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Immune imbalance caused bone loss. Osteoimmunology is emerging as a new

interdisciplinary field to explore the shared molecules and interactions between the

skeletal and immune systems. In particular, T lymphocytes (T cells) play pivotal roles

in the regulation of bone health. However, the roles and mechanisms of T cells

in the treatment of osteoporosis are not fully understood. The present review aims

to summarize the essential regulatory roles of T cells in the pathophysiology of

various cases of osteoporosis and the development of T cell therapy for osteoporosis

from osteoimmunology perspective. As T cell-mediated immunomodulation inhibition

reduced bone loss, there is an increasing interest in T cell therapy in an attempt

to treat osteoporosis. In summary, the T cell therapy may be further pursued as an

immunomodulatory strategy for the treatment of osteoporosis, which can provide a novel

perspective for drug development in the future.
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INTRODUCTIONS

Osteoporosis is a prevailing metabolic bone disease in both men > 50 years and postmenopausal
women, which increases bone fragility and may further result in bone fractures, thus significantly
leading to serious health problems for patients (1). Worldwide, nearly 200 million people are
diagnosed with osteoporosis annually, even leading to almost 9 million osteoporotic fractures (2).
In the US, it was approximately 53.6 million of the adult population of years > 50 who suffered
from osteoporosis and low bone mass (54% of the population) (3). In fact, osteoporosis patients
not only suffer from the enormous pain and disability but also bring a huge economic burden for
patients and their families. In the US, it has been estimated that the financial costs associated with
bone fractures will reach $25.3 billion by the end of 2025 (4).

In traditional view, osteoporosis was considered as the imbalance of bone remodeling between
osteoclasts and osteoblasts (5). Recently, the immune system was reported to regulate the bone
system, which promoted the emergence of interdisciplinary field of osteoimmunology (6–9). The
immune and bone systems share the same microenvironment. The immune system regulates
osteocytes by the secretion of inflammatory factors and related ligand, which further affects bone
formation and bone resorption (8, 10). T cells, B cells, and cytokines are important regulatory
factors in the bone resorption. Among them, T cells play pivotal roles in the regulation of bone
remodeling (11, 12). The osteoclast differentiation was enhanced, and the bone mineral density was
decreased in the nude mice (T cell deficient), which was due to the immune imbalance of T cells
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promoting osteoclast differentiation and bone resorption (13,
14). In pathophysiological condition, activated T cells secreted
multiple inflammatory factors and related ligands such as TNF-α,
IL-1, IL-6, IL-17, and CD40L, which enhanced bone resorption
and disrupted bone balance, resulting in bone loss (15, 16).
Th17 cells are mainly involved in inducing bone resorption
(osteoclastogenesis) (17), while Treg cells are major suppressors
of bone loss (18, 19) by inhibiting differentiation of monocytes
into osteoclasts (17, 20, 21). These reports indicated that immune
imbalance promoted osteoclast differentiation, further leading to
bone loss. However, the roles of T cells in osteoporosis and the
underlying mechanism of T cells in the regulation of bone system
are still unclear.

Recently, there is an increasing interest in immune therapies
especially T cell therapies for the treatment of osteoporosis
(22). For example, antiretroviral therapy worsens HIV-induced
bone loss (23), which may be an important future approach
to treat osteoporosis in human. That is because T cell
reconstitution induces RANKL and TNFα production by B-
cells and/or T-cells, which further enhancing bone resorption
and bone loss. T cell therapy became the effective strategy
for the treatment of osteoporosis. For example, RANKL/RANK
inhibition may be an attractive approach for the treatment
of postmenopausal osteoporosis (24). Sclareol is a natural
product (initially isolated from the leaves and flowers of Salvia
sclarea) with immune regulation and anti-inflammatory effects,
and it prevents ovariectomy-induced bone loss in vivo and
inhibits osteoclastogenesis in vitro via suppressing NF-κB and
MAPK/ERK signaling pathways (25). Thus, it will be essential
to develop T cell therapy that may be a huge potential for the
treatment of osteoporosis in future clinical applications.

Herein, we briefly highlight the roles of T cells in various
types of osteoporosis and uncover novel mechanisms of
osteoimmunology, which provides new insight for clinical
implications in the treatment of osteoporosis. Nonetheless, the
underlying mechanisms of bone-immune interactions need to be
further dissected, and an accumulative evidence continues to be
made in favor of regulation roles of immune cells in osteoporosis.
Most importantly, the T cell therapy may represent a suitable and
potential approach to reinstate aberrant bone remodeling in the
bone metabolism diseases.

OSTEOIMMUNOLOGY AND THE
REGULATION OF T CELL CYTOKINES IN
OSTEOPOROSIS

Osteoimmunology is the intricate interaction between
the immune system and the bone system (6–9). The

Abbreviations: BMMs, Bone marrow macrophages; BMSCs, bone marrow

stromal cells; Cbfa1, core-binding factor subunit alpha-1; DC, dendritic cell; GCs,

glucocorticoids; GIO, glucocorticoid-induced osteoporosis; GSK-3β, glycogen

synthase kinase 3β; IGF, insulin-like growth factor; IFN, interferon; M-CSF,

macrophage-colony stimulating factor; MSCs, mesenchymal stem cells; NFATc1,

nuclear factor of activated T cells cytoplasmic 1; NKT, natural killer T cells; iNOS,

inducible NOS; RANKL, nuclear factor-kappa-B ligand; OVX, ovariectomized;

OPG, osteoprotegerin; PTH, parathyroid hormone; T cells, T lymphocytes;

TRAF6, TNF receptor associated factor 6; Runx2, Transcription Factor 2; RANK,

receptor activator of NF-kB ligand; RA, rheumatoid arthritis.

RANKL/RANK/OPG pathway is essential for the differentiation
of bone-resorbing osteoclasts and immune regulation (26, 27).
Activated T cells directly produce RANKL, which further
stimulates osteoclast formation (28, 29). RANKL and RANKwere
identified as key factors in the mediation of bone remodeling,
especially in the osteoclast formation (29, 30). Furthermore, the
activated RANK facilitated the expression of tumor necrosis
factor (TNF) receptor-associated factors (TRAFs), such as
TRAF6, which leads to osteoclast differentiation (31, 32). In
OVX mice, the low-dose RANKL of CD8+ Treg cells decreased
the expression of inflammatory and osteoclastogenic cytokines,
thus suppressing bone resorption (33). Multiple cytokines
produced by T cell including interleukin (IL)-12, IL-17, IL-18,
and TNF-α were involved in RANK signaling, and thus play
essential roles in regulating osteoclastogenesis and osteoclast
differentiation (34). In addition, activated T cells suppress
osteoclast differentiation by the antiviral cytokine IFN-γ (35).
Various inflammatory cytokines were necessary and sufficient for
bone metabolism (11). IL-17A also upregulates the expression of
RANK, thus promoting the osteoclastogenic activity of RANKL
(36). All these studies indicated that T cell cytokines play
essential roles in osteoporosis, which may be the potential targets
for the treatment of osteoporosis. Various T cell cytokines are
listed in Table 1.

THE T CELLS IN THE REGULATION OF
VARIOUS OSTEOPOROSIS

T cells perform a dual role in the regulation of bone remodeling:
resting T cells protect osteoclasts from bone resorption, and
activated T cells actively regulate the osteoclasts generation. This
review aims to summarize the regulatory roles of T cells in
various types of osteoporosis such as chronic inflammation-
induced osteoporosis, senile osteoporosis, estrogen deficiency-
induced osteoporosis, parathyroid hormone (PTH)-induced
osteoporosis, and glucocorticoid-induced osteoporosis (GIO).

The Regulatory Roles of T Cells in Chronic
Inflammation-Induced Osteoporosis
Osteoporosis commonly occurred in various chronic
inflammatory diseases, such as rheumatic arthritis (RA),
gout, psoriatic disease, osteoarthritis, and axial spondylarthritis
and even leads to functional disability and increased mortality
(49–52). It is interesting to note that Tregs play pivotal roles
in inflammation-induced bone loss by inhibiting the functions
of Th17 cells (19, 53). In particular, Foxp3+ Treg cells play
an indispensable role in bone and hematopoietic homeostasis
acting on osteoclast development and function (54). In addition,
in inflammation condition, the expression of nuclear factor
of activated T cells cytoplasmic 1 (NFATc1), as well as by
inflammatory cytokines such as TNFα, IL-1β, and IL-6 was
induced and produced to promote osteoclast differentiation
mediated by the RANKL-RANK and calcium signaling (8).
INFγ, the main Th1 cytokine, can strongly inhibit osteoclast
differentiation in vitro through the proteasomal degradation
of TRAF6, indicating that T cells regulate osteoclastogenesis
(28). The T cell subset, Tregs, also suppresses osteoclast
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TABLE 1 | Roles of various T cell cytokines in the regulation of osteoclastogenesis.

Cytokine Source Modulation of immunology Osteoclastogenic function References

RANKL Th17 cells Osteoclast differentiation

dendritic cells (DCs) maturation

Osteoclast activation via RANK (37)

RANK Osteoclasts, DCs DCs activation Osteoclast differentiation and

activation

(38)

OPG Osteoclasts Decoy receptor for RANKL Inhibits osteoclastogenesis (39)

TNFα Th17, macrophage DCs Pro-inflammatory cytokine Indirect osteoclastic activation

through RANKL

(37)

M-CSF Th1 Pro-inflammatory Inhibits osteoclastogenesis (38)

IL-4 Th2 Humoral immunity Inhibits osteoclastogenesis (40)

IL-6 Macrophage, DCs Pro-inflammation, Th17 induction Activation of osteoclastogenesis (41)

IL-7 T cells Pro-inflammatory cytokine Inhibits osteoclast formation (42)

IL-8

IL-10 Regulatory T (Treg) Anti-inflammatory Suppress bone resorption (43)

IL-17 T cells Pro-inflammatory cytokine RANKL expression and vigorous

pro-inflammatory potency

(44)

IL-27 Macrophage and DCs Th1and Treg Th17 induction Inhibits osteoclast formation, blocking

receptor activator of NF-κB

(RANK)-dependent

osteoclastogenesis

(45)

IL-12 Antigen-presenting cells Pro-inflammatory cytokine Inhibits RANKL-stimulated

Osteoclastogenesis

(46)

IL-15 NK cells Pro-inflammatory cytokine Enhances RANK ligand (RANKL) and

macrophage colony-stimulating factor

expression

(47)

IL-23 Macrophage and DCs Th17 induction Indirect osteoclast activation (48)

IFN-γ Th1, NK cells Cellular immunity Inhibits osteoclastogenesis (41)

formation and bone resorbing in vitro (53). CTLA-4 is the
most essential regulator in the Treg-mediated inhibition of
osteoclast differentiation, whereas the major cytokines of
Tregs-TGFβ and IL-10 do not possess any essential roles
(53). All these studies suggest that T cells and their related
cytokine play pivotal roles in the regulation of osteoporosis,
and they may be the potential therapeutic targets for
bone loss.

Generally, chronic inflammatory diseases are associated with
bone resorption. HIV-infected men had low CD4T cells, which
is inversely associated with bone loss (55). Some studies suggest
that T cells are not associated with bone mineral density in
HIV-infected patients treated with combination antiretroviral
therapy (cART) (56). However, cART seems to influence bone
mineral density (BMD) with the protective effect. Therefore,
the regulatory roles for activated T cells in the pathogenesis of
osteoporosis warrant further investigation. In RA patients, the
enhanced osteoclast differentiation and activation lead to bone
erosion and systematic osteoporosis (57). Indeed, inflammatory
cytokines including RANKL, TNFα, IL-6, and IL-1 were elevated
in RA patients, which promoted the osteoclast differentiation
(58). Taken together, these studies suggest that the T cells
may determine the osteoclast differentiation in the chronic
inflammatory diseases, and the T cell regulatory therapy could
potentially have significant impact on the drug development for
osteoporosis. However, whether the T cell therapy is efficient for
osteoporosis in clinical studies needs further investigation.

The Regulation Roles of T Cells in Senile
Osteoporosis
Aging is always accompanied with the imbalance between bone
formation and resorption, causing skeletal microarchitecture
damage and bone loss (59). The production of naïve T cells is

severely impaired due to a decreased output of lymphoid cells

from the bone marrow and the deterioration of the thymus (60).
Incidence and severity of osteoporosis are increased in the older

population (61). The prevalence of low BMD is associated with

immune activation and senescence induced by HIV infection
(62). Total T cells were increased in the bone marrow (BM) with

age, especially the highly differentiated CD8+ T cells without the
expression of the co-stimulatory molecule CD28, while natural

killer T (NKT) cells, monocytes, and naïve CD8+ T cells were

decreased in the BM with age (63). It seems that the immune
system abnormality plays important roles in the regulation of
senile osteoporosis.

Recent discoveries suggest that T cell dysfunction induced
the accumulation of cytokines, immunological mediators, and
transcription factors, which affect osteoclast and osteoblast in the

elderly (64). Cytokines such as IL-6, TNF-α, and IL-1 increased

with age (65, 66). IL-1 and TNF-α activate the inducible NOS
(iNOS) pathway, which inhibited osteoblast differentiation and
enhanced osteoblast apoptosis in vitro (67). IL-12 derived from

T cells, alone or combined with IL-18, was identified to inhibit
osteoclast formation in vitro (68). IL-4 regulated osteoclast
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differentiation through the antagonism between STAT6 and
NF-kB signaling (69). In addition, T cell mediated the bone
balance by the inhibition of osteoclastogenesis through the
crucial immunoregulatory control, mainly OPG expression and
simultaneous production of cytokines (64). IFN-g, IL-12, and
IL-18 inhibited the RANKL-induced maturation and activation
of osteoclasts (64). Furthermore, senescent T cells impaired the
production of IFN-γ, OPG, and osteoclast-inhibiting cytokines,
which increased the incidence of aged osteoporosis. In addition,
cytokines such as TGFβ and RANKL secreted by activated T cells
can activate p38 MAPKs and further regulate bone development
and remodeling. P38α MAPK mediates osteoclast proliferation
and bone remodeling in an aging-dependent manner (70).
Overall, T cells and their cytokines play important roles in the
regulation of aged osteoporosis, which may be the novel targets
for the treatment of osteoporosis, suggesting that T cell therapy
could be used as immunotherapy and may be beneficial in
counteracting immunosenescence in old population. Meanwhile,
in females, osteoporosis occurrence is generally attributed to the
decrease in estrogen, thus leading to estrogen deficiency-induced
osteoporosis. The underlying mechanisms of T cells involved in
the mediation of the postmenopausal osteoporosis were dissected
in the next section, The Regulatory Roles of T Cells in Estrogen
Deficiency-Induced Osteoporosis.

The Regulatory Roles of T Cells in
Estrogen Deficiency-Induced Osteoporosis
The loss of estrogen initiates the inflammatory changes of bone-
microenvironment state, inducing a rapid phase of bone loss
leading to osteoporosis in half of postmenopausal women. In
postmenopausal women, estrogen deficiency stimulates CD4+

T cell dysregulation and induces elevated circulating levels
of inflammatory cytokines, especially TNFα, IFN-γ, IL-17,
RANKL, and CD40L (71–74). These cytokines exert impressive
regulatory effects on bone resorption. For example, TNF-α was
overexpressed in the BM in postmenopausal osteoporosis, which
promotes RANKL-induced osteoclast formation through the
activation of NF-κB and PI3K/Akt signaling (74). Besides, TNF-
α was identified to induce both autophagy and apoptosis in
osteoblasts to enhance bone loss in postmenopausal women
(75). Besides, estrogen deficiency increased the number of
the costimulatory factors, CD40L, expressed on activated T
cells, inducing the expressions of M-CSF and RANKL on
stromal cells and downregulating the production of OPG,
ultimately resulting in a remarkable increase in osteoclast
numbers (76, 77). The pro-osteoclastic cytokines, such as IL-
6, TNF-α, and IL-1, were increased significantly in estrogen
deficiency-induced osteoporosis (78). All these studies indicated
that the inflammatory cytokines and costimulatory factors of
T cells changed significantly in estrogen deficiency-induced
osteoporosis, which may provide the novel perspective for the
treatment of bone loss in postmenopausal women.

Moreover, estrogen deficiency stimulates the IL-17
differentiation of Th17 cells (79) and augments the expression
levels of pro-osteoclastogenic cytokines, such as TNF-a, IL-6,
and RANKL, ultimately leading to bone loss. Nevertheless, IL-17

receptor deficiency induced more serious bone loss in OVXmice
than that in control groups, implying that IL-17 may possess the
bone protective effects (80). The pro-osteoclastogenic cytokine
changes were reversed with the supplementary oral estrogen,
indicating that estrogen may suppress Th17 differentiation and
IL-17 production to protect bone health (81). In summary, in
postmenopausal women, both aging and hormonal deficiency
stimulate the deregulation of T cells contributing to the
inflammatory, which increased bone resorption, resulting in
a bone loss or osteoporosis. We believe that focusing on the
potential biological mechanisms of T cells is of paramount
importance for developing novel therapy strategies for the
treatment of postmenopausal osteoporosis. However, further
confirmation in phase I/II trials is needed to validate these
strategies in a broader clinical evaluation.

The Regulatory Roles of T Cells in
PTH-Induced Osteoporosis
PTH is a key calciotropic hormone and a critical regulator
for postnatal skeletal development (82). The secretion of
inflammatory or osteoclastogenic cytokines of T cells and bone
cells was facilitated under long-term PTH administration, such
as RANKL, TNF-α, and IL-17, which promoted the bone
resorption (83). PTH induced bone loss via the expansion of
intestinal TNF+ T and Th17 cells, and the increase in their S1P-
receptor-1 mediated egress from the intestine and recruitment
to the BM (84). So targeting the gut microbiota or T cell
migration may represent novel therapeutic strategies for PTH-
induced osteoporosis. In addition, PTH exploited CD4+ T cells
to induce TNFα production that enhances the formation of
IL-17A secreting Th17T cells. Both TNFα and IL-17 further
facilitated the development of an increased RANKL/OPG ratio
favorable to osteoclastic bone resorption (85). Moreover, PTH
boosted the production of TNF-α and RANKL in CD4+ T cells,
which triggered osteoclastogenic generation and bone resorption
activity (86). Clinical studies also showed that PTH treatment
increased Th17 cell numbers and the IL-17 production in humans
with primary hyperparathyroidism (34). IL-17 intensified PTH-
induced bone loss through the stimulation of the RANKL
production in osteoblast-lineage cells, which is parallel to the
roles of IL-17 in estrogen deficiency-induced osteoporosis.

Notably, T cells also secreted PTH receptors involved in the
regulation of trabecular bone development (87). For example, T
cells promoted the signals of BMSC proliferation through the
combination of CD40L on T cells and its receptor on BMSC,
weakening the bone catabolic activity of cPTH, leading to a
reduction of the RANKL to OPG ratio and osteoclastogenic
activity (88). Several studies found that the intermittent PTH
administration at low dosage increased bone formation and bone
mass, thus attenuating bone loss (89, 90). The deletion of PTH
receptor in BM mesenchymal progenitors results in a rapid
increase in BM adipocyte accompanied with the reduction of
bone mass. Given the essential regulatory roles of T cells for the
PTH-induced bone loss, particular attention will be paid toward
the combinations of intermittent PTH (iPTH) and T cell therapy
for PTH-induced osteoporosis.
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The Regulatory Roles of T Cells in GIO
Glucocorticoids (GCs) are extensively used for the treatment
of immune and inflammatory disorders due to their powerful
immunosuppressive and anti-inflammatory actions (91, 92).
However, long-term exogenous GC therapy might cause rapid
and pronounced bone loss and subsequently osteoporosis (93,
94). The pathogenesis of GIO was predominantly attributed
to the fact that GCs impaired bone formation by reduction
of osteoblast differentiation and activity via the expression of
the osteoblast-specific transcription factor runt-related Runx2
(95–97). In addition, the long-term GC administration affects
bone remodeling by whittling the insulin-like growth factor
(IGF) in ossification (98). GCs enhanced the expression levels
of RANKL in both osteoblasts and stromal cells, which triggered
osteoclastogenesis and activated osteoclastic bone resorption by
binding to the RANKL receptor RANK (99), thus resulting
in the primary phase of rapid bone loss. On the other hand,
GCs contributed to the apoptosis of certain T cell subsets,
further augmented the secretion of RANKL, and directly induced
osteoclast differentiation (100). Interestingly, different T cell
subsets exhibit distinct sensitivity to GC-induced apoptosis. For
example, Th17 cells, as an osteoclastogenesis-promoting factor,
are resistant to GC-induced apoptosis and cytokine suppression
mostly through the high production of IL-17 and RANKL (79).
Therefore, GC therapy fails to inhibit the Th17 cell activation
and the IL-17 and RANKL production. Excessive GCs could
reduce the production of OPG, further promoting osteoclast
differentiation and resulting in bone resorption. Given above,
we assert that T cell therapy may be effective for the GC-
induced osteoporosis.

T CELL THERAPY FOR OSTEOPOROSIS

T cells and their secreted cytokines are responsible for bone
resorption in various osteoporosis. T cell therapy may be a
potentially therapeutic approach to osteoporosis. For example,
anti-inflammatory therapies have shown good potential in an
animal model, although they have not been widely used clinically
to treat osteoporosis (101). Immune modulation therapy such as
probiotics was considered as a novel strategy for bone loss (102–
104). RANKL was considered as an activator of dendritic cell
(DC) expression in T cells. Anti-RANKL therapeutic antibody
drug, denosumab, has been successfully applied in the treatment
of osteoporosis in clinics (105–107). In addition, a novel
vaccine targeting RANKL by introducing a p-nitrophenylalanine
at a single site in mRANKL immunization could prevent
OVX-induced bone loss in mice (108). Notably, anti-RANKL
antibody inhibited osteoporosis and bone destruction, but
possesses no therapeutic effect on RA disease. Therefore, it is

necessary to rethink about the underlying mechanisms of bone-
related diseases.

Recently, extracts and natural products derived from
traditional Chinese medicine (TCM) have great potential as well
as advantages in the prevention and treatment of osteoporosis
in terms of good therapeutic effect, low toxicity, and side effects
(109, 110), and they have gained increasing attention from the
medical community. For example, polysaccharides derived from
persimmon leaves down-regulated RANKL-induced activation
of mitogen-activated protein kinases (MAPKs) to suppress
the nuclear factor of NFATc1 expression, thus possessing anti-
osteoporotic effects in OVX-induced bone loss. The natural
product cyperenoic acid is a terpenoid isolated from the
medicinal plant Croton crassifolius, and it suppressed osteoclast
differentiation by inhibiting the NF-κB pathway and suppressed
RANKL expression (111). Baohuoside I is an active component
of Herba Epimedii with the immune regulation functions of T
cells and antioxidant activity, which serves as a candidate for
treating postmenopausal osteoporosis (112). All these results
indicated that drugs from TCM possess anti-osteoporosis
effects by the regulation of T cells, and they may show great
potential as therapeutic agents for osteoporosis. However, further
experimental and clinical research remains to be specifically
conducted to explore the cellular and molecular mechanisms of
the drugs from TCM.

CONCLUSION AND PERSPECTIVE

The pathogen clearance of various types of osteoporosis would
be impaired or would delay bone resorption due to the
dysfunction of the T cells. Therefore, understanding the roles of
T cells in the pathogenesis of osteoporosis and the mechanisms
underlying these pathologies between the immune system and
the bone system may lead to the development of new treatments
for osteoporosis. However, further studies, especially clinical
studies, are required to explore the safety of T cell therapy for
bone loss.
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