and small

molecules have been developed in the past few years to silence

the constitutive activation of the MAPK pathway and are being

used in the clinical setting [15]. Their success is however

constrained by either the existence of constitutively active

downstream proteins or the development of drug resistance.

Understanding the structure and function of MAPK is crucial

for the development of new targeted therapies and for overcoming

resistance mechanisms. This task has proven a challenging puzzle,

as the pathway displays a characteristic complexity via the non-

linear interactions of the large number of proteins involved and

their extensive crosstalk. Biochemistry and molecular biology have

provided us with a bulk of information regarding reaction kinetics,

protein to protein interactions and mutational effects. Based on

these results, early mass action mathematical models have been

constructed [16–19] and used as a starting point for more

elaborate, data driven models of the pathway [20–21]. Sensitivity

and control theory studies have shown the dependency of output

protein concentration on the Shc-dependent pathway [22],

highlighted the central role of Raf activity [23] and examined

the role of subsystem redundancy [24]. Another theoretical study

predicted distinct temporal patterns of autophosphorylation for

different EGFR tyrosine residues demonstrating the network’s

inherent complexity [25]. Spatio-temporal aspects of the EGFR

pathway have been resolved using multi-compartmental modelling

incorporating the experimentally confirmed result that the

activities of the phosphatases involved in dampening EGFR

phosphorylation are comparable across different cellular locations

[26]. The constitutive activation of EGFR and the underlying

regulatory mechanisms have also been investigated in a model

driven by phosphoproteomics data [27]. Finally, in more clinically

relevant approaches, strategies for successful drug or miRNA

applications have been considered using computational modelling

[28–30].

In this work, we attempt a functional characterization for the

EGF-activated MAPK pathway. We examine the pathway from

the perspective of complex self-organizing systems, using the time-

dependent protein concentrations estimated from the model

developed by Schoeberl et al., 2002 [19]. To this end, we

employed a framework for mining information from the signals

observed from a dynamical and distributed biological system

[31,32]. We use a clustering algorithm to identify functional

subgroups within the network and show their internal re-

organization when moving from low to high stimulus concentra-

tions. Next, we identify the parameter best encoding for stimulus

intensity with mutual information techniques and use it to estimate

the impact of removing each protein from the network. Our results

may be used for the successful experimental monitoring of the

system’s dynamics and as a strategic approach to novel drug

development.

Results

Subgroup functional re-organization from low to high
EGF concentrations

EGFR internalization attenuates the system’s response for high

EGF concentrations and amplify it for low EGF concentrations,

contributing to the marked output homeostasis of the system

displayed for a wide range of stimulus concentrations [19]. Here,

we examine the functional re-organization of the proteins when

moving from low to high EGF concentrations. We considered that

similarity in concentration profiles reflects functional dependence

and employed a clustering algorithm to group the proteins. This

step was repeated for 101 different levels of constant EGF

concentration, ranging from 5 to 5000 molecules/cell, each

simulation running for 100 min network time. The derived

groupings were compared against each other via an appropriate

metric. Figure 1 includes the results from all those comparisons.

Each point corresponds to a grouping from a particular EGF level

and the proximity between any two points reflects the fact that the

proteins were grouped similarly for the corresponding pair of EGF

levels. In the upper panel of Fig. 1, a 2D display reflecting all the

pairwise distances between the 101 distinct groupings is shown. At

the extremities of the graph lie the groupings for EGF

concentration of 5, 250 and 5000 molecules/cell. Many concen-

tration levels overlap, signifying identical groupings, and are

therefore indistinguishable in Fig. 1, panel a. To resolve this

overlap, the 1st dimension of the MDS map (r1), has been plotted

as a function of [EGF] in panel b of Fig. 1. A great variability can

be observed up to about 500 molecules per cell (also reflected in

Fig. 1, panel a). For higher EGF concentrations, variability

changes stepwise. For concentrations 3850 molecules per cell

and higher, protein groupings remain unchanged.

The extensive re-organization of protein function from a

compositional perspective when moving from low to high EGF

concentrations is illustrated in Fig. 2. Lines connect the proteins

that change groups when different [EGF] levels are compared.

Increasing [EGF] from 5 to 250 molecules/cell forces virtually all

proteins to change clustering groups. Some group proteins either

move together in a new cluster or segregate and re-organize in

different groups, marking a new functional role. The changes are

less pronounced but still in effect when [EGF] is increased from

250 to 5000 molecules/cell.

Closer examination of protein groupings formed for the three

concentrations of interest, namely 5, 250 and 5000 molecules/cell

in panels a, b and c of Fig. 3 respectively reveals functional aspects

of the network. We use a schematic representation of the MAPK

cascade, reflecting its modular organization. Each circle represents

a protein and arrows give the direction of activation or the

information flow. Starting from (EGF-EGFR*)2-GAP, when

circles are shown in doublets side by side, the left denotes the

‘‘surface’’ protein and the right denotes the ‘‘internalized’’. The

Shc-dependent cascade flows (arrows) from left and the Shc-

independent flows from the center (through a direct interaction

between (EGF-EGFR*)2-GAP and Grb2-Sos) and from the right.

The flow converges on Ras-GTP and then Raf. Raf, MEK and

ERK amplifying loops (circular double arrows) follow and end in

the network’s output proteins, ERK-PP and ERK-PPi. Protein and

protein complex names are identified in panel a, whereas they

have been removed in panels b and c for illustration purposes. In

Fig. 3, colours indicate the group to which the protein was
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assigned, with group 1 showing the largest coherence among its

members and the last group, the least.

As expected from the results of Fig. 1, very low EGF

concentration (Fig. 3, panel a: 5 molecules/cell) has many

differences compared to the other two shown. The most

prominent is that members of the Shc-independent pathway were

assigned in group 1 in panel a, while for higher EGF

concentrations members of the Shc-dependent cascade showed

the largest coherence. A common observation across all concen-

trations tested was that groups were formed from proteins

belonging to different modules of the network. This analysis

revealed a concentration-dependent, cross-modular functional

organization. Another common observation was that the output

proteins ERK-PP and ERK-PPi always clustered in the same

Figure 1. Visual comparison of protein groupings. The groupings for different levels of EGF concentration were compared against each other
by means of VI-metric and the obtained results are presented geometrically, by means of MDS, in a space of reduced dimensions. a) A 2D display
reflecting all the pairwise distances between the 101 distinct groupings. Note that there is overlap between clusterings for consecutive values of EGF
concentration. b) To resolve this overlap, the 1st dimension of the MDS map (r1), has been plotted as a function of [EGF].
doi:10.1371/journal.pone.0111612.g001
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group. This ‘‘common-fate’’ tendency of the output proteins is yet

another manifestation of the amazing homeostasis characterizing

the MAPK system, probably served by internal functional

rearrangement of its elements.

Consensus clustering recognizes 6 functional subgroups
In an attempt to produce an ‘‘aggregated’’ clustering, that

would summarize the common functional organization trends in

the overall set of individual clusterings, and hence help in

identifying the proteins that share a robust mutual functional-

coupling (despite the changes in EGF concentration levels) we

adopted a consensus clustering approach [33,34].

The results from consensus clustering are shown in Fig. 4 where

protein groups have been ranked according to a score reflecting

the mutual coincidence of their members across the 101 different

clusterings. Five functional groups have been identified with the

5th being the least coherent, below the ‘‘chance’’ level (see Fig. S3).

Sos protein appeared as a 6th single member group, isolated from

the rest of the network.

In the first group (dark blue in Fig. 4), the concentration of the

proteins display a fast rise followed by a relatively fast decline and

then a slow degradation towards elimination. Mostly, the key

proteins of the Shc-dependent pathway belong in this first group,

which also include Ras, Raf and MEK complexes, encompassing

both ‘‘surface’’ and ‘‘internalized’’ components. The group is best

represented by the concentration time course of the (EGF-

EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP complex, as shown in

Table 1.

The second group (blue in Fig. 4) displays a biphasic response

with two peaks, followed by a slow decline. Proteins of the Shc-

independent pathway are the main members of this group mainly

in internalized EGF-EGFR complexes but also in the MEK

family. The (EGF-EGFR*)2-GAP-Grb2-Sos-Prot complex resem-

bles the most the average time course of this group (Table 1).

The third group of proteins (light blue in Fig. 4) shows

acontinuous slow rise in concentration. The main members are

the degraded proteins, Phosphatase 2 (Phos2), MEK, ERK, ERK-

P-Phospatase3 and both surface and internalized ERK-MEK-PP.

The concentration of the degraded (EGF-EGFRi
*)2 complex is the

representative member of this group (Table 1).

In the fourth group (green in Fig. 4), the initial fast rise is

followed by near steady state in protein concentration. Activated

Shc (Shc*) and its complexes with Grb2, Raf, Phosphatase1

(Phos1) and both ERK-P and ERK-Pi belong in this group. Shc*

undergoes the most characteristic timecourse of this group

(Table 1).

The fifth group (black with an ‘‘x’’ in Fig. 4) displays the fastest

dynamics, with a biphasic response, with the first spike larger than

the subsequent ‘‘bump’’, and a slow decline later on. Surface EGF-

EGFR complexes and the final products of the network, ERK-PP

and ERK-PPi belong in this least coherent group. The concen-

tration of the activated dimer (EGF-EGFR*)2 is representative of

the time course of the proteins in this group (Table 1).

Finally, Sos protein constitutes a single unit group, with an

almost instant rise to a maximum value, a sudden drop to near

elimination and a recovery to a steady state after a ‘‘bump’’ slightly

higher than its steady state final concentration.

The maximum rate of activated surface or internalized
ERK codes for EGF concentration

We sought to determine the parameter of the output of the

network, ERK-PP and ERK-PPi, best encoding for stimulus

concentration. Towards this end, we tested EGF concentrations,

from 1 to 500 molecules with increments of 1, from 500 to 1000

Figure 2. Graphical correspondence between groupings. A schematic representation of how functional groups change from a compositional
perspective. The protein groupings for [EGF] = 5, 250, 5000 are compared in pairs. Groups have been ordered in terms of compactness. The color
indicates the order of the groups with blue corresponding to the strongest functional cluster. Lines connect the proteins that change group, with the
change of [EGF] level.
doi:10.1371/journal.pone.0111612.g002
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with increments of 10 and from 1000 to 5000 with increments of

50 for a total of 629 simulations. We chose to study the effects in

finer detail at low EGF concentration based on the results in Fig. 1

where greater variance can be observed in the range of 1 to 1000

molecules. For all simulations, we estimated mutual information

between EGF concentration and the following parameters: Area

under the curve for ERK-PP (AUC ERK-PP), area under the

curve for ERK-PPi (AUC ERK-PPi), maximum rate of ERK-PP

activation (MaxRate ERK-PP), timing of ERK-PP maximum rate

(MaxRate ERK-PP Timing), maximum rate of ERK-PPi activa-

tion (MaxRate ERK-PPi), timing of ERK-PPi maximum rate

(MaxRate ERK-PPi Timing), area under the curve for both ERK-

PP and ERK-PPi (AUC ERK-PP+AUC ERK-PPi) maximum rate

of activation of either ERK-PP or ERK-PPi (MaxRate ERK-PP

OR ERK-PPi) and minimum timing of either ERK-PP or ERK-

PPi (Min Timing ERK-PP OR ERK-PPi). The results of this

Figure 3. A semantic map of protein-groupings. The functional clusters, derived for three different levels of EGF concentration (a:5, b:250,
c:5000), are presented over a graphical outline of the protein network. Proteins in the same group are sharing the same color, while the color of each
group indicates the order of the group regarding compactness.
doi:10.1371/journal.pone.0111612.g003
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Figure 4. Protein groups from Consensus clustering. a) An ‘‘aggregated’’ clustering in which the protein groups have been ranked according
to a score reflecting the mutual coincidence of their members across the 101 different clusterings. The 5th group was the least coherent group and
the ‘x’ symbol indicates that its compactness was at the ‘‘chance’’ level. Sos protein appeared as isolated from the rest network. b) The profiles of 6
representative proteins for different levels of EGF concentration.
doi:10.1371/journal.pone.0111612.g004
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analysis are shown in Table 2. All parameters encoded for

stimulus concentration with maximum rate of activation of either

ERK-PP or ERK-PPi (MaxRate ERK-PP OR MaxRate ERK-

PPi) exhibiting the best score. This metric performed marginally

better than MaxRate ERK-PP, suggesting that for very low EGF

concentrations (from 1–5 molecules/cell) ERK-PPi activates faster

than ERK-PP.

Targeting different proteins in the path results in various
outcomes

Having determined that the maximum activation rate of either

ERK-PP or ERK-PPi is best encoding for stimulus concentration,

we studied the effect of removing each protein from the network.

For a constant stimulus concentration (EGF = 5000 molecules/

cell), we removed one protein at a time and studied the effect on

the maximum activation rate of either ERK-PP or ERK-PPi.

Removal of the protein was achieved by zeroing its initial

concentration and its concentration rate equation. Results are

shown in Fig. 5. Protein location in the network and color-coded

contribution are shown in panel 5a and a rank-based display in

panel 5b. The removal of each of a group of nine proteins, namely

of the EGFR, EGF-EGFR, (EGF-EGFR)2, (EGF-EGFR*2), GAP,

Ras-GDP, Raf, MEK and ERK resulted in complete silencing of

the network. On the other end, removal of the ERK-PP-

Phosphatase3 resulted in an almost 500% increase in the

activation rate of ERK-PP. An increase in activation was observed

for virtually all phosphatase members while the removal of most

internalized proteins had little effect.

Discussion

Computer simulations offer a promising, complementary

approach for studying complex networks. It has been suggested

that applying computational modelling of biochemical signal

transduction pathways can help identify drug targets and optimize

therapeutics treatments [35]. For instance, a model predicted that

an ErbB3 antagonist would inhibit the ErbB-PI3K network

activation more efficiently than current marketed therapeutics

[36]. This finding led to the development of a novel agent

currently tested in clinical trials [37].

The MAP kinase cascade is an important pathway in

intracellular signalling with diverse roles in normal function but

also in disease manifestation. Pharmacological targeting of a

number of its compounds is being used or tested in the clinical

setting [29]. Understanding its function will be essential for the

successful application of therapeutic strategies, but experimental

approaches are limited due to the system’s complexity and

extensive crosstalk with other pathways. Based on a data-driven

model previously described, we explored the EGF-induced MAP

kinase cascade from a complex self-organizing systems perspective,

seeking functional aspects of its organization.

We have used a well-developed framework for mining

information from the time series of all proteins involved in the

model. Proteins displaying similar time courses form functional

groups depending on input concentration. Extensive re-arrange-

ment of group members is observed for low EGF concentrations.

The dominance of the ‘‘internalized’’ route is restricted to very

low, almost negligible, EGF concentrations. The ‘‘surface’’ route

determines the network’s response for the vast majority of the cases

considered. Re-organization of proteins in a stepwise manner

Table 1. Representative proteins.

Representative proteins for each group

Group 1p 1 (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP, Raf-Ras-GTP_i, (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos

Group 2 (EGF-EGFR*)2-GAP-Grb2-Sos-Prot, (EGF-EGFR*)2-GAP-Grb2-Prot, MEK-P-P’ase2

Group 3 (EGF-EGFRi*)2deg, EGFRideg, ERK-P-P’ase3

Group 4 Shc*, Shc*-Grb2, Shc*-Grb2-Sos

Group 5 (EGF-EGFR*)2, EGFR_i, (EGF-EGFR)2

Group 6 Sos

For each functional group, defined by means of Consensus Clustering, we identified the three more typical proteins. The proteins are listed in order of ‘‘typicality’’.
doi:10.1371/journal.pone.0111612.t001

Table 2. Mutual Information between input-output.

Parameters Mutual Information Values

AUC ERK-PP 0.714

AUC ERK-PPi 0.710

MaxRate ERK-PP 0.831

MaxRate ERK-PP Timing 0.735

MaxRate ERK-PPi 0.685

MaxRate ERK-PPi Timing 0.726

AUC ERK-PP+ ERK-PPi 0.718

MaxRate ERK-PP OR ERK-PPi 0.832

Min Timing ERK-PP OR ERK-PPi 0.731

doi:10.1371/journal.pone.0111612.t002

Protein Functional Grouping in the MAPK Cascade
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between functional groups was also observed for higher EGF

concentration, although less pronounced. Cluster analysis showed

a more or less vertical organization with proteins from different

modules of the network falling into common groups. Regardless of

stimulus concentration, the output proteins of the network always

clustered together as a manifestation of its output homeostasis. An

Figure 5. Network vulnerabilty map. Based on simulations, and at the level of [EGF] = 5000, we studied the effect of ‘‘removing’’ each protein on
the network functionality. Using the selected (MaxRateERKppOR ERKipp) index, we assigned a score to each protein that reflects the change in that
index. These scores were used to rank the proteins and group them according to the type (activation/deactivation) and strength of influences’’.
doi:10.1371/journal.pone.0111612.g005
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integrative view of the cascade’s functional architecture came from

our consensus clustering approach. Proteins clustered in 5 groups

with characteristic time courses. Sos appears independent from the

rest of the network. Grouping the proteins in different functional

clusters reduces the complexity of the network. It may also provide

the means for experimentalists to follow the dynamics of the

network by measuring only the characteristic proteins from each

cluster instead of attempting to measure all of them. The

formulation of a 6 variable mathematical model able to reproduce

the dynamics of the full model would provide solid evidence for

our claim and it constitutes the goal of current research.

Phosphoproteomic data could verify the time course co-evolution

of several proteins under our model’s conditions.

It has been proposed in the past that the activation rate is the

important factor in intracellular pathways [19]. Here, we confirm

this hypothesis by quantifying the mutual information between

stimulus intensity and various other parameters typically measured

in experiments. Having established that the activation rate is the

key parameter of the network’s encoding ability, we quantified the

effect of protein removal. The vulnerability analysis showed that a

group of proteins, with members from different functional groups,

were absolutely essential for the system’s function. Other proteins

have substantial impact in either silencing or enhancing the

activation rate of the system’s output. Depending on the desired

effect, these proteins may be targets for future drug development.

Our analysis also pinpointed a number of proteins with little or no

influence on the system’s function.

The interpretation of our results is valid for the model under

consideration. However, our methodology is readily applicable to

any other model, since it operates on the time series of the

constitutive proteins. Also, the results can be extended to

arbitrarily complex models displaying the same dynamics for the

proteins under consideration as the functional dependences

between proteins would remain the same.

The EGFR pathway displays a typical architecture, marked by

a range of ligand molecules affecting a number of receptors, a

conserved core of interacting proteins and diverse outputs [38]. A

detailed description of the network can be found elsewhere [9] and

although the resulting map image is fairly complex, it is still a

simplification of the biological reality. The model we have used

represents only a small fraction of the pathway and that should be

kept in mind for the interpretation of our results in the biological

context, let aside clinical applications. For example, drugs

targeting some of the essential proteins are already in use for

therapeutic purposes. Their success is limited by other factors,

such as mutational effects of downstream and drug resistive

mechanisms. However, modelling should be able to identify

essential components and is not intended to be a complete

representation of the system under investigation. Simplifying the

enormous complexity will be the key for improving our

understanding of intracellular pathways. Accounting for muta-

tional effects, resistive mechanisms and virtual drug application is

feasible in the context of modelling [39] and will be the aim of our

future efforts towards a systems pharmacology approach [40].

Methods

Simulations
Source code for the Schoeberl et al. model was downloaded

from The CellML project (http://www.cellml.org) and adopted in

C. For protein nomenclature and network parameters the reader

should refer to the original publication [19]. Compared to the

original model, the following rescalings were used: a) concentra-

tions initially in ng/mL were rescaled to molecules per cell,

considering a cell volume of 1e212 L, b) first order rate constants

were rescaled from/sec to/minute, c) second order rate constants

were rescaled to/(minute x molecule). Simulations typically

represented 100 min of network time using an embedded Runge

- Kutta – Fehlberg integration algorithm. All algorithms for time-

series analysis, clustering, visualization and mutual information

were implemented in MATLAB (MathWorks, Natick, Massachu-

setts, U.S.A.).

Comparing patterns of activation
The time-dependent concentrations resulting from each simu-

lation are treated as temporal profiles and compared with each

other so as to express functional coupling between proteins. In

mathematical notation this is accomplished as follows. The time-

series ci (t), i = 1,2,…,N, t = 1,2,…,T (with i running over the

proteins in the network and t denoting the discrete time or latency)

are first brought to a common scale, by normalizing each one

independently so as to range within [0–1]. The normalized

activation patterns are depicted as xi(t), and collected in a data-

matrix X [N 6 T] = [x1 | x2 |… xi |… xN], where ‘|’ denotes a

line separator and each row-vector xi = [xi (1), xi (2),…, xi (t),…, xi

(T)] M RT corresponds to a protein. Hence X represents a point-

swarm residing in a multidimensional feature space with axes

corresponding to activation-values at particular latencies. The

pairwise euclidean distance dij = ||xi-xj||L2 quantifies the dissim-

ilarity between the ith and jth proteins. We considered that when

two proteins are activated similarly (i.e. their profiles are

characterized by a small pairwise distance), they are functionally

related. We therefore sought functional groups by means of

clustering in the T-dimensional space.

Clustering via Dominant-sets algorithm
A recently introduced clustering algorithm was employed for

detecting cohesive groups of temporal profiles [41]. The algorithm

is based on the identification of dominant set of multidimensional

points and, when repeatedly executed, facilitates the effective

clustering with the additional advantage of adaptively defining the

‘‘true’’ number of clusters. As dominant set is characterized the

subset of points, in which the overall inter-point similarity is higher

than that between the members of the set and the rest of the

points.

In a preprocessing step, the inter-profiles distances were

transformed to similarities and tabulated in an adjacency matix

A[N 6 N] with elements Aij = exp (2 dij/s) and Aii = 0. The

parameter s reflects the ‘radius of influence’; in our study was set

as equal to the average interpoint distance. The cohesiveness of a

given group of points is measured by the overall similarity, which is

estimated based on the corresponding entries in A. A good cluster-

candidate consists of elements that have large values connecting

one another in the similarity matrix. Hence, the problem of

finding a compact cluster is formulated as the problem of finding a

vector m that maximizes the following objective function [23]:

F(m)~mTAm ð1Þ

subject to m M D, where

D~ m[<N : mi§0Vi ^
PN

i~1 mi~1
n o

.

The algorithmic procedure described in [23], detects the

maximally cohesive cluster. Its operation is denoted as: {m,
F(m)} = Dominant_Set(A). The vector m lists the memberships for

all nodes in the set and can be used to identify the exact list of

points participating in the dominant-set (by locating the non-zero
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elements). The second output F(m) is the particular value of

objective function that measures the cohesiveness of the detected

dominant-set. The overall clustering procedure, proceeds in

iterative fashion (the matlab code can be found from [42]). The

points participating in the dominant-set (at the end of a single

execution of the Dominant_Set-routine) are removed from the set

and the associated entries in matrix A are eliminated. Then, the

next dominant-set is delineated by working with the residual

adjacency matrix. The detected groups are ranked according to

cohesiveness and a diagram summarizing the intermediate steps is

produced (for an example, see Fig. S1 and Fig. S2) and exploited

for the exact definition of cluster numbers (functional groups). To

define a ‘‘chance level’’, we applied 1000 times the dominant-sets

clustering to randomized data (derived by permuting the rows and

columns of A) and formed the distribution of the cohesiveness

values that can appear even in the case of no detectable structure

in the point-swarm. The chance level was defined (at significance

level a= 0.005) as the threshold value F(mo), above which only

0.5% of extracted dominant sets were residing.

Comparing Functional Groupings via Variational
Information (VI) measure

To detect possible changes, in terms of network organization,

we studied the dependence of functional grouping on the EGF

concentation level. We run the computational model 101 times,

for different EGF level ranging from 5 to 5000 ng/ml. By applying

the dominant-sets algorithm to each one of the resulted point sets {

Xj }j = 1:101, we derived 101 distinct clusterings that we systemat-

ically compared to each other by means of VI metric. Vi is a novel

information-theoretic criterion, which has been introduced for

comparing two different clusterings of the same data set and

measures the amount of information that is lost or gained in

changing one clustering to the other [43]. It is a symmetric metric

and satisfies the triangular inequality. In our case it was adopted as

follows. We denoted the jth clustering output as an N-tuple

cj = [cj1,…,cjN], cji MZ+; e.g. c = [1 3 2 3 2 … 1 1 2 1] indicates that

the first and last protein is associated with the strongest functional

group, while the second protein is assigned to the group ranked

third in terms of cohesiveness. VI was computed for every pair of

clusterings:

VI(cj,ci)~½H(cj){I(cj,ci)�z½H(ci){I(cj,ci)�,i,j~1,2,:::101

where H(cj) denotes the entropy associated with the particular

clustering and I(.,.) denotes the mutual information between two

clusterings. The corresponding measurements were tabulated

accordingly in a [1016101] distance matrix DVI. The distance-

preserving technique of multidimensional scaling (MDS) was then

applied to that matrix, i.e. Y[10162] = MDS(DVI), resulting in a

low dimensional scatter-plot in which each point corresponds to a

particular clustering and inter-point distances reflect the VI-

measurements (see Fig. 1) [44].

Consensus Clustering
We first form the consensus matrix P[N6N] whose entry Pij

indicates the number of clusterings in which the ith and jth protein

were assigned to the same functional group, divided by number of

clusterings (i.e. 101) [33,34]. Then, by treating P matrix as an

adjacency matrix Aconsensus, we applied once again the algorithm

of dominant-sets (see Fig. S3). The groups detected this way were

ranked according to cohesiveness and therefore the most compact

group contained the proteins that showed a constant functional

dependency (for all range of EGF levels). For each of these

functional groups we identified the three most typical (represen-

tative) proteins, based on their membership values (the values of

vector m in eq.1). Finally, to illustrate the relationship between the

consensus clustering and the individual ones, we derived an

augmented MDS-map in which the ‘projection’ of consensus

clustering has been appended (see Fig. S4).

Mutual Information (MI) estimates for identifying indices
of signal propagation

We studied how changes in EGF concentration (considered as

‘‘input’’ signal) influences the concentrations of ERK-PP and

ERK-PPi proteins (treated as ‘output’ signal). To this end we

simulated the complex signal pathways and, after defining 9

alternative parameters that could be readily deduced from the

activation patters of the outputs, quantified the information-

transfer based on mutual-information. Using the kth nearest-

neighbor mutual information estimation algorithm [45,46], with

k = 5, we measured the strength of association between [EGF] and

each of the measured parameters (see table 2). In this way, we

identified the observable parameter best-reflecting the involved

signal transduction.

Resilience of protein network
We score each protein based on the percentage-change that is

induced to the selected parameter when the particular protein is

‘‘deactivated’’ (by nulling its contribution to the network function).

‘‘Sensitivity analysis’’ for the grouping of protein profiles
We performed a sensitivity analysis for the grouping of protein

profiles. To test the robustness of the reported self-organization

tendency (that is the functional grouping of proteins), with respect

to the realization of the particular model, we proceeded as follows.

We altered the rate constants of all reactions by adding white

Gaussian noise at the beginning of the simulation. The noise was

scaled as a percentage of the constant’s original value. Different

noise realizations were used for each simulation. For constant

input concentration ([EGF] = 5000 molecules/cell), the new

protein profiles were fed into the Dominant-sets clustering

algorithm and the new groupings were compared against the

grouping that corresponded to the unperturbed network. Using

the VI-measure as a measure of divergence, so as to measure the

dissimilarity between the new and original grouping, we plotted

the divergence as a function of noise level. As it can be seen in

Figure S5, even for high perturbation (up to 40%), the divergence

remains at a reasonable level. The dotted line denotes the

divergence from the original grouping of the grouping that

resulted from the random permutation of group-labels.

Supporting Information

Figure S1 Intermediate algorithmic steps in the execu-
tion of dominant-sets clustering algorithm. a) A sample of

protein activation profiles. b) The matrix of all pairwise similarities

(between protein activation profiles) in the network. c) The

cohesiveness (group-compactness) of the detected groups as a

function of rank. Dotted line indicates the chance level (of groups

detected in randomized data).

(TIF)

Figure S2 The grouping of protein activation profiles
that corresponds to Fig. S1.
(TIF)
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Figure S3 Intermediate algorithmic steps in the execu-
tion of Consensus Clustering. a) The [93 6101] matrix with

all the derived clustering lists: each column corresponds to a

simulation with different EGF level. b) The consensus matrix. c)

The cohesiveness of the detected groups as a function of rank.

(TIF)

Figure S4 Incorporating the grouping of consensus
clustering in the map of Fig. 1. The arrow indicates the

embedding location of the ‘‘aggregated-grouping’’ in the VI-map.

(TIF)

Figure S5 ‘‘Sensitivity analysis’’ for the grouping of
protein profiles. Even for high perturbation (up to 40%), the

divergence remains at a reasonable level. The dotted line denotes

the divergence from the original grouping of the grouping that

resulted from the random permutation of group-labels.

(TIF)

File S1 Network implementation in C and simulation
data files.
(RAR)

File S2 Matlab source code for data analysis.
(RAR)
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