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ABSTRACT

Various ‘omics’ technologies, including microarrays
and gas chromatography mass spectrometry, can
be used to identify hundreds of interesting genes,
proteins and metabolites, such as differential
genes, proteins and metabolites associated with
diseases. Identifying metabolic pathways has
become an invaluable aid to understanding the
genes and metabolites associated with studying
conditions. However, the classical methods used
to identify pathways fail to accurately consider
joint power of interesting gene/metabolite and the
key regions impacted by them within metabolic
pathways. In this study, we propose a powerful ana-
lytical method referred to as Subpathway-GM for
the identification of metabolic subpathways. This
provides a more accurate level of pathway analysis
by integrating information from genes and metabol-
ites, and their positions and cascade regions within
the given pathway. We analyzed two colorectal
cancer and one metastatic prostate cancer data
sets and demonstrated that Subpathway-GM was
able to identify disease-relevant subpathways
whose corresponding entire pathways might be
ignored using classical entire pathway identification
methods. Further analysis indicated that the power
of a joint genes/metabolites and subpathway
strategy based on their topologies may play

a key role in reliably recalling disease-relevant
subpathways and finding novel subpathways.

INTRODUCTION

Various ‘omics’ technologies, such as microarrays, RNA-
seq and gas chromatography mass spectrometry
(GC–MS), can be used to identify potentially interesting
(e.g. differential) genes and metabolites, including those
associated with specific diseases. One of the challenges is
to use such information to provide a better understanding
of the underlying biological phenomena. Metabolic
pathway analysis has become an invaluable aid to under-
standing the molecules generated by these ‘omics’
technologies. Information on the metabolic pathways
investigated is available via pathway databases, such as
KEGG, which manually curates electronic high-quality
pathway structure information on the enzymes and me-
tabolites involved in the metabolic processes (1). One of
the most widely applied pathway analysis methods is the
overrepresentation approach (ORA), which compares the
number of interesting genes (metabolites) that hit a given
pathway with the number of genes (metabolites) expected
to hit the given pathway by chance. If the observed
number is significantly different from that expected by
chance, the pathway is reported as significant. A statistical
model, such as the hypergeometric test, can be used to
calculate the enrichment significance (P-values).
Many methods, including ORA and gene set enrich-

ment analysis (GSEA), have been developed to identify
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pathways [mainly reviewed in (2–7)]. However, these
existing methods share obvious limitations in terms of
their abilities to identify pathways, especially metabolic
pathways (2,8,9). Because metabolic pathways involve
both genes and metabolites, the dysfunction of which
play important roles in diseases (10–12), integrative
pathway analysis of both genes and metabolites will thus
help to interpret the underlying biological phenomena.
However, most existing methods ignore this integrative
approach and were designed and developed mainly for
the analysis of interesting genes (2–4), leading to a
relative lack of information on metabolites in the
pathways.
Pathway identification methods based on metabolite

lists, such as MBRole (5), MetPA (6) and MSEA (7),
have recently been developed. However, these methods
use only metabolite information, and thus also ignore
the power of joint gene/metabolite analysis. Kamburov
et al. recently developed a new metabolic pathway
analysis method, IMPaLA, for the identification of bio-
chemical pathways related to tumor-cell chemosensitivity.
This method integrates enrichment significance (P-values)
of pathways calculated through ORA based on interesting
genes and interesting metabolites to improve pathway
identification (10). Kamburov et al. (10) assumed inde-
pendence of pathways associations from data sets of
genes and metabolites, and the joint statistical significance
was thus calculated by multiplying the P-values
for genes and metabolites, respectively (P-valuegene �
P-valuemetabolite).
Although IMPaLA can effectively improve pathway

identification, simply changing the statistical model
might not fully reflect the superiority of a joint approach
to analyzing genes and metabolites of interest within meta-
bolic pathways. From a biological perspective, dysfunc-
tional genes are closely related to dysfunctional
metabolites in pathways, and biological features, such as
their topology, might thus be more useful in helping to
identify pathways than simply changing the statistical
analysis (see examples in the ‘Results’ section).
Improvements in pathway identification methods may
need to be made at a fundamental biological level,
rather than a statistical level (2). Moreover, fewer differ-
ential metabolites are detected by metabolomic studies
compared with differentially expressed genes. However,
metabolites may be located at important positions in
pathways, such as arachidonic acid in the arachidonic
acid metabolism pathway. The importance of metabolites
in pathway structure is ignored by most of the existing
pathway identification methods. More importantly, meta-
bolic pathways stored in pathway databases are often too
large to allow the accurate interpretation of the relevant
biological phenomena. Key subpathway regions represen-
tative of the entire corresponding pathway may be more
useful in terms of interpreting the relevant biological phe-
nomena. Moreover, several studies have shown that
abnormalities in subpathway regions of metabolic
pathways contribute to the etiology of diseases (9,13,14),
although most of the existing methods only identify entire
pathways, rather than the key subpathway regions. We
previously attempted to identify key metabolic

subpathways using only gene information (13). However,
the joint use of genes and metabolites has still been largely
ignored, and the positional importance of genes and me-
tabolites should be considered to locate key regions of
pathways related to the underlying biological phenomena,
such as specific diseases.

In this study, we developed a powerful analytical method
called Subpathway-GM for the identification of biologic-
ally meaningful metabolic subpathways. Subpathway-GM
integrates ‘interesting genes’ and ‘interesting metabolites’
related to the study condition (e.g. disease) into the corres-
ponding enzyme and metabolite nodes (referred to as sig-
nature nodes) within the metabolic pathway. We then
analyzed lenient distance similarities of signature nodes
within the pathway structure to locate key metabolic
cascade subpathway regions (see ‘Materials and Methods’
section). Finally, a hypergeometric test was used to evaluate
the enrichment significance of these subpathway regions.
We applied Subpathway-GM to two colorectal cancer
and one metastatic prostate cancer data sets and demo-
nstrated that this method was able to identify disease-
related subpathway regions successfully and reliably.

MATERIALS AND METHODS

Data sets

We analyzed two colorectal cancer data sets and one
metastatic prostate cancer data set. We obtained differen-
tial genes from gene expression data and differential me-
tabolites from metabolomic experimental studies.

Colorectal cancer data set 1
The gene expression profile data included 32 pairs of colo-
rectal adenoma and adjacent normal mucosa tissues, ori-
ginally analyzed by Sabates-Bellver et al. (15). The data
are publicly available at the GEO database (GEO acces-
sion number=GSE8671). We used both the significance
analysis of microarray (SAM) method (16) and the
fold-change (FC) method to identify differentially ex-
pressed genes. A gene was considered to be differentially
expressed when it was significant in the SAM method at a
significance level of 0.001 (False discovery rate
FDR< 0.001) and the log2jfold-changej value of the
gene was also >1 (i.e. FC> 2 or FC< 0.5). A total of
2053 differentially expressed genes were identified by the
aforementioned strategies. Differential metabolites were
directly obtained from the results of several experimental
studies, including Chan et al. (17), Qiu et al. (18,19) and
Denkert et al. (20). The metabolites were extracted from
these articles and converted to KEGG compound IDs.
Finally, 90 unique differential metabolites associated
with colorectal cancer were obtained.

Colorectal cancer data set 2
The gene expression profile data, including 70 colorectal
cancer samples and 12 normal samples, was initially
analyzed by Hong et al. (21) (GEO accession
number=GSE9348). We identified 1452 differentially
expressed genes using the same strategy as for colorectal
cancer data set 1 (FDR< 0.001 and FC> 2 or FC< 0.5).
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The differential metabolites used were the same as in colo-
rectal cancer data set 1.

Metastatic prostate cancer data set
Gene expression profile data, including six benign prostate
samples, seven clinically localized prostate cancer samples
and six metastatic prostate cancer samples, were initially
analyzed by Varambally et al. (22) (GEO accession
number=GSE3325). The localized and metastatic
prostate cancer samples were used to identify differentially
expressed genes associated with metastatic prostate
cancer, using the SAM method (FDR< 0.01) and the
FC method (FC> 2 or FC< 0.5) simultaneously. A total
of 1773 differential genes were identified. Multiple
metabolomic profiles (liquid chromatography/GC–MS),
including 16 benign adjacent prostate samples, 12 clinic-
ally localized prostate cancer samples and 14 metastatic
prostate cancer samples, were obtained from studies of
Sreekumar et al. (12). The localized and metastatic
samples were used to identify differentially expressed
genes. We used the method (Wilcoxon rank-sum test)
described by Sreekumar et al. to identify differential me-
tabolites, and then converted these metabolite names to
KEGG compound IDs. Finally, 53 metabolites associated
with metastatic prostate cancer were identified (P< 0.01;
Wilcoxon rank-sum test).

Methods

Subpathway-GM has been implemented as a freely avail-
able web-based and R-based tool (http://bioinfo.hrbmu
.edu.cn/SubpathwayGM). Figure 1 depicts the schematic
overview of Subpathway-GM. The step-by-step method is
provided in Supplementary Text. The users inputs inter-
esting the genes and metabolites of interest, and metabolic
subpathways can then be identified mainly through:
(i) mapping genes and metabolites of interest to graphs
of pathways after graph-based reconstruction of metabolic
pathways; (ii) locating subpathways within pathways
according to signature nodes; (iii) evaluating the statistical
significance of subpathways. The method is described in
more detail later in the text.

Map genes and metabolites of interest to graphs
of pathways
We converted all 150 metabolic pathways in KEGG (17
December 2010) to the directed graphs based on biochem-
ical reaction information in KGML files (for an XML
representation of KEGG pathway information, http://
www.kegg.jp/kegg/xml/). For each pathway, we extracted
all metabolites and enzymes within the pathway as nodes
in the corresponding graph. If a metabolite participated in
a reaction as a substrate or product, a directed edge was
used to connect the corresponding metabolite nodes to the
enzyme (i.e. reaction) nodes. Substrates were directed
towards the enzyme nodes, whereas enzyme nodes were
directed towards their products. Reversible reactions had
twice as many edges as irreversible reactions. This strategy
for converting pathway graphs had the advantage of de-
veloping graph algorithms. More importantly, positional
information for metabolites and genes encoding enzymes
could be extracted efficiently and used via a graph model

that keeps pathway structure. Interesting genes and me-
tabolites can be then mapped to the corresponding nodes
within the pathway graphs. Notably, interesting metabol-
ites can be mapped directly to metabolite (substrate and
product) nodes. Interesting genes can be assigned to
Enzyme Commission (EC) (or KEGG Ontology (KO))
numbers and matched to enzyme nodes. KO numbers
are recommended by KEGG for mapping genes to path-
ways; therefore, we used KO numbers as the default
numbers in Subpathway-GM. Finally, the mapped nodes
within each pathway graph were defined as signature
nodes.

Locate subpathways within pathways according to
signature nodes
Signature nodes within pathways represent information
on genes and metabolites of interest. These nodes can
effectively help to locate subpathways associated with
the genes and metabolites of interest, through further con-
sidering their topologies within pathways. Furthermore,
distances between some nodes in a subpathway are
usually similar. We, therefore, used ‘lenient’ distance simi-
larity of signature nodes to locate subpathways.
Specifically, for each pathway that contained signature
nodes, we computed the shortest path between any two
signature nodes in the given pathway graph. If the shortest
path between two signature nodes was shorter than n+1,
then the two signature nodes and other non-signature
nodes at their shortest path were added to the same
node set. The parameter n indicates the maximum
permitted non-signature node number at the shortest
path between signature nodes. We then extracted the cor-
responding subgraph in the pathway graph according to
each node set, and finally defined these subgraphs with
node number �s as the subpathway regions because
subgraphs with small scales can not usually form biologic-
ally relevant subpathway. Figure 1 shows the subpathways
within entire pathways identified by Subpathway-GM
with n=2 and s=5.
Our subpathway strategy was based on lenient distance

similarity. When a node within a pathway appeared within
the permitted shortest path between any two signature
nodes, the node was merged into the corresponding
subpathway. If a node within the entire pathway had
high topological centrality (e.g. high degree and/or
betweenness), then that node would be more likely to
occur within the permitted shortest path, and thus
appear in the final subpathway. In metabolic pathways,
nodes in the key regions usually have high topological
centrality (e.g. the region near arachidonic acid in arachi-
donic acid metabolism). These key nodes, therefore, tend
to appear in subpathways even though they are not signa-
ture nodes. Subpathway-GM will thus tend to identify key
regions in entire pathways that might be representative of
the corresponding entire pathways.
Flexibility can be introduced to this subpathway

strategy by varying the parameter n. A smaller value of
n means that only those nodes meeting stricter distance
similarities will be added to the corresponding subpath-
way, and the identified subpathways thus become smaller
compared with larger values of n. The number of
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non-signature nodes within subpathways will also tend to
reduce because of the smaller number of permitted
non-signature nodes, and the ratio of signature nodes in
the located subpathway regions will thus increase as n

decreases. This can help users to identify subpathways
closely associated with genes and metabolites of interest.
In contrast, increasing n will usually increase the ratio of
non-signature nodes and the size of the subpathways. Key

Figure 1. Schematic overview of Subpathway-GM.
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nodes within entire pathways will also tend to be added to
the subpathway because of the high topological centrality
of key nodes. Subpathway-GM will thus tend to identify
the key regions in entire pathways that might be represen-
tative of the corresponding entire pathways.

Evaluate the statistical significance of subpathways
We used the hypergeometric test to calculate the statistical
significance of each subpathway. To achieve this, the fol-
lowing values needed to be calculated: (i) the number of
interesting genes and metabolites submitted for analysis;
(ii) the number of background genes and metabolites; (iii)
the number of background genes and metabolites
annotated to each subpathway; and (iv) the number of
interesting genes and metabolites annotated to each
subpathway. The default background is usually con-
sidered to be the whole genome and metabolome of the
given organism (2). In this study, we, therefore, used all
human genes in KEGG as the background genes, and all
metabolites in the Human Metabolome Database
(HMDB) (23) and KEGG Human Pathway (1) as back-
ground metabolites because human metabolites are not
included in KEGG.

The following equation represents an example calcula-
tion of the statistical significance of a subpathway. If the
whole genome (metabolome) has a total of mg genes
(mm metabolites), of which tg (tm) are involved in the
subpathway under investigation, and the set of genes (me-
tabolites) submitted for analysis has a total of ng genes
(nm metabolites), of which rg (rm) are involved in the
same subpathway, then the P-value can be calculated to
evaluate the enrichment significance of the subpathway as
follows:

P ¼ 1�
Xrg+rm�1

x¼0

tg+tm
x

� �
mg+mm � tg � tm

ng+nm � x

� �

mg+mm

ng+nm

� �

RESULTS

We analyzed two colorectal cancer and one metastatic
prostate cancer data sets using Subpathway-GM with
the parameters n=5 and s=5. This study focused on
identifying disease-related subpathways. We, therefore,
set the parameter s=5 because this type of subpathways
(s� 5) has been reportedly associated with disease in some
studies and is considered by many groups to represent a
pathway. To set an appropriate n value for the identifica-
tion of disease-related subpathways, we examined the dis-
tances among known disease nodes within pathways based
on disease genes and metabolites in the Genetic
Association Database (GAD) (24) and HMDB (23)
(Figure 2A). The average shortest distance among these
nodes was 8.02, which was significantly smaller than that
between all nodes within metabolic pathways
(P< 2.2E-16; Wilcoxon rank-sum test). We further
computed the shortest distance between each disease
node and its nearest disease node and found that the
distance was <5 for 85% disease nodes (Figure 2B).

Some studies have suggested that genes associated with
the same disease show close tendencies in biological
pathways, and that their biological functions tend to be
similar (25–27). A value of n=5 thus seems to represent
the closeness of genes and metabolites in diseases.
To compare Subpathway-GM with other methods at

the system level, we used three specific ORAs to identify
pathways for each data set: Pathway-G, Pathway-M and
IMPaLA. These ORA methods are commonly used for
pathway identification and have been included in many
pathway analysis tools (2,6,7,10). Pathway-G uses only
genes of interest to identify entire pathways via
hypergeometric tests (2). Similar to Pathway-G,
Pathway-M uses metabolites of interest (5–7), whereas
IMPaLA integrates genes and metabolites of interest to
identify entire pathways via hypergeometric tests but does
not consider pathway structure and subpathway identifi-
cation strategy (10).

Colorectal cancer 1

Our first example was chosen to illustrate the effectiveness
of Subpathway-GM for identifying subpathways
associated with colorectal cancer. Subpathway-GM
located 56 potential subpathways from all metabolic
pathways using 2053 differential genes and 90 differential
metabolites. With a strict cut-off value of P< 0.01,
Subpathway-GM finally identified 26 significant metabolic
subpathways (Figure 2C). When many subpathways are
considered, a high–false-positive discovery rate is likely to
result; therefore, we calculated FDR corrected P-values
for these subpathways using the Benjamini–Hochberg
FDR method (Supplementary Table S1). The results
showed that 26 subpathways with P< 0.01 remained sig-
nificant at the strict cut-off of FDR< 0.02, suggesting a
low–false discovery rate. We, therefore, continued to use
the non-corrected P-values in the following analyses.
The 26 significant metabolic subpathways identified cor-

responded to 25 entire pathways (Figure 2C). Of these, up
to 20 (80%) were well reported to be associated with
cancer (indicated by black border in Figure 2D).
Detailed evidences were provided in Supplementary
Table S1. Several other pathways also interact with the
reported cancer pathways, suggesting a possible associ-
ation (Figure 2D and Supplementary Text). Many
pathways identified by Subpathway-GM were undetected
by Pathway-G, -M or IMPaLA. Pathway-G found only
three significant pathways at the 1% significance level (see
Supplementary Data set S1), all of which were included in
the 25 significant pathways found by Subpathway-GM
(Figure 2C). However, Subpathway-GM identified an
additional 22 (88%) not identified by Pathway-G (see
Supplementary Data set S1). The powers of Pathway-M
and IMPaLA also seemed to be limited, and 68 and 40%
of the 25 significant pathways identified by Subpathway-
GM were not considered as significant by Pathway-M
and IMPaLA, respectively (see Supplementary Data
set S1). Surprisingly, up to 10 pathways identified by
Subpathway-GM were simultaneously ignored by
Pathway-G, -M and IMPaLA (indicated by black label
in Figure 2C).
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We focused on seven of these 10 additional pathways
that contained both differential genes and metabolites
(Table 1). These pathways had high P-values in
Pathway-G, -M and IMPaLA, and we further tested
their ranks in these pathways. The result showed that
almost all pathways were ranked >25 in Pathway-G, -M
and IMPaLA (Table 1), indicating that they might be
ignored by Pathway-G, -M and IMPaLA from a ‘rank’
point of view.
The most significant of the seven additional

subpathways (path:00380_3) belonged to tryptophan me-
tabolism pathway (Figure 3). Subpathway-GM yielded a
P-value of 0.00037 (FDR corrected to 0.0029), but the
tryptophan metabolism pathway was not considered as
significant in Pathway-G, -M (P> 0.05) or IMPaLA

(P> 0.01). Abnormality of the key tryptophan–serotonin
regions (top region in Figure 3) has been reported to cause
tumor cell proliferation in colon and prostate cancers
[reviewed in (28)]. Moreover, the key region where tryp-
tophan is converted by indoleamine-2,3-dioxygenase to
kynurenime (red arrow region in Figure 3) was closely
related to immune activation, cell proliferation and
impaired quality of life in colorectal cancer [reviewed in
(29)]. Recent studies also showed that the tryptophan-2,3-
dioxygenase (TDO)–kynurenime region effectively sup-
pressed antitumor immune responses and promoted
tumor cell survival and motility (11). The differential me-
tabolites and enzymes in tryptophan metabolism pathway
encoded by differential expressed genes were located in
the local cascade region and formed signature nodes in

Figure 2. Identification of metabolic subpathways associated with colorectal cancer. (A) Distances among known disease nodes within metabolic
pathways. (B) Empirical cumulative distribution functions of shortest path lengths between each disease node and its nearest disease node within
pathways. (C) Plots of pathway significance (–log10 P-value) in Subpathway-GM, Pathway-G, Pathway-M and IMPaLA. Subpathway-GM identified
26 significant metabolic subpathways, corresponding to 25 entire pathways. Plus sign indicates that the pathway was identified by the corresponding
method at the 1% significance level. Bold labels represent the additional pathways identified by Subpathway-GM. (D) Interaction network of the
subpathway identified by Subpathway-GM. Two subpathways are connected by an edge if they share a non-empty intersection of metabolites or
genes. Edge width between subpathways is proportional to the number of genes and metabolites shared by the two connected subpathways. Node
size is proportional to the degree of the node. Node color reflects statistical significance of pathway (P-value). Subpathways well supported by
existing literature are shown with a black border node.
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Subpathway-GM. Notably, differential tryptophan was at
the center of the pathway. Subpathway-GM used distance
similarity information between these signature nodes to
identify the pathway, as well as the key subpathway
region, effectively.

The second subpathway (path:00010_1) belonged to the
glycolysis/gluconeogenesis pathway, which is highly
associated with cancer cell metabolism. During the early
part of the 20th century, Warburg found that cancer cells
consume glucose and acidify their environment with

Figure 3. Tryptophan metabolism pathway where the differential genes and metabolites of colorectal cancer were annotated. Nodes near asterisk
symbol belong to the key subpathway region (path:00380_3) identified by Subpathway-GM. Enzymes (rectangular nodes) mapped by differential
genes are shown with red node labels and borders. Metabolites (circle nodes) mapped by differential metabolites were showed with red node borders.

Table 1. Seven additional subpathways identified by Subpathway-GM using colorectal cancer data set 1

Subpathway ID Pathway name S-P(R) S-FDR I-P(R) G-P(R) M-P(R) Representative Reference

path:00380_3 Tryptophan metabolism 0.00037(7) 0.0041 0.037(42) 0.095(24) 0.38(48) YES (11,28,29,30,31)
path:00010_1 Glycolysis/gluconeogenesis 0.0017(14) 0.0070 0.020(35) 0.39(42) 0.052(31) (17,18,32–34)
path:00562_1 Inositol phosphate metabolism 0.0021(15) 0.0081 0.10(56) 0.16(30) 0.66(55) (32,33,35–37)
path:00340_1 Histidine metabolism 0.0039(18) 0.011 0.017(33) 0.049(14) 0.34(46) YES (38,39)
path:00590_1 Arachidonic acid metabolism 0.0040(19) 0.011 0.034(39) 0.038(12) 0.88(59) YES (40–42)
path:00500_1 Starch and sucrose metabolism 0.0048(22) 0.011 0.049(46) 0.12(26) 0.40(49) YES
path:00270_2 Cysteine and methionine metabolism 0.0051(24) 0.011 0.012(29) 0.67(59) 0.018(21) YES (43,44)

S-P(R): P-values (P) and ranks (R) of pathways in Subpathway-GM; I-P(R), G-P(R), M-P(R): P-values (P) and ranks (R) for IMPaLA, Pathway-G
and Pathway-M respectively; S-FDR: FDR corrected P-values of pathways in Subpathway-GM.
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lactate (Warburg effect) (32,33). The differential genes and
metabolites on the colorectal cancer data set were mostly
located in the pyruvate and lactate metabolism region of
the pathway, which was successfully identified by Sub-
pathway-GM (Supplementary Figure S1). Many studies
also indicated that this region was closely related to
energy demand of colorectal cancer tissues (17,18,34).
The third subpathway (path:00562_1) belonged to the

inositol phosphate metabolism pathway. Subpathway-
GM analysis yielded a P-value of 0.0021 (FDR corrected
to 0.0081) for this subpathway, but the corresponding
pathway was ignored by Pathway-G, -M and IMPaLA
even at the 10% significance level (P=0.16, 0.66 and
0.1, respectively). The subpathway path:00562_1 (Supple-
mentary Figure S2), especially its starting region, which
contains phosphoinositide 3-kinase and the tumor sup-
pressor Phosphatase and tensin homolog (PTEN), was
reported to be highly associated with tumor growth and
survival (35,36). The end product of the subpathway,
inositol, was differential in colorectal cancer and located
in the center of the pathway. Inositol has been highly
associated with the initiation of cancer and the control
of cancer metastases (32,33,37).
The fourth subpathway (path:00340_1) belonged to his-

tidine metabolism, whereby histidine is converted by his-
tidine decarboxylase to histamine, which is highly
associated with cancer [reviewed in (38)]. Cianchi et al.
(39) demonstrated that dual inhibition of the histidine de-
carboxylase and cyclooxygenase (COX) subpathways in
arachidonic acid metabolism might be as a possible thera-
peutic tool for the treatment of colorectal cancer.
The fifth subpathway (path:00590_1) belonged to ara-

chidonic acid metabolism with Subpathway-GM P-value
of 0.004 (FDR corrected to 0.011). Pathway-M, however,
only gave a P-value of 0.88 because only one metabolite
(arachidonic acid) was annotated to the pathway. The ara-
chidonic acid pathway was composed of three key meta-
bolic regions: COX, Lysyl oxidase (LOX) and Human
Cytochrome P450 (CYP) (Figure 4), each of which has
been implicated in several types of cancers, including colo-
rectal and prostate cancers [reviewed in (40,41); see
Supplementary Text]. Arachidonic acid is located in the
central position of three key metabolic regions of the
pathway. Subpathway-GM thus used the close positional
relationship between differential arachidonic acid and
nearby differential genes to identify one irregular
subpathway (path:00590_1) that contained the certain
part of the three regions (the * region in Figure 4), espe-
cially, the Arachidonate lipoxygenases (ALOX5) region.
Subpathway-GM tends to locate key regions represen-

tative of the corresponding entire pathways. We further
tested whether the subpathways identified as significant by
Subpathway-GM tended to be representative of the cor-
responding entire pathways in the colorectal cancer data
set. We obtained all the nodes within the 26 significant
subpathways and calculated their degrees and betweenness
within the corresponding entire pathways. Degree and
betweenness are the two most popular topological central-
ity indexes. The degree and betweenness of nodes within
subpathways were significantly higher than that for all
nodes within entire pathways (Table 2). For example,

the average degree of nodes within the significant
subpathways was 4.00, which was significantly higher
than the average degree of all nodes, which was 2.14
(P=4.05E-94; Wilcoxon rank-sum test). We also found
that both genes and metabolites within significant
subpathways tended to exhibit high topological centrality
(Table 2). These results suggest that nodes within signifi-
cant subpathways may be important in pathways in terms
of both local (degree) and global (betweenness) topologies,
and they indicate that the subpathways identified by
Subpathway-GM tend to be representative of the entire
pathways.

We also examined these significant subpathways
identified by Subpathway-GM from a biological point of
view. We defined a subpathway as representative when it
covered most core parts of the corresponding entire
pathway, based on our biological knowledge. Nineteen
(�73.07%) of the 26 subpathways showed high tendencies
to be representative of the corresponding entire pathways
(Supplementary Table S1). For example, the aforemen-
tioned subpathways were representative of the correspond-
ing tryptophan, arachidonic acid and histidine metabolism
pathways, respectively (Table 1). Tryptophan was at the
center of the tryptophan pathway, which contains three
main regions: tryptophan–kynurenime, tryptophan–sero-
tonin and tryptophan–tryptamine. Subpathway-GM effect-
ively identified the core parts of these regions as
subpathway path:00380_3 (Figure 3). The arachidonic
acid pathway was composed of three key metabolic
regions: COX, LOX and CYP, with arachidonic acid at
the center of three regions. Subpathway-GM identified
subpathway path:00590_1, including arachidonic acid,
COX, LOX and CYP. Taken together, Subpathway-GM
can thus not only identify cancer-related subpathways but
also tends to locate key regions representative of entire
pathways.

Seven subpathways were not defined as representative
of their corresponding entire pathways, but they were still
reported to be highly associated with cancer
(Supplementary Table S1). These included glycolysis/
gluconeogenesis and inositol phosphate metabolism,
which displayed obvious local subpathway features (e.g.
Supplementary Figures S1 and S2). For example,
subpathway path:00562_1 belonged to the inositol phos-
phate metabolism pathway. Inositol is at the center of this
pathway, which included many paths to consume and
release the metabolite. Because the subpathway only
covered one of these paths, and does not cover most
regions of the pathway, we did not consider this
subpathway to be representative of the corresponding
entire pathway. The subpathway path:00562_1 (Supple-
mentary Figure S2), however, especially the starting
region of the subpathway, was reported to be highly
associated with tumor growth and survival (35,36). The
subpathway path:00010_1 comprised the pyruvate and
lactate metabolism region, which is located in the
bottom region of the glycolysis/gluconeogenesis pathway
(Supplementary Figure S1). Pyruvate is at the center of the
pathway and showed a high degree and betweenness in the
pathway. Lactate has been widely reported to be
associated with cancer (Warburg effect) (32,33). The
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differential genes and metabolites involved in the afore-
mentioned pathways were located in the local cascade
region of pathways. Pathway-G, -M and IMPaLA
tended to miss this kind of pathways because of the low
ratios of the differential genes and metabolites involved,
resulting in low enrichment significance. However,
Subpathway-GM can effectively detect the biologically
meaningful pathways by accurately identifying key
subpathway regions through the joint power of differen-
tial genes and metabolites, and their topologies within
pathways.

Colorectal cancer 2

Our second data set was chosen to illustrate the reliability
of the metabolic pathways identified by Subpathway-GM
analysis in colorectal cancer data set 1 by analysis of gene
expression in a second colorectal cancer data set 2. In this

data set, we identified 1773 differentially expressed genes,
including 792 (38.59%) of the genes identified in data set
1. Subpathway-GM analysis of the data set 2 detected 64
potential subpathways from all metabolic pathways, 36 of
which, corresponding to 33 entire pathways, were finally
identified as significant at the 1% significance level.
Twenty (80%) of 25 significant pathways found in the
data set 1 were also in data set 2, although only 38.59%
differential genes in data set 1 were also in data set 2. The
overlap between pathways found in the data sets 1 and 2
was also highly statistically significant (P< 1.00E-11;
hypergeometric test).
Most of the cancer-related pathways in data set 1, such

as tryptophan metabolism, glycolysis/gluconeogenesis and
arachidonic acid metabolism, were also identified in data
set 2, indicating that Subpathway-GM can reliably identify
disease-related metabolic pathways. Furthermore, we

Figure 4. Arachidonic acid metabolism pathway where the differential genes and metabolites of colorectal cancer were annotated. Nodes near
asterisk symbol belong to the key subpathway (path:00590_1) region identified by Subpathway-GM. The region contained the certain parts of
three subsystems: COX, LOX and CYP450. Most of the differential genes involved in LOX5 belonged to the LOX subsystem.

Table 2. Degree and betweenness of nodes within significant subpathways and corresponding entire pathways

Centrality Molecules Subpathway Entire pathway P-values

Degree Genes and metabolites 4.00 2.14 4.05E-94
Genes 3.95 5.96E-115
Metabolites 4.18 5.05E-61

Betweenness Genes and metabolites 617.59 212.18 6.36E-113
Genes 614.29 5.34E-82
Metabolites 658.47 1.02E-46
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compared the results of the two data sets 1 and 2 at the
subpathway level. We used the Jaccard index to compute
similarities between molecules (genes and metabolites) in
the corresponding subpathways for 20 common pathways
found in the data sets 1 and 2. The similarity values of
17 pathways were >50%, and the average value for all
20 pathways was 66%. These results suggest that the
results of Subpathway-GM analysis were reliable at
the subpathway level. Moreover, eight pathways in data
set 2, including tryptophan metabolism, glycolysis/
gluconeogenesis and arachidonic acid metabolism, were
identified by Subpathway-GM, but not by Pathway-G,
-M or IMPaLA.

Metastatic prostate cancer

To further demonstrate the use of Subpathway-GM, we
applied this analysis to a metastatic prostate cancer data
set (12,22). Because the metabolic pathways associated
with metastatic prostate cancer have not been widely
reported, we expected to identify novel pathways in this
data set. Subpathway-GM identified 16 significant
subpathways at the 1% significance level, nine (56.25%)
of which were involved in amino acid metabolism. Some
studies suggested that amino acid metabolism might be
highly associated with metastatic cancer (12,43), for
example, ‘glycine, serine and threonine metabolism’ was
reported to be highly associated with metastatic prostate
cancer (12). Subpathway-GM yielded a P-value of
0.000027 (FDR corrected to 0.00042) and identified the
metastasis-related key subpathway path:00260_1
(Supplementary Figure S3) (12).
Of 16 pathways identified by Subpathway-GM, up to

nine (56.25%) were ignored by Pathway-G, -M and
IMPaLA simultaneously (Supplementary Table S2). The
most significant additional subpathway (path:00380_1)
contained the key tryptophan–serotonin regions in the
tryptophan metabolism pathway (Supplementary Figure
S4). Dizeyi et al. (30,31) demonstrated that serotonin
can activate mitogen-activated protein kinase and PI3K/
Akt signaling pathways, which play an important role in
prostate cancer progression, especially in androgen-
independent state disease. In the third additional
pathway ‘cysteine and methionine metabolism’,
Subpathway-GM identified the metastasis-related key
subpathway region (path:00270_3) involving methionine
metabolites (Supplementary Figure S5). In the pathway,
methionine metabolites, including cystathionine and
cysteine, can significantly increase the ability to predict
aggressive prostate cancer (43). Furthermore, methionine
metabolism involves mechanisms for sarcosine formation
(43), and Sreekumar et al. (12) identified sarcosine as a
potential key metabolic intermediary of prostate cancer
cell invasion and aggressivity. In addition, the arachidonic
acid metabolism pathway, especially COX regions in the
pathway, has been highly associated with prostate cancer
progression [reviewed in (45)].
To the best of our knowledge, some of the additional

pathways identified by Subpathway-GM, such as histidine
metabolism, have not been reported in association with
metastatic prostate cancer. As shown in Figure 5A, the

histamine region in the pathway was accurately identified
by Subpathway-GM and the subpathway yielded a
P-value of 0.0016 (FDR corrected to 0.0094). Histamine
was located in the central region in the subpathway, sug-
gesting a potential high association with metastatic
prostate cancer. We further explore this using a transwell
chamber assay to detect the effect of histamine on cell
migratory ability in vitro (see Supplementary Text).
Briefly, the prostate cancer cell line DH145 was treated
with different final concentrations of histamine
(1–6 mmol/l) for 24 h. The result showed that low concen-
tration histamine could promote prostate cancer cell mi-
gratory ability and had a dose-dependent effect (Figure 5B
and D). In contrast, high concentration histamine in-
hibited the cell migration. To exclude the effect of hista-
mine on cell viability, viability was determined by 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay after treatment of the cells with histamine
(see Supplementary Text). The result showed that hista-
mine had no effect on cell viability (Supplementary Figure
S6). Cells were treated with 3 mmol/l of histamine for dif-
ferent period (0–24 h) to detect any time-dependent effects.
The results confirmed that histamine promoted prostate
cancer cell’s ability of migration in a time-dependent
manner (Figure 5C and 5E). In addition, several genes
previously shown to play important roles in multiple
cancers also emerged in the identified subpathway,
including Histidine decarboxylase (HDC), Histamine N-
methyltransferase (HNMT), Monoamine oxidase (MAO)
and Aldehyde dehydrogenase [NAD(P)+] (ALDH)
(Figure 5A). Overall, these results suggest that dysfunction
of the histamine region may be highly associated with
metastatic prostate cancer.

DISCUSSION

Metabolic pathways involve genes (enzymes) and metab-
olites, which both play important roles in the functions of
metabolic pathways related to studying conditions such as
diseases (10–12). The integrative analysis of genes and me-
tabolites at the pathway structure level will, therefore, help
to locate and evaluate key metabolic subpathways. Based
on this idea, we integrated genes and metabolites relevant
to a given disease into pathways, and then identified key
metabolic subpathways via cascades among signature
nodes within the pathway structure. The resulting
Subpathway-GM method was applied to differential
genes and metabolites in colorectal cancer. The results
showed that most of the pathways identified by
Subpathway-GM were highly associated with the initi-
ation and progression of colorectal cancer. Interestingly,
many pathways corresponding to significant subpathways
identified by Subpathway-GM were obviously ignored by
classical pathway identification methods, such as
Pathway-G, -M and IMPaLA. We focused on seven
pathways that were identified by Subpathway-GM but
not by any of the other three methods. Surprisingly, six
pathways were highly associated with colorectal cancer,
suggesting that Subpathway-GM was able to recall more
colorectal cancer-associated pathways. Moreover, the
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results obtained for one colorectal cancer data set at the
entire pathway and subpathway levels were reliably
reproduced in a second colorectal cancer data set.
Application of Subpathway-GM to a metastatic prostate
cancer data set not only successfully identified already-
reported metastasis-related metabolic subpathway
regions but also predicted multiple novel potential
metastasis-related subpathways, such as histamine metab-
olism. These results thus demonstrate the power of a joint
gene/metabolite subpathway strategy based on their
topology in terms of recalling and predicting more bio-
logically meaningful pathways.

Compared with other entire pathway identification
methods, Subpathway-GM was able to locate key
subpathway regions accurately via positional information
of differential genes and metabolites within pathways.
This strategy can not only locate key subpathway
regions associated with diseases but also tends to
identify the key regions representative of entire
pathways. The key subpathway regions identified by
Subpathway-GM contained fewer genes and metabolites
than entire pathways, allowing researchers to use alterna-
tive low-throughput technologies to confirm the local
subpathway regions related to specific diseases (46).

This study focused on finding disease-related
subpathways by setting the parameter n according to the
distance between known disease genes and metabolites.

The parameter s was also set as 5 to increase the sensitivity
of identifying potential disease-related subpathways.
However, users would be able to vary these parameters
according to their needs. For example, increasing s could
be used to focus more on the representative subpathways
by filtering out small subpathways because smaller
subpathway are less likely to represent the corresponding
entire pathway. In addition, n can indirectly influence the
size of the located subpathway. Increasing n increases the
size of the subpathway because lenient distance similarity
tends to merge more nodes into the same subpathway.
Moreover, the key nodes within entire pathways also
tend more to be added to the located subpathway
because of high topological centrality of key nodes.
Subpathway-GM would thus be expected to identify the
key representative regions in entire pathways.
Our previous ‘k-cliques’ method, which was similar to

Pathway-G but uses pathway structure, was able to
identify metabolic subpathways based on interesting
genes (13). However, the method only used enzyme rela-
tions (without considering metabolites) to mine regular
‘circle’ shape subpathways. On the one hand, this
method did not support joint input from interesting
genes and metabolites like most of pathway identification
methods, and thus ignored joint power of genes and me-
tabolites. On the other hand, many disease-related
subpathways displayed relatively irregular shapes in

Figure 5. Analysis of the histamine region in histidine metabolism. (A) The histamine region (path:00340_1) is located in the center of the histidine
metabolism pathway. Zoomed region displays the subpathway in detail. (B and D) Dose-dependent effect of histamine on migration detected using
transwell chamber assay. Cell migration ability increased as histamine concentration increased. Prostate cancer cells showed the greatest migration at
3 mmol/l. (C and E) Cells treated with 3 mmol/l histamine were incubated for different periods (0–24 h). Histamine promoted prostate cancer cell
migration in a time-dependent manner. Each experiment aforementioned was performed in triplicate.
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pathways, especially when considering interesting metab-
olite information. These irregular regions can usually be
identified effectively by the Subpathway-GM, but not by
the ‘k-cliques’ method, because of the different subpath-
way mining strategies of the two methods. We further
compared Subpathway-GM with the ‘k-cliques’ method
using data sets 1, 2 and 3, and we found that
Subpathway-GM was more effective in identifying
subpathways as a result of the integrative use of genes
and metabolites, the strategy for locating subpathway
regions and control of subpathway overlap (see
Supplementary Text). Subpathway-GM thus detected 16,
13 and 10 significant pathways in data sets 1, 2 and 3,
respectively, that were ignored by the ‘k-cliques’ method.
The limitations of current metabolomic technology

mean that fewer differentially metabolites are detected
compared with differentially expressed genes, which may
result in pathway analysis strategies tending to ignore me-
tabolite information. However, metabolites may be
located in important positions in pathways, and
Subpathway-GM takes into account the importance of
metabolites in locating and evaluating subpathways.
Notably, if differential metabolites appear in an important
position in the pathways, these metabolites and their
nearby genes can play crucial roles in identifying key
subpathway regions through the formation of signature
nodes. For example, the differential arachidonic acid in
the arachidonic acid metabolism pathway effectively
helps to locate the key subpathway region composed of
LOX, COX and CYP according to our subpathway
strategy. Tryptophan in tryptophan metabolism provides
another example. These metabolites were differential in
colorectal cancer and were thus defined as signature
nodes to locate key subpathways in Subpathway-GM.
In analysis of data from ‘omics’ technologies such as

microarrays, Pathway-G, -M and IMPaLA belong to the
‘cut-off–based’ methods, which are useful for identifying
pathways with strong changes reflecting major changes in
genes or/and metabolites (e.g. differential genes and me-
tabolites) (2,8). The ‘cut-off–free’ methods, such as GSEA
and its versions (e.g. MSEA), are also useful because they
can detect molecules with weaker changes, and thus
identify biologically meaningful but seemingly weak
pathways (2,8). Subpathway-GM is a ‘cut-off–based’
method but can also recall biologically meaningful, seem-
ingly weak pathways that contain key subpathway regions
with strong changed nodes. The key principle of
Subpathway-GM is that seemingly weak pathways from
the entire pathway view may still show strong changes in
key subpathway regions. Through effectively setting the
parameter n, Subpathway-GM can thus endure some
genes and metabolites with seemingly weak changes.
‘Cut-off–free’ methods are still not applied for the integra-
tive pathway identification of genes and metabolites. A
fact is that acquiring integrative rank list of genes and
metabolites is usually difficult based on different
technologies, such as microarray, GC–MS, liquid chroma-
tography–MS and nuclear magnetic resonance.
Subpathway-GM thus demonstrates a significant advan-
tage in terms of the integrative pathway identification of
genes and metabolites. Instead of needing to know rank

lists or differential levels, users only need to provide a list
of the molecules of interest. Subpathway-GM thus has
considerable potential to complement ORA and GSEA
in pathway identification, as a result of its utilization of
both genes and metabolites and its subpathway strategy
based on their topologies.
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