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While most connectivity studies investigate functional connectivity (FC) in a scale-
dependent manner, coupled neural processes may also exhibit broadband dynamics,
manifesting as power-law scaling of their measures of interdependence. Here we
introduce the bivariate focus-based multifractal (BFMF) analysis as a robust tool for
capturing such scale-free relations and use resting-state electroencephalography (EEG)
recordings of 12 subjects to demonstrate its performance in reconstructing physiological
networks. BFMF was employed to characterize broadband FC between 62 cortical
regions in a pairwise manner, with all investigated connections being tested for true
bivariate multifractality. EEG channels were also grouped to represent the activity of
six resting-state networks (RSNs) in the brain, thus allowing for the analysis of within-
and between- RSNs connectivity, separately. Most connections featured true bivariate
multifractality, which could be attributed to the genuine scale-free coupling of neural
dynamics. Bivariate multifractality showed a characteristic topology over the cortex that
was highly concordant among subjects. Long-term autocorrelation was higher in within-
RSNs, while the degree of multifractality was generally found stronger in between-RSNs
connections. These results offer statistical evidence of the bivariate multifractal nature of
functional coupling in the brain and validate BFMF as a robust method to capture such
scale-independent coupled dynamics.

Keywords: scale-free, bivariate, multifractal, functional connectivity, network physiology,
electroencephalography

INTRODUCTION

Physiological systems are integrated through a series of intricate connections giving rise to
networks of dynamically interacting elements. These may emerge at various scales from molecular
pathways (Covert, 2006; Prentki et al., 2020) to the brain connectome (Sporns, 2011) and even
at the level of the entire organism (Bashan et al., 2012; Bartsch et al., 2015). The universality
of this organizing principle gave birth to the field of network physiology (Bashan et al., 2012;
Ivanov and Bartsch, 2014; Bartsch et al., 2015; Ivanov et al., 2016), aiming at unfolding the
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mechanisms through which diverse physiological systems
interact. This goal may be achieved through characterizing
various aspects of the temporal coupling between such systems
and processes. Novel bivariate analytical methods (Bashan et al.,
2012; Schulz et al., 2013; Jalili, 2016) kept advancing the research
in this field. Even though many of these methodologies have
been proven invaluable for the investigation of scale-specific
interactions, they largely neglect the plausible broadband nature
of the functional coupling itself (i.e. coupling that spans across
a wide range of frequencies). This may, however, become
relevant, as many biological processes have been shown to express
broadband, scale-free dynamics; examples include the variability
of heart rate (Ivanov et al., 1999, 2004; Nunes Amaral et al., 2001;
Bartsch et al., 2005), spontaneous brain activity (Ivanov et al.,
2009; Lin et al., 2020) or gait variability (Bartsch et al., 2007),
to name a few. While these biological functions may contain
narrowband components that can also be of interest, their
broadband dynamics indicate scale-free (or fractal) behavior (Eke
et al., 2000). Scale-free features may reveal fundamental aspects of
complex systems – such as the human organism – that otherwise
remain hidden from traditional methods of analysis. The ubiquity
of the univariate fractal dynamics in physiological processes
warrants the application of bivariate scale-free time series analysis
to study the complexity of coupling between such processes.

Among fields where the human organism (or subsystems
thereof) is modeled as a network of functionally coupled
elements, brain functional connectivity (FC) studies probably
gained the most momentum in past decades (Friston et al.,
1993; Biswal et al., 1995; Rubinov and Sporns, 2010; Sporns,
2011; Finn et al., 2015; Lowe et al., 2016; Preti et al., 2017).
In that, the network theoretical approach has been shown by
many studies to be a powerful tool for the analysis of neural
activity patterns (Bullmore and Sporns, 2009; Stam, 2014).
According to this framework, the investigated brain regions are
considered as nodes of the reconstructed network, while its
edges represent the statistically estimated functional coupling
between these regions (Rubinov and Sporns, 2010). However, a
‘static’ assessment of FC poses a limitation since the strength
of functional coupling between neuronal assemblies has been
shown to change over time (Chang and Glover, 2010; Hutchison
et al., 2013). Therefore, characterizing the temporal organization
of brain network topology requires a model that can account for
these time-dependent aspects of FC. This led to the introduction
of various tools capable of capturing the dynamic characteristics
of brain networks (Dimitriadis et al., 2010; Tagliazucchi et al.,
2012; Yu et al., 2015; Preti et al., 2017). Additionally, the
ubiquitous presence of scale-free dynamics in the resting-state
brain (Werner, 2010; Fraiman and Chialvo, 2012), – especially
in the electroencephalogram (EEG) (Lutzenberger et al., 1992;
Preißl et al., 1997; Gong et al., 2003; Stam and de Bruin,
2004; Racz et al., 2018b) – encouraged the investigation of
power-law scaling in time-varying network properties. Utilizing
a combination of dynamic graph theoretical analysis and
multifractal time series analysis, we recently revealed that both
global (Racz et al., 2018a,b) and local (Racz et al., 2019) properties
of functional brain networks fluctuate according to a multifractal
pattern, which may also be affected in pathological conditions

(Racz et al., 2020). However, a different aspect of connectivity
dynamics, namely the scale-free nature of the inter-regional
coupling itself, remained inaccessible to these approaches, which
mainly utilized a sliding window technique. In contrast to
the univariate approach, bivariate multifractal methods – such
as detrended cross-correlation analysis (Podobnik and Stanley,
2008) or wavelet-based analysis (Abry et al., 2019; Jaffard et al.,
2019a,b)– characterize fractal properties of the coupling between
dynamic processes; therefore, they would be able to capture
these aspects of functional connections. Furthermore, such
approaches could be adapted to the graph-theoretical framework
of FC analysis, where edge weights in the network would be
assigned as the fractal characteristics of the functional coupling
between the investigated brain regions. Networks reconstructed
by this approach would inherently represent the fluctuating
nature of the connections, in contrast to the traditional way of
reconstructing dynamic connections by calculating static indices
of interdependence in a sliding window approach. Despite this, to
date only a handful of studies investigated the scale-free aspects
of functional brain connectivity (Achard et al., 2008; Wang
and Zhao, 2012; Ciuciu et al., 2014; La Rocca et al., 2021). In
this present work, we set out to address this issue by applying
multifractal covariance analysis – introduced earlier by Mukli
et al. (2018) – for assessing resting-state functional connectivity
reconstructed from EEG measurements.

Some precautions must be addressed, however, when assessing
the scale-free properties of empirical signals. In the case of
univariate multifractal analysis, it is critical to verify that
the obtained indices indeed characterize an inherent property
of the observed process, and they not only represent noise
or numerical instabilities of the analysis itself (Kantelhardt
et al., 2002; Kwapień et al., 2005; Grech and Pamuła, 2012;
Rak and Grech, 2018). Similar considerations must be made
in the case of bivariate multifractal analysis. Therefore, it is
indispensable to verify the presence of true bivariate scale-
free coupling by carrying out appropriate statistical tests
of power-law cross-coherence (Kristoufek, 2014) and cross-
correlation (Wendt et al., 2009; Podobnik et al., 2011; Blythe
et al., 2016). Although true multifractality can be confirmed
with statistical certainty by extending the testing framework
applied for univariate analytical tools (Kantelhardt et al., 2002;
Clauset et al., 2009; Roux et al., 2009; Racz et al., 2019,
2020), these methods do not provide much insight into the
generating mechanism of bivariate multifractality. Depending
on the mechanism, bivariate multifractality could be considered
as a consequence of independent univariate dynamics (Wendt
et al., 2009; Jaffard et al., 2019a). On the other hand, an
appropriate testing framework may identify the genuine scale-
free nature of the coupling. This type of bivariate multifractality
corresponds to an inherent aspect of the relationship between
the processes that otherwise remains undetectable to univariate
fractal analysis. For this purpose – namely, to confirm the source
of bivariate multifractality –, we devise a testing procedure
building on previous studies (Wendt et al., 2009; Kristoufek,
2011) that compares the bivariate fractal measures with their
univariate equivalents obtained from the investigated time series
to reveal their origin.
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So far, the majority of bivariate fractal studies has focused on
the analysis of financial time series (Podobnik and Stanley, 2008;
Oświęcimka et al., 2014; Pal et al., 2014; Kwapień et al., 2015),
while only a few studies applied these tools on physiological
datasets (Wang and Zhao, 2012; Ciuciu et al., 2014; La Rocca
et al., 2021). Moreover, to the best of our knowledge there
have been no studies statistically validating the existence of
bivariate multifractality in coupled processes in the human brain
or body. Here we apply a novel bivariate method – exploiting
the focus-based regression scheme of Mukli et al. (2015) –
to investigate if functional connectivity, as reconstructed from
EEG recordings, may exhibit a coupled multifractal nature.
First, we design and perform a series of statistical tests to
confirm true scale invariance and multifractality of individual
connections. Second, we assess between-subject and within-
subject (i.e., regional) variability of bivariate multifractal indices
in order to explore the consistency and discriminatory power
of the presented method. Third, we explore whether scale-free
coupling displays a topology at the level of large-scale functional
networks in the brain. By confirming the plausible bivariate
multifractal nature of neural interactions, the present study may
not only enhance our understanding of how neural activity
is organized in time and space but also provide an efficient
analytical pipeline for capturing long-term interdependencies of
physiological processes even outside the human brain, on the
level of the entire organism.

MATERIALS AND METHODS

Data and Participants
The EEG database analyzed in this study was made publicly
available by Sockeel et al. (2016) and consisted of recordings from
12 right-handed, healthy participants (aged 26.6 ± 2.1 years, six
females). Each recording contained a 5-minute long segment of
resting-state, eyes closed neural activity in which the subjects
were lying supine and were listening to an audio recording
equivalent to the sounds of an MRI system. EEG tracing was
carried out using a 62-channel BrainAmp amplifier, in which
the electrodes were arranged according to the international
10–10 system. The sampling rate was set to 5 kHz with
the ground and reference electrodes placed at Oz and Cz
positions, respectively. Electrode impedance was kept under
10 k� during the recordings. The original study was approved
by the local ethics committee (Comité de Protection des
Personnes–Ile-de-France under the number CPP DGS2007-
0555), with measurements being carried out in accordance with
the Declaration of Helsinki. All participants provided written
informed consent before the measurement. For further details
on participants and data collection the reader is referred to the
original article of Sockeel et al. (2016).

Preprocessing
All preprocessing was carried out using Matlab (The Mathworks,
Natick, MA, United States). The procedure followed steps of
the Batch Electroencephalography Automated Preprocessing
Platform (Levin et al., 2018), which uses functions of the

EEGLAB toolbox (Delorme and Makeig, 2004) along with
custom functions and scripts. First, the data was visually
inspected; artifact-free segments of length approximately 55 s
long were selected and band-pass filtered with lower and upper
cut-off frequencies of 0.5 and 250 Hz, respectively. Additional
notch filters at 50, 100, and 200 Hz were applied for line noise
removal. Subsequently, the signals were downsampled from
5 kHz to 500 Hz. Further artifact removal was performed
using the Harvard Automated Processing Pipeline for
Electroencephalography (HAPPE) (Gabard-Durnam et al.,
2018). HAPPE implements a series of steps, including wavelet-
enhanced independent component analysis followed by
independent component analysis with Multiple Artifact
Rejection Algorithm (Winkler et al., 2011, 2014). Thus, signal
components that likely originate from sources other than neural
activity, such as eye movements or scalp muscle contractions,
were excluded. Finally, the pruned data was re-referenced to the
common average reference. Subsequently, the first 214 datapoints
(approximately 33 s) were selected from every preprocessed
dataset for further analysis.

Bivariate Focus-Based Multifractal
Analysis
The focus-based multifractal (FMF) analysis framework was
introduced by Mukli et al. (2015) in order to provide a robust
and efficient way of multifractal time series analysis. Originally,
FMF was put forward as a univariate method, i.e., to analyze
a single time series. The concept of FMF was then extended
to the bivariate domain in a later study (Mukli et al., 2018),
with the new method termed bivariate focus-based multifractal
analysis (BFMF). Such modification (as detailed below) made the
analysis of the multifractal aspect of coupled dynamics feasible
and robust, and constitutes the main advantage of BFMF over
other bivariate multifractal tools.

Specifically, BFMF is implemented in the time domain using
statistical moments (of order q) of the scale-wise covariance of
sampled time series X and Y (covxy) calculated at various window
sizes. In that, the scaling function, SXY , is defined according to

SXY
(
q, s
)
=

(
1

Ns

Ns∑
v=1

|covXY |(v, s)q

)1/q

(1)

with Ns being the number of non-overlapping windows of size
s indexed by v and L = 214 the length of the time series in data
points. The cumulatively summed signal is bridge-detrended in
each temporal window prior to calculating the covariance. Values
of q are set to range from −15 to 15 with increments of 1, as
this selection of moment orders is sufficient to reliably capture
multifractality (Grech and Pamuła, 2012). Scales are defined
according to a dyadic scale, i.e., as 2n with n ranging from 4 to
9; higher scales were excluded to avoid artifacts due to band-
pass filtering. Setting the scale s equal to the total signal length
L renders the sum in (1) independent of q. Consequently, in
the limit of s = L, values of S(q,s) converge to one point termed
the Focus (Figure 1). The Focus serves as an iterated reference
point in the regression model – based on the equations (18–21) of
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FIGURE 1 | End-point parameters of bivariate focus-based multifractal
analysis. Log-log transform of the scaling function [SXY (q,s)] vs. scale (s)
relationship is plotted. The generalized Hurst exponent [H(q)], for several
statistical moments (q), is acquired via linear regression with the Focus (solid
red circle) used as a reference point. H(2) expresses the long-term correlation
between the two time series. At the same time, the degree of multifractality
(1H15) is captured by the difference between H(q) at the minimal (–15) and
maximal (15) statistical moments.

Mukli et al. (2015) – that simultaneously estimates the best-fitting
linear function of log(s) to obtain log(S(q, s)) for all values of q.
The fitting procedure yields a set of power-law exponents (i.e.,
the slopes of the fitted linear functions), the generalized Hurst
exponent function (Barunik and Kristoufek, 2010):

SXY
(
q, s
)
∝ sH(q) (2)

From the estimated H(q), the ones of particular interest in this
study are H(2), H(−15), and H(15). H(2) is a measure of global
long-term interdependence between X and Y with the particular
case of H(2) = 0.5, indicating uncoupled dynamics. H(2) < 0.5
shows long-term anticorrelation while H(2) > 0.5 positive long-
term correlation of the two processes. Since multifractality
refers to the temporally altering nature of long-term (cross-)
correlations, the degree (or strength) of multifractality can be
considered as to what extent this property might change in the
process. Since positive and negative moment orders emphasize
the contributions of large and small covariance, respectively,
a measure characterizing the degree of multifractality can be
obtained by calculating the difference between the scaling
exponent obtained at the minimal and maximal moments
(Grech and Pamuła, 2012; Mukli et al., 2015). Therefore, in our
study multifractal strength was captured in 1H15 = H(-15) –
H(15), which provides a good and robust approximation of the
theoretical limit lim

q→∞
H
(
−q
)
−H(q) (Grech and Pamuła, 2012;

Mukli et al., 2015).

Assessing Multifractality
In order to verify the true multifractal nature1 of the functional
connections, an array of tests was utilized. The purpose of
these tests was to differentiate the true, time-varying scale-free
nature of these connections, emerging from the presence of
long-term cross-correlations, from those appearing as spurious
multifractality (Kantelhardt et al., 2002). First, we tested the
power-law dependence of the cross-spectral power on the scale,
based on the work of Clauset et al. (2009). In the case of a fractal
process, the spectral index (β) of its power spectrum represents
the slope of the fitted linear regression of the logarithmic
amplitude vs. frequency plot and is proportional to its univariate
Hurst exponent, Huniv(2) [β = 2Huniv(2)-1] (Eke et al., 2002).
This relationship also holds in the bivariate case, as the spectral
index of the cross-power spectrum of two processes expressing
fractal coupling is equivalent to β = 2Hbiv(2) −1 (Kristoufek,
2014), where Hbiv(2) is the bivariate Hurst exponent. Therefore,
the cross-power spectrum of the two processes is suitable for
identifying the plausible power-law dependence in their coupling.
For each pair of time series, 40 surrogates were generated whose
value of Huniv(2) was equal to that of Hbiv(2), according to
the spectral synthesis method (Saupe, 1988). Then, a linear
regression model was fitted to the log-log transformed power-
spectrum and a Kolmogorov distance was calculated for every
generated time series denoting its maximal distance from its
power-spectrum (Duniv). The distribution of Duniv was compared
with the maximal distance of the linear function fitted to
the log-log transformed cross-power spectrum of the original
connection (Dbiv). The original connection was considered scale-
free (successful test), if

Dbiv < µ(Duniv)+ 2σ(Duniv) (3)

where µ(Duniv) and σ(Duniv) are mean and standard deviation
obtained from the Duniv distribution. Onward, µ() represents
the mean and σ() indicates the standard deviation of the
distribution in question.

In addition, we examined the detrended cross-correlation
coefficients (ρ) calculated for each scale by adopting a method
proposed by Podobnik et al. (2011):

ρ (s) =
S2

XY (2, s)
SX (2, s) SY (2, s)

(4)

where SX(2, s), SY(2, s), and SXY(2, s) are the scaling function
values for scales s and the 2nd order statistical moment
of time series X, Y and their connection, respectively. We
used a stochastic binomial cascade algorithm (Schumann and
Kantelhardt, 2011) to generate a population (100 pairs) of
multifractal signals with L, H(2) and 1H15 adjusted to the
univariate time series concerned. In line with the refinement of
Blythe et al. (2016), all coefficients were tested simultaneously
for every scale. Thus, the null hypothesis was only rejected
if statistical analysis confirmed that the original ρ(s) exceeded

1The multifractal nature of the coupling was based on the dichotomus model
of fractional Gaussian noise and fractional Brownian motion (Eke et al., 2000)
extended to the multivariate setting (Lavancier et al., 2009).
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that of the surrogate population of cross-correlation coefficients
for each scale, yielding an overall p < 0.05. Accordingly, the
individual significance levels were set to (0.05)1/6. Connections
that passed the test were considered to have genuine long-term
interdependence.

To test if the observed multifractality was due to non-
linearities, the following phase randomization scheme was
applied. Forty surrogates for each time series were generated
by: (i) Fourier transforming the data of all channels and
(ii) randomly permutating the phases before inverse Fourier
transformation of the spectrum (Prichard and Theiler, 1994).
Since the same permutation was carried out to randomize the
phases of data from all channels, this procedure destroyed the
non-linear interdependencies between the signals while the linear
dependencies remained intact. If the original 1H15 (1H15,orig)
did not satisfy the inequality

1H15,orig > µ(1H15,sur)+ 2σ(1H15,sur) (5)

true multifractality due to non-linearity could
not be confirmed.

Shuffling of time series is necessary to distinguish between
correlation- and distribution-type bivariate multifractality
(Wang et al., 2012). Since shuffling destroys all long-term
correlations within (Kantelhardt et al., 2002) and between
(Louis et al., 2010) the signals, the shuffled time series are
expected to show diminished multifractal profile if their bivariate
multifractality is due to long-term correlations. Forty shuffled
surrogates were generated from every original signal that resulted
in a distribution of H(2) and 1H15 values for every connection.
Consequently, the following inequalities between the original
and shuffled datasets were investigated:

Horig (2) > µ(Hshfl (2))+ 2σ(Hshfl (2)) . . .

Horig (2) < µ(Hshfl (2))− 2σ(Hshfl (2)) (6a)

1H15,orig > µ(1H15,shfl)+ 2σ(1H15,shfl) (6b)

If inequalities (6a) and (6b) hold, then the multifractal
character of the connection can be attributed to long-term cross-
correlations.

The final assessment was the bivariate-univariate Hurst
exponent relationship test, which investigated if further
information could be retrieved from bivariate multifractal
analysis compared to univariate multifractal analysis. Assume
two time series X and Y with HXY (2), HX(2), and HY (2) being
their bivariate and univariate Hurst exponents, respectively. If
HXY (2) does not differ significantly from the arithmetic mean
of HX(2) and HY (2), then the bivariate exponent refers to a
scale-free coupling whose Hurst exponent can be predicted
from its univariate equivalents (Kristoufek, 2011). In this test,
40 datasets were generated for each time series with the same
univariate H(2) as that of the original signal, according to the
spectral synthesis method (Saupe, 1988). Afterward, the true
scale-free nature of the EEG signal was evaluated by performing a
univariate power-law test [for details see Racz et al. (2018b)]. For

every pair of time series that passed the univariate power-law test,
the average of their Hurst exponents, HXY,gen(2), was calculated
in each of the 40 generated datasets resulting in a distribution.
The original HXY(2) was then compared in the following fashion:

HXY (2) > µ(HXY, gen (2))+ 2σ(HXY, gen(2)) (7a)

HXY (2) < µ(HXY,gen(2)) − 2σ(HXY,gen(2)) (7b)

If any of the two inequalities was met, then the pair of
time series passed the test and their bivariate multifractality was
considered intrinsic to the connection. Conversely, a connection
failing the bivariate-univariate test was viewed as a case of
extrinsic multifractality. This extrinsic multifractality possibly
belongs to a functionally non-significant type of bivariate
multifractality due to autocorrelation effects (Kristoufek, 2011;
Arbabshirani et al., 2014).

Brain Parcelation and Graph
Construction
To reduce the dimensionality of data while also providing a
basis for physiological interpretation, a brain parcelation scheme
proposed by Giacometti et al. (2014) was applied. The 62
EEG electrodes were grouped based on electrode proximity to
seven – functional magnetic imaging (fMRI) labeled – resting-
state networks (RSNs) as specified by Thomas Yeo et al. (2011)2.
Due to the great degree of overlap in electrode locations between

2Note that the optimal method of matching EEG channels to RSNs (or more
correctly to regions of interest) is by source-reconstruction (Michel and Brunet,
2019) and subsequent generation of time-series for each RSN. Our parcelation
targeted mainly the dimensionality reduction and hence no strong conclusions
about RSNs should be made based on this. For a source-reconstructed scale-free
functional connectivity study we suggest reading (La Rocca et al., 2021).

FIGURE 2 | Resting-state networks (RSNs). Electrodes were grouped to
represent six RSNs: the visual network (VN, 10 channels), the somatomotor
network (SM, 10 channels), the dorsal attention network (DA, 9 channels), the
combined ventral attention and limbic networks (VAL, 12 channels), the
frontoparietal network (FP, 8 channels) and the default mode network (DMN,
13 channels). Brain maps were created using the BrainNet Viewer software
(Xia et al., 2013) after electrode positions were transformed to match a
template head using SPM 12b (Penny et al., 2007). The figure originally
appeared in Racz et al. (2019).
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the ventral attention and limbic system networks, these were
combined into a ventral attention-limbic network (Figure 2),
as in Racz et al. (2019). This parcelation thus resulted in 6
RSNs and 15 RSN-to-RSN connections, whose indices were
obtained by averaging the obtained values [H(2) and 1H15] of
corresponding connections. We examined connections within
each RSN (within-RSNs) and connections between different
RSNs (between-RSNs) separately.

Statistical Analyses
Following the previously described analytical pipeline and brain
parcelation scheme, the obtained results were organized into a
12 × 6 within-RSNs matrix (12 subjects, 6 RSNs) and a 12 × 15
between-RSNs matrix (12 subjects, 15 RSN-to-RSN connections)
for H(2) and 1H15, separately. To evaluate the consistency of
results among subjects, Kendall’s coefficient of concordance (W)
was calculated in every matrix. As to verify if cortical localization
affected multifractal connection dynamics (i.e., to investigate if
multifractal properties of functional connections vary according
to various brain regions), we performed the Friedman test
with level αs = 0.05 and pairwise comparisons (paired sample
t-test if distributions were normal, Wilcoxon signed-rank if at
least one distribution was non-normal, normality was evaluated
by Lilliefors test) followed by Benjamini–Hochberg correction
(αs = 0.05) (Yekutieli and Benjamini, 2001).

Finally, to further confirm the significant effect of spatial
localization, 100 surrogate datasets were generated, where in
every iteration the labels of the channels were randomly
permuted before performing the brain parcelation. Subsequently,
the Friedman tests were carried out and Kendall’s coefficient
of concordance was calculated. The effect of localization was
considered statistically significant if the p-value obtained from
the Friedman test failed to reach significance (i.e., p > 0.05) in
at least 95 out of 100 cases. W values of the original dataset were
validated as statistically significant only if they were above the
95th percentile of the W resulted from the distribution of the 100
generated datasets.

RESULTS

Verifying Bivariate Multifractality
The results of the bivariate multifractality assessment tests
are summarized in Table 1. At the subject level, 86.5 ± 5%
(mean ± standard deviation) of the total connections
passed the power-law test, validating their scale-free

TABLE 1 | Success rate of the different scale-free assessing tests at the subject
level (mean ± standard deviation).

Performed Test Success Rate

Power-Law Test 86.5 ± 5%

Detrended Cross-Correlation Coefficient Test 100%

Phase Randomization Test 100%

Shuffling Test – H(2) 99.7 ± 0.3%

Shuffling Test – 1H15 100%

nature. The detrended cross-correlation coefficients of all
links were found to be significantly higher than those of
the surrogate datasets, validating the existence of long-
term cross-correlations. All connections passed the phase
randomization test, which verified true multifractal coupling
due to non-linear interactions. The shuffling test revealed
that inequalities (6a) and (6b) held for 99.7 ± 0.3% and
100% of all connections, respectively. These results confirm
that the observed multifractality was attributed to long-term
cross-correlations.

Intrinsic vs. Extrinsic Multifractality of
Connections
We considered bivariate multifractality as having extrinsic origin
if it failed the bivariate-univariate Hurst exponent relation
test (equations 7a and 7b) and intrinsic otherwise. The results
revealed that a relevant proportion (52.4± 6.9%) of the observed
functional connections had intrinsic scale-free characteristics.
Group-averaged H(2) networks separately reconstructed
from intrinsic and extrinsic multifractal connections are
shown in Figure 3. There is a clear distinction between
the two networks [the correlation between the bivariate
H(2) values consisting of the two networks expressed in
Pearson’s r = −0.98, p < 0.001]. Specifically, within-RSNs
connections tend to have stronger intrinsic multifractality,
while the between-RSNs links show a higher degree of extrinsic
multifractality.

To further illustrate these results, for every connection
we calculated its averaged probability of expressing intrinsic
multifractality when compared to the distribution of surrogates

FIGURE 3 | Z-scores of intrinsic and extrinsic H(2) network connections. The
intrinsic network consisted of the H(2) values of connections that passed the
bivariate-univariate Hurst exponent relationship test, connections that failed
were represented as 0. The extrinsic network consisted of the H(2) values of
connections that failed the bivariate-univariate Hurst exponent relationship
test, connections that passed were represented as 0. Subsequently, the
Z-scores of the connections were calculated. Z-scores represent deviation
from the population average and their values are indicated by the color bar.
The edges serve as the between-RSNs connections with color representing
the strength of the connection. The outer ring comprises of the 6 RSNs with
the color indicating the Z-score of within-RSN connections.
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FIGURE 4 | Probabilistic network of intrinsic multifractality. The probability was
obtained through the Z-score of the original bivariate Hurst exponent of the
connection compared to the surrogate distribution created in the
bivariate-univariate Hurst exponent relationship test. The edges serve as the
between-RSNs connections with color representing the population average
probability of the connection showing intrinsic multifractality. The outer ring
comprises of the 6 RSNs with the color indicating the population average
probability of within-RSNs connections being intrinsically multifractal.

characterized only by extrinsic multifractality (Figure 4). Two
RSNs stood out from the rest, namely the default mode
network (DMN) and the dorsal attention network (DA).
Not only connections within these RSNs showed a higher
probability of intrinsic multifractality when compared to other
RSNs, but also the same could be observed for connections
linking these to RSNs in comparison to other between-
RSNs connections.

Network Comparison
Two networks were constructed from the results obtained by
BFMF analysis, one from H(2) and one from 1H15 values of
functional connections (Figure 5). The two networks showed
markedly different patterns (the correlation between the two
networks expressed in Pearson’s r = −0.6609, p < 0.01).

FIGURE 5 | Z-scores of constructed networks using H(2) and 1H15 as
functional connectivity estimators. Z-scores represent deviation from the
population average and their values are indicated by the color bar. The edges
serve as the between-RSNs connections with color representing the strength
of the connection. The outer ring comprises of the 6 RSNs with the color
indicating the population average strength of the within-RSNs connections.

Specifically, it appeared that H(2) and 1H15 of functional
connections were inversely related, as within-RSNs connections
expressing higher H(2) values could be characterized with lower
1H15, and vice versa. The same inverse relationship could
be observed for the multifractal properties of between-RSNs
connections, although less prominently.

Effect of Subject and Regional Variability
The between- and within-subject variability of connections in
both network types were analyzed using Kendall’s W, Friedman
tests and paired difference tests. For the H(2) network, Kendall’s
W values of 0.72 and 0.65 were obtained for between- and within-
RSNs connections, respectively, indicating strong concordance
among subjects. Friedman tests revealed a significant main effect

FIGURE 6 | Effect of regional variability. Significance of connection-to-connection comparisons of within- (A) and between- (B) RSNs after the appropriate correction
for H(2) and 1H15. Blue: Only 1H15 comparison test was significant. Orange: Only H(2) comparison test was significant. Green: Both H(2) and 1H15 comparison
tests were significant.
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TABLE 2 | Results of Kendall’s W, success rate for individual paired difference
tests after correction and Friedman test for H(2) and 1H15 for between-
and within- RSNs.

Kendall’s W Paired difference
test success rate

Friedman Test p

H(2) Between-RSNs 0.72 68.6% <0.0001

H(2) Within-RSNs 0.65 73.3% <0.0001

1H15 Between-RSNs 0.44 40% <0.0001

1H15 Within-RSNs 0.47 40% <0.0001

of localization (p < 0.0001). 68.6% of the between-RSNs and
73.3% of the within-RSNs of the pairwise post hoc tests were
found significant. The W values of the 1H15 network were 0.44
and 0.47 for between- and within- RSNs connections, suggesting
moderate subject agreement. Friedman test again indicated a
significant main effect of localization for the 1H15 values of
functional connections (p < 0.0001), while 40% of the paired tests
of between- and within-RSNs connections indicated a significant
difference. Moreover, the two different networks displayed mostly
different connections as statistically different (Figure 6). Table 2
summarizes the results of the statistical tests performed on H(2)
and 1H15 networks.

To further validate that cortical localization significantly
impacted connection dynamics, the parcelation scheme was
evaluated against n = 100 spatially shuffled surrogates (see
section “Materials and Methods”). In that, only 1% of the
generated datasets showed p-values smaller than 0.05 after
shuffling the channel labels. Moreover, Kendall’s W values for
between-RSNs and within-RSNs for both H(2) and 1H15 were
found significantly higher than those obtained from randomized
data. These results further confirm that functional connections
linking various regions of the brain express different scale-free
characteristics.

DISCUSSION

In this study, we present a novel bivariate adaptation of focus-
based multifractal time series analysis and show its applicability
for studying the spatiotemporal organization of functional brain
networks. The main contribution of this work, therefore, lies
with the utilization of the BFMF method and its associated
statistical framework for the reconstruction of brain networks
based on scale-free coupled dynamics. In that, using detrended
covariance as a time-domain measure for BFMF, we examined
the fractal connectivity by calculating bivariate H(2) and 1H15
for each pair of processes, thereby assessing linear and non-linear
aspects of their scale-free dynamics, respectively. The applied
tests were essential in validating our findings and confirming
that most of the connections were indeed multifractal. Moreover,
with a combined application of bivariate and univariate focus-
based multifractal analysis, we revealed whether the observed
cross-regional temporal dynamics emerged from genuine scale-
free interactions intrinsic to the connection, or were simply
a consequence of long-term autocorrelation present in both
processes. The reconstructed networks and their topology were

highly consistent among subjects, while significant regional
variability over the cortex was also observed. Our findings
demonstrate that BFMF is an analytical tool capable of capturing
scale-free coupled dynamics of physiological networks, a feature
that may otherwise remain undetected by univariate fractal
analytical methods.

Bivariate Multifractality in the Brain
Despite the ubiquity of scale-free characteristics in neural
dynamics (He et al., 2010), only a limited number of studies
investigated the fractal nature of the functional coupling between
these processes. Ciuciu et al. (2014) assessed scale-free coupling
of neural dynamics from fMRI datasets using frequency-
and wavelet-based measures, thereby having to resort to an
inherently low temporal sampling rate limiting both the precision
and possible interpretation of their results. Other functional
connectivity studies verified the presence of scale-free coupling
in magnetoencephalography recordings using wavelet coherence
function (La Rocca et al., 2021). The only bivariate scale-free
study of EEG datasets was an exploratory investigation reporting
significant differences in the bivariate multifractal profiles
between young and elderly populations (Wang and Zhao, 2012).

Although these works reported on relevant aspects of neural
dynamics, they did not provide statistical tests for the validation
of the true multifractal nature of the investigated connections.
This study aimed to rectify this limitation by adapting univariate
scale-free assessment tests in the bivariate setting, as well as
improving already-existing bivariate equivalents. Most of the
analyzed connections in our study showed genuine multifractal
coupling due to long-range cross-correlations, as indicated by
the high success rates in the power-law, detrended cross-
correlation, phase randomization and shuffling tests. It was
indispensable to examine the presence of power-law relationship
since coupled oscillatory dynamics confined to a specific time
scale/frequency range might be present in our dataset. Robust
detection of this feature was ensured by a statistical framework
implemented in the frequency domain (Clauset et al., 2009).
Moreover, the detrended cross-correlation coefficients of the
original connections were significantly different from those of
surrogate data at every scale, directly indicating the presence
of scale-free long-term cross-correlations in the time domain
(Podobnik et al., 2011). The purpose of phase randomization
was to yield a population of surrogate data with abolished
non-linearity (Prichard and Theiler, 1994). Comparing the
multifractal characteristics of the surrogate population with those
of the original data revealed that multifractality was indeed a
consequence of the non-linear nature of the coupling between
processes. The shuffling test, which distinguished between
correlation- and distribution-type multifractality (Kantelhardt
et al., 2002), indicated that most of our connections were of
the former type. However, the bivariate multifractality of EEG-
signals observed in this study can be attributed only partly
to long-term cross-correlations, since the finite size effect will
always contribute to the observed multifractality (Grech and
Pamuła, 2012). To the best of our knowledge, our study is
the first to statistically validate the existence of multifractality
between elements of a physiological network, in this case the

Frontiers in Physiology | www.frontiersin.org 8 February 2021 | Volume 11 | Article 615961

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-615961 January 29, 2021 Time: 16:7 # 9

Stylianou et al. Bivariate Multifractal Analysis of Electroencephalogram

brain. However, our findings may also open the way for the
investigation of other networks of the human organism, whose
constituents also express scale-free dynamics [such as heart rate
variability (Ivanov et al., 1999, 2004; Nunes Amaral et al., 2001;
Bartsch et al., 2005), gait variability (Bartsch et al., 2007), muscle
activity (Santuz and Akay, 2020), breathing (Fadel et al., 2004),
or blood glucose level fluctuations (Weissman and Binah, 2014)].
By applying BFMF to assess the coupling in such systems, novel
aspects of their interactions could be revealed that have not yet
been accounted for.

An essential aspect of scale-free interactions is whether
the observed multifractality is an intrinsic property of the
relationship. Considering the fact that covariance estimation is
influenced by the autocorrelation of the signals (Arbabshirani
et al., 2014), we can safely assume that the intrinsic multifractality
of a connection represents true statistical interdependence
between the different brain regions while a large part of
extrinsic multifractality could be ascribed to autocorrelation
effects (Kristoufek, 2011). According to Figures 3, 4, while
the between-RSNs connections showed a mostly extrinsic
type of multifractality, the within-RSNs connections mainly
featured intrinsic multifractality. This finding to some extent
can be evident since a higher number of intrinsic (i.e., true)
multifractal connections could be expected to exist within
functionally cohesive neural populations, such as RSNs (van
den Heuvel et al., 2010), as opposed to the links between
them. These results may further support the notion that
cortical regions that are considered to form RSNs are: (i)
indeed functionally coupled and (ii) segregated from the rest
of the brain (to some extent). Another noteworthy finding
illustrated by Figure 4 is that the default mode network,
dorsal attention network and the connections between them
showed the highest probability of intrinsic multifractality.
DMN comprises of brain regions with increased FC during
idling (Chen et al., 2008), and considering that the analyzed
datasets were obtained in the resting-state, we can expect
strong within-DMN connectivity. On the other hand, DA has
increased FC during tasks that require attention (Vossel et al.,
2014), making the high probability of intrinsic multifractality
of connections both within DA and between DA and DMN
unexpected. A recent study (Murphy et al., 2020) indicated an
indirect functional connection between DMN and DA mediated
by the frontoparietal network, providing partial support for
our findings of a high chance of intrinsic multifractality in
the DMN-DA connections. Although our parcelation scheme
prevents us from drawing stronger conclusions on the activities
of RSNs, our findings still allow a clear demonstration
of the regional variability of scale-free coupling in large-
scale brain networks.

The origin of scale-free/multifractal nature in brain activity
is still an active field of research, which yet remains to be
fully resolved. One plausible explanation may be provided from
the study of critical systems. Accordingly, the brain can be
considered as a complex system that exists at the brink of order
and chaos (Weil, 1994; Beggs and Timme, 2012; Hesse and
Gross, 2014), with its fine-tuned equilibrium and 1/f -dynamics
indicating the presence of self-organized criticality (SOC) (Bak

et al., 1987; Buzsáki, 2006). The concept of SOC emphasizes that
the brain tends to operate in a critical state (Bonachela et al.,
2010; Hesse and Gross, 2014), where even a local perturbation
can elicit a global response. In SOC-based interpretations of
neural dynamics, criticality is achieved by fine-tuning a control
parameter inherent to the brain. Despite options emerging
from electrophysiological experiments (Freeman, 2004; Buzsáki,
2006), the identity of this control parameter remains elusive,
sustaining a dispute within the neuroscience community over the
relevance of SOC in explaining the observed dynamics (Beggs
and Timme, 2012; Hesse and Gross, 2014). A likely candidate is
a balance between incoming excitatory and inhibitory signaling
of the neuronal populations. It has already been demonstrated
that power-law scaling at local field potentials and global
electromagnetic brain signals (Beggs and Timme, 2012; Poil
et al., 2012) can emerge through such equilibrium of incoming
excitatory and inhibitory stimuli. A similar model, attributed
to the balance between the two divisions of the autonomic
nervous system, has been suggested as the source of the scale-
free fluctuations of the heart rate variability (Ivanov et al., 1998;
Nunes Amaral et al., 2001). In line with these considerations, the
stochastic influx of excitatory/inhibitory signals may be a possible
source of bivariate multifractality of the brain networks, however
this hypothesis requires further research.

Aspects of Functional Coupling
Captured by BFMF
In this study, BFMF was used as a functional connectivity
estimator, from which two brain networks were reconstructed.
A network was defined by assigning the bivariate H(2) values
as edge weights, reflecting the topology of long-term cross-
correlation. Similarly, bivariate 1H15 values were assigned to
all connections forming a network that displays the topology
of the multifractal strength. It should be emphasized that
the obtained scale-free pattern of functional connections
appeared highly consistent among subjects, in agreement with
previous studies (Gong et al., 2003). Moreover, our results
indicated significant regional variability for both within- and
between- RSNs connections. This regional variation was notably
different between the H(2) and 1H15 networks (Figure 6),
emphasizing that these two measures of scale-free dynamics
are complementary to each other also in the bivariate setting.
The complementary nature of H(2) and 1H15 has already
been demonstrated in the univariate fractal analysis (Mukli
et al., 2015; Racz et al., 2018b). Furthermore, the two networks
yielded opposite patterns regarding their topologies, i.e., those
connections with high H(2) values were found to express low
1H15 values and vice versa (Figure 5). A similar relationship
between univariate H(2) and 1H15 was found in an earlier
study; however, only for delta band connections (Racz et al.,
2018b). In that work, synchronization likelihood was used as
a dynamic functional connectivity estimator and multifractal
properties of time-varying synchronization levels (i.e., dynamic
functional connections) were estimated using the univariate FMF
method. Since three out of the six scales (128, 256, 512 data
points) used in the current analysis fall within the delta band
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(0.5–4 Hz), this may explain the observed similarities with the
study discussed above.

A source of inconsistency among FC studies may emerge
from the application of various thresholding schemes. In that,
most studies use some form of pruning procedure to exclude
connections from the reconstructed networks that may be
spurious or originating from noise (Rubinov and Sporns, 2010;
van den Heuvel et al., 2017). Given that the primary goal
of the study was to demonstrate the existence of multifractal
coupling in brain networks as well as the introduction of a
new method for its assessment, our main analytical pipeline
did not contain a thresholding step. Nevertheless, in order
to explore the plausible effect of thresholding on scale-free
network topology we applied a parallel pipeline, which included
thresholding as follows. The 1H15 networks only included
connections that passed all four multifractality assessment
tests. H(2) networks consisted of links that successfully passed
the power-law, detrended-cross correlation and shuffling tests.
Further details about this parallel analysis are provided in the
Supplementary Material. Notably, the localization of intrinsic
multifractality and the H(2) and 1H15 networks architectures
were highly similar to the unthresholded case, while the regional
variability and subject concordance was found diminished
(Supplementary Figures S1–S3 and Supplementary Table S1).
The inference of this comparison is that intrinsic multifractality
only marginally depends on the thresholding procedures while
between- and within-subject variability of H(2) and 1H15
networks is clearly influenced.

Comparison of BFMF With
Scale-Dependent FC Estimators
Given the novelty of our method, it is important to compare
our results to those obtained by other FC methods commonly
used in the literature (van den Heuvel and Fornito, 2014). For
this purpose, we also reconstructed brain networks with the aid
of Pearson correlation (r) and Mutual Information (MI) (details
found in Supplementary Material). The purpose of this testing
was to investigate if BFMF could reveal network architectures
different from those obtained with scale-dependent linear or
non-linear methods, thus implying its utility in capturing novel
aspects of spatio-temporal neural dynamics. Since r and MI
are indeed scale-dependent, we analyzed our signals at the
same six scales as in BFMF analysis (16, 32, 64, 128, 256,
and 512 data points) in a non-overlapping windowed manner.
While the r networks showed a similar distribution of FC as
the H(2) network (Figure 5 and Supplementary Figure S4),
the MI networks did not resemble any of the two BFMF
networks (Figure 5 and Supplementary Figure S5). Moreover,
regional variability was more significant in the r and MI
networks (Supplementary Table S2), suggesting the influence of
oscillatory dynamics. These oscillatory dynamics, despite their
physiological correlates, cannot capture the scale-independent
network connectivity evaluated by BFMF. To conclude, these
results call for the careful interpretation of observed functional
connectivity patterns pertinent to the estimator used for their

assessment, while also highlight the fact that BFMF captured
patterns of neural dynamics that remained undetected by r or MI.

Limitations and Future Perspectives
Finally, the limitations of this study should also be addressed.
The 5-minute eyes-closed resting-state EEG recordings did not
allow for a comparison of networks under different mental states,
which have been shown to influence the fractal properties of
neural dynamics (Ciuciu, 2012; Ciuciu et al., 2014). Nevertheless,
as the primary objective of this study was to demonstrate
the applicability of BFMF as a novel tool for reconstructing
physiological networks of functional significance. For that
purpose, a homogenous resting-state EEG dataset was sufficient,
while subsequent research should indeed consider more elaborate
experimental paradigms. Even though more than half of the
connections showed intrinsic multifractality in every subject,
at the population level there was only a tendency (maximal
probability was 0.91) of localization of intrinsically multifractal
connections within the resting-state networks (Figure 4).
A possible explanation of this could be the low sample size of the
study. It is reasonable to assume that future studies with a larger
subject cohort could further confirm enhances the significance
of this dichotomous model. Due to limitations of the applied
parcelation scheme in demonstrating RSN-dependent contrast
of bivariate multifractal measures, more elaborate experimental
paradigms are needed for a thorough investigation of the origin
of the scale-free character between and within the different
RSNs via source-reconstruction (La Rocca et al., 2021). Infra-
slow neural activity (<0.5 Hz) was not considered in this study
since our preliminary investigations showed that breakpoints of
the scaling function appear around 0.5 Hz (for further details
in bimodal multifractal analysis, see Nagy et al., 2017). In
future investigations, low-frequency EEG could be examined by
a scaling-range adaptive, bimodal extension of BFMF, which
appears as a reasonable next step considering recent advances
in the analysis of multimodal fractal time series (Nagy et al.,
2017; Mukli et al., 2018). These investigations should include
high-pass filtering with a much lower cut-off frequency, which
however will also require appropriate measurement length and
sampling rate. The relevance of this consideration is supported by
findings from fMRI recordings indicating that frequencies closer
to 0.01 Hz contribute to multifractal functional connections to
a greater extent (Ciuciu et al., 2014). Our study investigated
only one exemplary case of physiological networks, namely
functional networks of the human brain. In general, investigation
of any biological process observed for a sufficiently long period
of time and sampled at adequate temporal resolution could
benefit from this method, as the BFMF framework enriches
the analytical repertoire suitable for investigating dynamic
physiological networks. In fact, multifractal covariance analysis
has revealed a genuine scale-free coupling between oxy- and
deoxyhemoglobin fluctuations (Mukli et al., 2018) that could be
ascribed to mechanisms of neurovascular coupling. A certainly
important direction of further research should be to implement
this methodology in clinical studies, especially in psychiatry,
where new biomarkers with good performance and reliability
in individualized treatment are much needed (Topol, 2019).
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Finally, even though BFMF was developed for the study of
physiological networks, it can still be applied in a variety of other
disciplines, like in the field of economics on which the bivariate
multifractal analysis has been focusing so far (Oświęcimka et al.,
2014; Pal et al., 2014).

CONCLUSION

Here we introduced the bivariate focus-based multifractal
analysis for the dynamic investigation of physiological networks
and showed that it captures novel features of resting-state brain
network dynamics. Namely, supported by statistical testing,
BFMF could reveal true multifractality in most of the functional
connections estimated from EEG signals. Moreover, topological
patterns identified with BFMF appeared robust, as indicated by
high subject concordance and strong regional variability. Our
results could facilitate further research on brain networks under
different experimental conditions using bivariate multifractal
analysis, as well as on extended physiological networks at the level
of the entire organism.
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