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Abstract: Psoriasis is a chronic inflammatory skin disease, the immunologic model of which has been
profoundly revised following recent advances in the understanding of its pathophysiology. In the
current model, a crosstalk between keratinocytes, neutrophils, mast cells, T cells, and dendritic cells is
thought to create inflammatory and pro-proliferative circuits mediated by chemokines and cytokines.
Various triggers, including recently identified autoantigens, Toll-like receptor agonists, chemerin,
and thymic stromal lymphopoietin may activate the pathogenic cascade resulting in enhanced
production of pro-inflammatory and proliferation-inducing mediators such as interleukin (IL)-17,
tumor necrosis factor (TNF)-α, IL-23, IL-22, interferon (IFN)-α, and IFN-γ by immune cells. Among
these key cytokines lie therapeutic targets for currently approved antipsoriatic therapies. This review
aims to provide a comprehensive overview on the immune-mediated mechanisms characterizing the
current pathogenic model of psoriasis.

Keywords: psoriasis; pathogenesis; immunology; autoantigen; IL-17; IL-23; cytokines; chemokines;
autoreactive T cells; dendritic cells

1. Introduction

Plaque-type psoriasis is a chronic inflammatory skin disease involving both the innate and the
adaptive immune compartments, crosstalking with skin tissue cells.

The interaction between hyperproliferative keratinocytes (KCs), inflammatory dendritic
cells (DCs), neutrophils, mast cells, and T cells, induces to the development of psoriatic lesions,
clinically characterized by sharply demarked, erythematous, and scaly plaques. In the last three
decades, the pathogenic model for psoriasis has been profoundly revised according to a broader and
deeper understanding of the immune mechanisms leading to plaque formation.

Before the late 1990s, there was a debate on whether KC proliferation was due to intrinsic
KC defects triggering an immune response or, viceversa, whether KC hyperproliferation was a
secondary phenomenon induced by immune activation and inflammation. In 1995, a milestone
study demonstrated psoriatic plaque resolution following selective apoptosis of activated T cells,
without affecting KC survival or activation, thus demonstrating the crucial role of the immune
system, particularly of T cells, in the disease [1]. This immune hypothesis found confirmation in
numerous studies and effective immune-targeting therapies [2–5]. Initially, the pathogenic mechanism
was thought to be based on the upregulation of interferon (IFN)-γ and interleukin (IL)-12, signaling,
with both cluster of differentiation (CD)4+ and CD8+ IFN-γ-producing T cells (named Th1 and Tc1 cells,
respectively) as key players [6,7]. More recently, an accurate characterization of the immune pathways
involved in psoriasis led to recognize the role of specific subsets of immune cells and their derived
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products with the subsequent identification of new therapeutic targets. Thereby, the pathogenic
paradigm has been profoundly revised in favor of an IL-23/IL-17 axis (Figure 1) [8–10]. IL-23 is
the most potent inducer of IL-17 production by different cell types, including T cells (named in this
manuscript T17 cells), neutrophils, ILC3, NK, NKT cells, and mast cells, that have all been recognized
as strong contributors to the pathogenesis in psoriasis [11]. Gene products involved in the psoriatic
inflammation represent a consistent part of the genetic susceptibility that has been progressively
established by numerous GWAS within the last ten years. The identification of psoriasis risk genetic
loci, so-called PSORS 1-9, has been improved by GWAS that more accurately described specific
susceptibility genes associated with psoriasis, giving reason of its peculiar immunologic profile [12–22].
Indeed, these studies led to a better understanding of the pathogenic hierarchy and relevance of
certain cell types, intracellular signaling pathways, or mediators (cytokines, chemokines, antimicrobial
peptides, etc.) in psoriasis compared to other inflammatory skin disorders, wherein the involvement
of the same cell types, cytokines, or signaling pathways determine different pathogenic effects.
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Figure 1. The pathogenic model based on the IL-23/IL-17 axis inducing the development of psoriatic 
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secrete IL-17. Other cytokines derived from T cells, mast cells, and ILC3 (IL-22, IL-17F, and IL-21), 
and from mDCs (TNFα, NO, and IL-20) contribute to the development of psoriatic skin. 
Autoantigens involved in this pathway are highlighted in yellow. T17 and T22 cells represent all T 
cell subsets producing mainly IL-17 and IL-22, respectively. The IL-23/IL17 axis, the main immune 
pathway in psoriasis pathogenesis, is highlighted in red, while the other immune signals are 
designed in blue. CCL: CC chemokine ligands; CXCL: chemokine (C-X-C motif) ligand; ADAMTSL5: 
Thrombospondin Type 1 motif-like 5; β-DEF: β-defenins; IFN: interferon; IL: interleukin; KC: 
keratinocyte; mDC: myeloid Dendritic Cell; NKT: Natural Killer T cell; NO: nitric oxide; pDC: 
plasmacytoid Dendritic Cells; TNF: tumor necrosis factor; TSLP: Thymic stromal lymphopoietin. 
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investigation on immune-mediated circuits or mediators that could link psoriasis to its 
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diseases with systemic implications such as Crohn’s disease, and rheumatoid arthritis (the so-called 
immune-mediated inflammatory diseases, IMIDs) [23]. Hence, psoriatic skin inflammation is not 
confined to the lesional site, as high levels of cytokines and activated immune cells circulate into the 
bloodstream affecting also distant uninvolved skin, and other tissues or organs [24–31]. This review 

Figure 1. The pathogenic model based on the IL-23/IL-17 axis inducing the development of psoriatic
phenotype. Multiple factors induce mDCs activation with consequent IL-23 production (IFN-α, TSLP),
that, in turn, stimulates mainly T cell subsets, but also ILC3, mast cells, and neutrophils, to secrete IL-17.
Other cytokines derived from T cells, mast cells, and ILC3 (IL-22, IL-17F, and IL-21), and from mDCs
(TNFα, NO, and IL-20) contribute to the development of psoriatic skin. Autoantigens involved in this
pathway are highlighted in yellow. T17 and T22 cells represent all T cell subsets producing mainly
IL-17 and IL-22, respectively. The IL-23/IL17 axis, the main immune pathway in psoriasis pathogenesis,
is highlighted in red, while the other immune signals are designed in blue. CCL: CC chemokine ligands;
CXCL: chemokine (C-X-C motif) ligand; ADAMTSL5: Thrombospondin Type 1 motif-like 5; β-DEF:
β-defenins; IFN: interferon; IL: interleukin; KC: keratinocyte; mDC: myeloid Dendritic Cell; NKT:
Natural Killer T cell; NO: nitric oxide; pDC: plasmacytoid Dendritic Cells; TNF: tumor necrosis factor;
TSLP: Thymic stromal lymphopoietin.

More recently, the clinical interest in psoriasis-related comorbid conditions has fueled the
investigation on immune-mediated circuits or mediators that could link psoriasis to its comorbidities.
The view of psoriasis shifted from a mere skin disease to a skin disorder associated to systemic
inflammation and a wide array of concomitant conditions, mirroring other tissue-specific diseases
with systemic implications such as Crohn’s disease, and rheumatoid arthritis (the so-called
immune-mediated inflammatory diseases, IMIDs) [23]. Hence, psoriatic skin inflammation is not
confined to the lesional site, as high levels of cytokines and activated immune cells circulate into the
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bloodstream affecting also distant uninvolved skin, and other tissues or organs [24–31]. This review
aims to illustrate the immune pathogenic mechanisms in psoriasis, with a focus on the cellular and
soluble contributors, and a survey of the current pathogenic model.

2. Main Cell Types Involved in Psoriasis

A large plethora of immune cells contribute, to different extents, to the pathogenesis of psoriasis.
In this section, we will illustrate the role and the most relevant supporting evidence of each cell type.

2.1. T Cells

2.1.1. T Helper and Cytotoxic T Cells

The role of T cells in the pathogenesis of psoriasis has been well described, and both CD4+ T cells
(T helper cells, Th) and CD8+ T cells (cytotoxic T cells, Tc) seem to be critical in the development of the
skin lesions [27,31–35]. The injection of CD4+, and not CD8+, T cells obtained from psoriatic patients
into human non-lesional skin in vitro, and then grafted onto immunodeficient mice model (SCID mice),
has been shown to be responsible for psoriasis development [36]. This CD4+ T cell-driven process
is then followed by CD8+ T cell activation and recruitment. On the other hand, the development
of psoriatic-like skin in a mouse model is inhibited by CD8+, and not CD4+, T cell depletion [37].
Conversely to the CD4+ T cell-based psoriasis model, an early epidermal infiltration of CD8+ T cells is
thought to be essential for the onset of psoriasis inflammation, rather than the dermal infiltration of
CD4+ T cells [38,39]. Moreover, the primary role of CD8+ T cells is underlined by the identification of
human leukocyte antigen (HLA)-C*06:02 as susceptibility gene, a HLA class I molecule presenting
peptide antigens to CD8+ T cells, not CD4+ T cells [40].

Overall, in human lesional skin as well as in the bloodstream the number of both CD4+ and CD8+
T cells is increased [27,31,32,34,35]. These cells express CLA and chemokine receptors, and penetrate
in the skin interacting with endothelial cells expressing adhesion molecules, such as P-selectin and
E-selectin. This gives reason of the marked infiltration of CD4+ and CD8+ T cells in the dermis and
epidermis of lesional psoriatic skin, respectively [27,31,32,34,36].

Based on their cytokine production, multiple subsets of CD4+ lymphocytes (Th) have been
identified within the cellular infiltrates: Th1, Th17, Th9, follicular Th, and Th22 cells, as have
their CD8+ counterparts (Tc). Specifically, Th1 and Tc1 peculiarly show (i) signal transducer and
activator of transcription 1 (STAT1) and T-bet expression as signature transcriptional factors [41];
(ii) release of IFN-γ, TNF-α, and IL-2; (iii) expression of the CXCR3 as chemokine receptor; and (iv)
differentiation driven by IL-12 [6,7,32,42–45]. Th17 and Tc17 (i) express STAT3 and RORγt as signature
transcriptional factors; (ii) release IL-17, IL-17F, TNF-α, IL-21, IL-22, and IL-26; (iii) express IL-23
receptor, the chemokine receptors CCR6 and CCR4 [46,47]; and (iv) differentiate in presence of IL-23,
IL-1β, TGF-β, and IL-6 [48,49]. Th22 and Tc22 (i) express STAT3 expression as signature transcriptional
factor; (ii) release IL-22; (iii) bear CCR10, CCR6 and CCR4, as chemokine receptors; and (iv) their
differentiation is driven by TNF-α and IL-6 [50,51]. Other Th cell subpopulations, such as Th9 and
Follicular Th cells, have been reported to contribute to the pathogenesis of psoriasis through the
enhancement of the most relevant immune pathways, in particular the IL-17 signaling [52,53].

2.1.2. γδ T Cells

Recent studies have revealed that the majority of IL-17-producing T cells in both human and
murine psoriasis express the γδ T cell receptor [54,55]. These cells produce IL-17 and IL-22 upon
stimulation with IL-23 or IL-1β, and they share multiple features with other IL-17-producing cells
(i.e., Th17 and Tc17 cells): they constitutively express the IL-23 receptor, CLA, skin homing chemokine
receptors (i.e., CCR6), and the transcription factor RORγt [54,55]. Upon stimulation with IL-23 or
IL-1β, they are able to produce IL-17 and IL-22. IL-23 stimulation also induced dermal and epidermal
infiltration, as described in two distinct psoriasis mice models [56]. Similarly to IL-17 receptor-deficient
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mice model, T cell receptor γδ-deficient mice showed significant reduction of psoriasiform pathologic
features, after challenge with recombinant IL-23 or imiquimod [56]. Moreover, in human lesional
psoriatic skin, a marked infiltration of IL-17-producing γδ+ T cells was detected with an absolute cell
number resulting significantly higher than IL-17-producing γδ- T cells [56].

2.2. Dendritic Cells

Various subtypes of DCs can be detected in normal and pathological skin [57]. However,
only two subtypes, namely pDCs and inflammatory mDCs, seem to profoundly contribute to psoriasis
pathogenesis. They act as potent antigen presenting cells but also as relevant sources of key pathogenic
mediators including TNF-α and IL-23. On the contrary, the pathogenic role of epidermal Langerhans
cells (LCs) is still uncertain.

2.2.1. Plasmacytoid DCs

pDCs are identified by the phenotype HLA-DR+CD11c-CD123hiBDCA-2+ [57]. These cells
produce large amounts of type 1 interferons (IFN-α, β,ω) during viral infection, following the bind
of single strand RNA or DNA to endosomal Toll-like receptor (TLR)7 and TLR9, respectively [58,59],
and they are considered the primary source of IFN-α in the skin. Their activation, leading to
abundant IFN-α production, represents one of the primum movens in psoriasis pathogenesis: first,
IFN-α regulates the development and maturation of T cells and myeloid DCs, that markedly express
the IFN receptor [60]; second, it triggers a downstream mechanism leading to the development of the
psoriatic phenotype. Activating pDCs through TLR7, imiquimod application was able to induce the
psoriatic phenotype in human subjects as well as in mice models [61,62]. In these models, an increased
pDC-derived IFN-α production was found, mirroring the enriched infiltration of pDCs and the greater
expression of IFN-α detected in human lesional as compared to non-lesional psoriatic skin [61–63].
Their recruitment is induced by various chemoattractans as they bear multiple chemotactic receptors,
including CXCR4, CXCR3, CCR5, and ChemR23 (chemerin receptor) [64–69]. Besides imiquimod,
pDCs could be activated by various triggers including chemerin and other TLRs agonists: DNA or
RNA deriving from damaged cells and complexed with LL37, β-defensins, lysozyme, or IL-26 [70–73].
pDC cell activation is crucial in psoriasis pathogenesis as proven by a murine model of psoriasis
wherein the development of skin lesions is inhibited by anti-BCDA-2 antibody, which suppresses pDC
activation and, thus, IFN-α production [63].

2.2.2. Myeloid DCs

The mDCs subpopulations, characterized by the positivity for CD11c, are abundant in the lesional
psoriatic skin. These cells are thought to derive from circulating precursors that migrate into the
skin because of inflammatory and chemotactic signals, and differentiate in the psoriatic inflammatory
milieu [74–79].

Two mDC subpopulations can be distinguished:

(i) CD11c+CD1c- cells, which are phenotypically immature, produce inflammatory cytokines
(TNF and IL-6), and represent the most prevalent CD11c+ subpopulation infiltrating psoriatic
skin [80–83]. These relatively immature mDCs, also known as Tip-DCs or inflammatory mDCs,
are considered crucial players in psoriasis pathogenesis [57]. Indeed, they secrete TNF-α, IL-6,
IL-20, IL-23 (and IL-12), they express iNOS, producing NO [79–84]. Because of this activity,
they are able to induce inflammation (through TNF-α and NO), epidermal hyperplasia (through
IL-20), and T cell differentiation (through IL-12 and IL-23) [80–83]. Although mDCs are able
to secrete both p40 cytokines, IL-12 and IL-23, that consequently drive T cell differentiation
towards a Th/Tc1 and Th/Tc17 phenotype, they mostly release IL-23 that sustains and amplifies
the IL-17-mediated response, whereas IL-12 expression is not upregulated in lesional skin
compared to non-lesional skin [80–83]. Dermal Tip-DC infiltration detected in lesional psoriatic
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skin is estimated as 30-fold greater than normal skin and 10-fold greater than non-lesional
psoriatic skin [57,84,85].

(ii) A second population of mDC characterized by the phenotype CD11c+ DC-LAMP+
DEC-205/CD205+BDCA-1+, acts as resident mature antigen-presenting cell and is phenotypically
similar to those contained in normal skin. The number of these DCs does not increase in lesional
skin compared to uninvolved skin [57,82]. These mature “resident” DCs are likely responsible for
the antigen presentation to cutaneous T cells occurring in situ [86], within the dermis rather than
following migration to draining lymph nodes [82,87]. CD1c+ “resident” DCs, representing mature
(DC-LAMP/CD208+, CD205+, and CD86+) DCs, establish dermal clumps with T cells constituting
lymphoid tissue-like structures [80–83,86,87], though T cells can be stimulated by Tip-DCs
(CD11c+, CD1c- mDCs) as well [57]. Therefore, beyond the classic role of antigen-presenting cells,
Tip-DCs show a prominent inflammatory activity in psoriasis and their infiltration is increased in
lesional skin but normalized during treatment with effective therapies [85,88].

2.3. Neutrophils

Neutrophils infiltrate the dermis in the early phase of the psoriatic plaque formation,
and subsequently they migrate into the epidermis, aggregating in microabscesses (Munro’s
microabscesses), which represent one of the histopathological features of the disease. The ligands
for CXCR2, such as CXCL-1, CXCL-2, CXCL-8 (also known as IL-8), and antimicrobial peptides (AMPs),
are abundantly expressed in lesional psoriatic skin [89], mainly produced by KCs upon IL-17, IL-22,
and TNF stimulation [90–94]. Neutrophils constitute a relevant source of pro-inflammatory mediators,
including IL-17 that is, at the same time, a factor inducing their survival, recruitment, and activation [95,96].
Since they express the IL-17 receptor, IL-17 could constitute an important autocrine autoamplifying
signal [97]. The presence of IL-17 embedded into cytoplasmic vesicles has been described, whereas it is
still debated whether neutrophils are able to express mRNA codifying for IL-17 [95–103]. Some studies
hinted to neutrophils as relevant sources of IL-17 that is released through extracellular traps and
conventional degranulation through their expression of RORγt, whose activation is regulated by IL-23
and IL-6 [95,97]. In vivo models of human skin inflammation that share many histological features with
psoriasis revealed an enhanced expression of both IL-17 and the IL-17-associated transcription factor
RORγt in neutrophils, and the majority of IL-17 was expressed by both neutrophils and mast cells, and not
by T cells [95,97,101,103].

Although in certain reports IL-17+ neutrophils have been found to pronouncedly infiltrate
lesional psoriatic skin, some authors reported low or undetectable IL-17 mRNA expression by
neutrophils [98,99,103]. Since IL-17 mRNA is undetectable in neutrophils, it has been hypothesized
that they are a reservoir for IL-17 produced by other cells, internalized and stored in the cytoplasm,
and released extracellularly upon activation through the extracellular trap formation [87,95,101].
Moreover, neutrophils do not respond to IL-23 only, but also to IL-6, and IL-17, thus their IL-17
expression and secretion could be not strictly dependent on IL-23 stimulation, as observed in
palmo-plantar pustolosis and palmo-plantar pustular psoriatic skin, wherein the high number of
IL-17+ neutrophils in lesional skin is counterpointed by a scattered infiltration of IL-23+ mDCs [104].

2.4. Mast Cells

Mast cells belonging to the innate immune compartment and are known to infiltrate lesional
skin during the early phases of psoriatic plaque formation [105–109]. They produce pro-inflammatory
factors including IL-8, IL-22, and IL-17 [107,108]. Evidence of a high number of mast cells
involved in the early steps of the pathogenic cascade and their ability to produce key pathogenic
mediators [107,108] has been reported in a seminal study by Girolomoni’s group, where mast cell
infiltration was associated with the presence of pDCs and neutrophils within the dermis, and with
mast cell-derived chemerin production [109]. A recent study also revealed their capability (i) to
express mRNA transcripts codifying for both IL-22 and IL-17; and (ii) to release cytokines through
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the formation of extracellular traps or degranulation, as occurs for IL-17, upon stimulation with IL-23
and IL-1β [95,108]. In particular, mast cells have been reported to be the major IL-22-producing cell
type in lesional skin, while IL-17 is mostly derived from T cells and only a relatively small portion can
be attributed to mast cells [108]. On the contrary, another study reported mast cells to be one of the
predominant producers of IL-17 in psoriatic lesional skin as well as in normal skin [95].

2.5. NK Cells and NK-T Cells

Natural killer (NK) cells, CD56+CD16+ cells, and NKT cells (which share features from both
T cells and NK cells) constitute a heterogeneous subset of immune cells that are significantly increased
in psoriatic lesional skin and that are likely implicated in psoriasis pathogenesis [110,111]. Similar to
pathogenic T cell subsets, these cells have the ability of producing pathogenic cytokines, such as IFN-γ,
IL-17, TNF-α, and IL-22 and, particularly NKT cells, express chemokine receptors, such as CXCR3,
CCR5, and CCR6, that facilitate their recruitment in lesional skin [112–114]. Although it is clear that
these cells may contribute to inflammation, as indicated by the development of psoriasis driven by
activated NKT cells in mice models grafted with normal skin or non-lesional skin, their function and
their pathogenic role are not fully understood yet [113,114].

2.6. Innate Lymphoid Cells

Innate lymphoid cells (ILCs) represent a heterogeneous group of immune cells lacking specific
antigen receptors or T/B cell markers. They are thought to be crucially involved in tissue remodeling,
tissue protection, and lymph node formation during fetal development [115]. Among ILC subsets
expressing NKp44 are the ILC3, which express the transcription factor RORγt and upon stimulation
with IL-1β and IL-23 produce both IL-17 and IL-22 and are thought to be involved in the pathogenesis
of psoriasis [116–118]. The number of NKp44+ ILC3 is significantly higher in lesional skin compared
to non-lesional psoriatic skin [116], and is consistently higher in the bloodstream of psoriatic patients
compared to healthy individuals or atopic dermatitis patients [116]. Moreover, a reduction of
infiltrating and circulating ILC3 is observed during anti-TNFα therapy [118].

Although some authors suggest that this ILC subset may be considered a good biomarker of
disease activity and a relevant contributor of the disease, its pathogenic role still needs to be clarified.

2.7. Keratinocytes

Since keratinocytes bear receptors for the majority of psoriasis-signature cytokines, they represent
the “key responding” tissue cells to the psoriatic microenvironment. They respond to psoriatic
cytokines by proliferating and amplifying inflammation through the production of other cytokines
(i.e., IL-1F9, (IL-36γ), TNFα, IL-17C, IL-19, TSLP), chemokines (i.e., CCL20, CXCL1, CXCL8-11),
proliferation-stimulating factors (EGF, VEGF, and HBEGF), and other pro-inflammatory products,
such as AMPs [90,92,119–122]. Specifically, each cytokine modulates distinct keratinocyte-response
pathways with a certain degree of overlap in their gene expression induction [90,92,94,119,122,123].
For instance, IL-17 and TNF-α strongly induce the synthesis of pro-inflammatory mediators with
additive and synergistic effects on keratinocyte gene expression [90,123]; similarly, IL-22 and other
IL-20 cytokine family members (i.e., IL-19 and IL-20) stimulate keratinocyte hyperplasia, promoting
epidermal thickness [124–126]. Once activated, keratinocytes participate to pathogenic circuits that
sustain and amplify skin inflammation releasing chemokines and other chemoattractants (i.e., CCL20,
CXCL1, CXCL8-11, antimicrobial proteins), which are crucial for the recruitment of T cells, neutrophils,
and inflammatory myeloid dendritic cells. Although keratinocytes have a relevant role in mediating
inflammation, this hypothesis considers keratinocyte response as secondary to immune cell activation.
However, a recent study confirmed their immune relevance showing that keratinocyte genetic defects
yield mice more susceptible to specific IL-17-mediated psoriasis-like inflammation. For instance,
keratinocytes lacking Tnip1, a psoriasis susceptibility gene codifying for a negative regulator protein
involved in various inflammatory signaling pathways, including TNF receptor and TLRs pathways,
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show psoriasis-like inflammation associated with upregulation of IL-17 signaling upon application of
low-dose imiquimod [127].

3. Main Cytokines in Psoriasis

Pathogenic circuits involve multiple mediators, including cytokines that are currently identified as
the most druggable targets. Functional studies in animal models, in vitro experiments, transcriptomic
and ex vivo evidence, successful (and unsuccessful) clinical experiences in treating psoriasis have
all helped define the role of each cytokine in inducing the psoriasis phenotype and its therapeutic
relevance (Figure 2A).
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Figure 2. Therapeutic “hierarchy” of pathogenic cytokines in psoriasis. (A) The shooting target shows
the best targets for treatment of psoriasis (IL-17, IL-23, and TNF-α). Moving away from the center,
other pathogenic cytokines have proved to be less therapeutically relevant because their blockade
resulted in a poor clinical response [11,128–132]; (B) key-cytokines (IFNα, TNFα, IL-23, and IL-17)
in upstream and downstream points within the psoriatic inflammatory cascade, and other relevant
contributors: IFN-γ, IL-22, IL-1F9, IL-8, and CCL20. CCL: CC chemokine ligands; IFN: interferon;
IL: interleukin; TNF: tumor necrosis factor.
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3.1. Interferon (IFN)-α

IFN-α belongs to the type I interferon family that also includes IFN-β, -κ, -δ, -ε, -τ, -ω, and -ζ.
It is produced by pDCs and, similar to other type I IFNs, it strongly activates immature mDCs to
produce IL-12, IL-15, IL-18, and IL-23 [71]. IFN-α is considered to be one of the initiators of psoriasis
inflammation acting as an upstream cytokine along the IL-23/IL-17 axis (Figure 2B). Its role was
initially suggested by the exacerbation of psoriatic lesions or by new-onset psoriasis following IFN-α
therapy for viral infections [133–135]. A similar clinical behavior was also described using imiquimod,
a TLR7 agonist inducing type I IFN production by pDCs [61]. Furthermore, IFN-α-induced genes are
upregulated in lesional psoriatic skin, compared to non-lesional and normal skin. Another evidence
supporting the role of IFN-α in psoriasis derives from a study showing that IFN-α neutralization
prevents the spontaneous development of psoriatic lesions in mice xenotransplanted with non-lesional
skin obtained from psoriasis patients [63]. In this model the development of psoriatic lesions was
associated with an increase of IFN-α levels, demonstrating its pathogenic role [63]. Moreover, another
mice model lacking a transcriptional factor, IRF-2 (IFN regulatory factor-2), which belongs to the of
IFN-α/β pathway and acts as downregulating factor, spontaneously developed new psoriasiform skin
lesions, characterized by CD8+ infiltrating T cells and increased expression of type I IFN-inducible
genes [136]. However, a clinical trial (phase I) testing MEDI-545, an anti-IFN-α agent, in patients with
plaque-type psoriasis did not show clinical improvement [128].

3.2. Interferon (IFN)-γ

Prior to the revolutionizing “IL-17-centric” pathogenic model, the IL-12/IFN-γ axis was considered
to be essential in the pathogenesis of psoriasis. Given the profound revision of the pathogenic mechanisms
of this disease, also the IL-12/IFN-γ axis role needs to be re-defined. High IFN-γ expression levels were
detected in lesional skin, uninvolved skin, and in serum. In particular, levels of IFN-γ in serum and
lesional skin correlate with disease severity. However, successful therapies dampen Th1 cells and Tc1
infiltration, although the clinical response does not correlate with the suppression of IFN-γ but rather
with IL-17 signaling [84,137].

In ex vivo lesional psoriatic skin, IFN-γ upregulates the expression of approximately 400 genes,
through the activation of signal transducer and activator of transcription 1 (STAT1), an IFN-γ-signature
transcription factor [119,120]. In vitro, IFN-γ stimulation alters the expression of approximately
1200 genes in monolayer keratinocytes [92]. Notwithstanding the large set of genes regulated by
IFN-γ, in a 3-D skin model the set of genes regulated by IFN-γ results weakly enriched in the psoriasis
transcriptome compared to that regulated by IL-17 [119]. The hypothesis that considers IFN-γ as
an IL-17 suppressor has been revised in light of the recent findings showing co-production of both
IL-17 and IFN-γ by Th17 cells, in particular if stimulated in vitro with IL-12 [137,138]. This subset
of IFN-γ/IL-17-producing T cells has been detected in psoriatic lesions as well as in allergic contact
dermatitis [139]. In a murine model of diabetes, it has been demonstrated that IL-17-producing cells
become more pathogenic when they also produce IFN-γ [140,141]. This evidence is in line with
previous studies demonstrating the ability of both Th1 and Th2 cells to produce IL-17 [142]. Moreover,
IFN-γ may also play a role as an upstream cytokine in the IL-23/IL-17 axis, driving production of
IL-23 and IL-1β by mDC and promoting IL-17 production by memory T cells [143,144]. The ability
of IFN-γ to promote inflammation in psoriasis was underlined by a seminal study demonstrating
that a single intradermal injection of IFN-γ in clinically unaffected skin of both psoriasis patients
with mild disease (<10% BSA) and healthy volunteers, induces a transcriptomic signature and
cellular infiltration pattern, similar to lesional psoriatic skin [138]. The transcriptomic analysis of
IFN-γ-treated psoriatic skin showed upregulation of 775 unique differentially expressed genes (DEGs)
and downregulation of 719 DEGs (708 probe-sets); however, no significant differences were found
in comparison to IFN-γ-treated skin from healthy volunteers [138]. Among the upregulated genes,
inflammatory mediators typical of psoriasis, including TNF-α, iNOS, IL-23p19, CCL19, ICAM-1,
VCAM-1, and TRAIL were detected, concomitantly with an increased dermal infiltration of CD3+
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T cells and CD11c+ DCs [138]. These observations are in line with previous studies reporting
the development of psoriatic skin lesions after IFN-γ injections [145], and the downregulation of
DC-derived products, including IL-23p19, IL12/23p40, and iNOS by therapeutic IFN-γ-neutralization,
confirming IFN-γ regulation on DC activity [129]. Moreover, the potential role of IFN-γ in the early
pathogenic steps, before the development of visible lesions, has been suggested and supported by
other findings showing IFN-γ production by initiators of the psoriatic pathogenic cascade, such as
autoreactive T cells [146]. Therefore, IFN-γ signaling may likely characterize the early phases of
disease, even if not relevantly from the therapeutic point of view, while downstream cytokines, such as
IL-17, represent more promising targets. Along these lines: (i) IFN-γ blockade with fontolizumab,
an IFN-γ-neutralizing antibody, has shown minimal beneficial effects in treating psoriatic patients,
with limited impact on gene expression and modest histological changes [129]; (ii) IL-12 and IFN-γ
expression was not reduced when psoriasis was cleared through IL-23 inhibition [147].

3.3. Interleukin (IL)-17

IL-17A, generally known as IL-17, belongs to the IL-17 family that includes six members
ranging from IL-17 to IL-17F [148]. IL-17 is considered the most relevant cytokine of this class
as it shows the highest biological activity and marked inflammatory effects [149]. Increased IL-17
mRNA expression levels and/or protein concentrations have been detected in lesional, uninvolved
skin, serum, and tear liquid of psoriatic patients, compared to healthy controls [25–30]. This increased
expression is associated with a significantly higher number of circulating and skin-infiltrating IL-17+
producing cells [31,42]. IL-17 production is not exclusively dependent on IL-17-producing T cells.
In fact, other immune cells, including ILC3, mast cells, and neutrophils, infiltrate lesional skin and
contribute to the abundant IL-17 expression [88,95,112,115,118]. IL-17 receptor-bearing tissue cells
such as keratinocytes, endothelial cells, and fibroblasts, respond to IL-17 stimulation expressing
pro-inflammatory mediators. In particular, keratinocytes respond to IL-17 producing chemokines
(CCL20, CXCL-1, -3, -5, CXCL-8, CCL20), AMPs [i.e., LCN2, LL37, DEFB4 (also known as HBD2),
S100A proteins], and proinflammatory cytokines, such as IL-6 and IL-1F9 (IL-36γ). Through the
production of CCL20, IL-17 drives the recruitment of CCR6+ T cells, which include IL-17+ T cell
subtypes (Th17, Tc17, γδ T cells) and mature mDCs [56,85,150] (Figure 3A). Through the induction
of CXCL-1, -3, -8 (IL-8) or AMPs, IL-17 sustains neutrophil recruitment, survival, and activation
(Figure 3B). In addition, IL-17 can stimulate autoantigen production directly (by inducing KC to
produce LL37) or indirectly (by inducing KC to produce CXCL-1, the melanocyte stimulating factor
alpha, which induces ADAMSTL5 production by melanocytes). In vitro, IL-17 affects the expression
of a large set of genes (more than 600 up- or down-regulated gene probes) in a reconstituted human
epidermis model [119], and its effects are amplified by the synergism with other cytokines, including
IL-22 and TNF-α, strengthening the production of chemoattractants and AMPs. In lesional psoriatic
skin some of these genes are among the most highly expressed genes in the transcriptome and,
overall, the in vitro IL-17-regulated gene set is strongly enriched in the psoriasis transcriptome [119].
Although IL-17 mainly exerts proinflammatory effects directly on keratinocytes, it also stimulates
keratinocytes to produce IL-19, a cytokine belonging to the IL-20 cytokine family, which shows
pro-proliferative effects on keratinocytes themselves [151]. Functional studies showed that IL-17 may
induce the psoriasis phenotype, and that its blockade or absence was sufficient to resolve psoriasiform
skin lesions in mice models [152,153]. Mechanistic studies on antipsoriatic therapies, such as
phototherapy (namely narrow band-UVB, NB-UVB), revealed that their efficacy is strictly correlated
to IL-17 signalling suppression, thus demonstrating the advantage of blocking this pathway [137].
This is also true for anti-TNF therapeutics whose efficacy is related to their capability to suppress IL-17,
and not TNF-α signalling [154,155]. The final proof of the IL-17 centrality is represented by the striking
efficacy obtained by IL-17 antagonists and IL-17 receptor A subunit blocker in reverting clinical,
histologic, and molecular features of the psoriasis phenotype in more than 80% of treated patients [11].
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Figure 3. Feed-forward inflammatory circuits involving keratinocytes. IL-17 auto-amplifies its signal
through the stimulation of keratinocytes which then produce CCL20 (A) or other chemoattractans
(B) recruiting IL-17-producing T cells (A) and other inflammatory cells. In a similar auto-sustaining
manner, IFN-γ-secreting T cells are recruited through keratinocyte production of chemokines
(CXCL9-11) induced by IFN-γ (C). CCL: CC chemokine ligands; CCR: C-C chemokine receptor;
CXCL: chemokine (C-X-C motif) ligand; CXCR: C-X-C motif chemokine receptor; IFN: interferon;
IL: interleukin; KC: keratinocyte; Th: T helper; Tc: T cytotoxic; TNF: tumor necrosis factor.

3.4. Interleukin (IL)-22

IL-22 belongs to the IL-20 cytokine family and it is produced in combination with IL-17,
as occurs in Th17, ILC3, and mast cells, or exclusively by specific CD4+ T and CD8+ T cell
subsets, named Th22 and Tc22 cells, respectively [42,51,108,156,157]. The expression of the IL-22
receptor is increased in the epidermis of psoriatic lesional skin compared to normal skin, and its
effect is mainly directed to keratinocytes. In particular, IL22 (i) enhances keratinocyte migration;
(ii) increases epidermal thickness; (iii) inhibits keratinocyte differentiation; (iv) induces the expression
of chemokines (i.e., CCL20), neutrophil chemoattractans (i.e., CXCL1, CXCL2, CXCL8), MMPs
(i.e., MMP3), platelet-derived growth factor A, AMPs, such as defensin proteins (i.e., DEFβ-2,-3)
and S100A protein family (i.e., S100A7, S100A7A, S100A8, S100A9, S100A12), though to lesser
extent than IL-17 [90,119–126,155–161]. IL-22 hyperexpression has been detected in both lesional
skin and in the bloodstream, and IL-22 levels correlate with disease severity and significantly decrease
during antipsoriatic treatments [27,126,158,161]. Overall, IL-22 in human subjects seems to have
weaker pro-inflammatory effects compared to the murine models, wherein IL-22 crucially contributes
to the development of a psoriasis-like phenotype and to psoriatic skin inflammation induced by
IL-23 or imiquimod. Its blockade or its absence inhibits IL-23- or imiquimod-mediated epidermal
hyperplasia in wild-type mice, and it is required to fulfill IL-17 activity during psoriasiform lesion
development [152,162]. The pathogenic contribution of IL-22 becomes even more relevant in light of
its positive interactions with other cytokine signals. For instance, IL-22 signaling is (i) strengthened by
IFN-α that enhances keratinocyte responsiveness via upregulation of IL-22 receptor expression [160];
(ii) its pro-inflammatory activity is potentiated by the synergism with IL-17 and TNF-α; and (iii) the
impairing effects on keratinocyte terminal differentiation (including hypogranulosis, parakeratosis,
and keratinocyte differentiation gene downregulation) are boosted through keratinocyte-derived
IL-20 expression induced by IL-22 itself [125,160]. Nevertheless, IL-22 likely results pathogenically
more relevant in animal models of psoriasis and in vitro, rather than in vivo. Notwithstanding a
multitude of evidence supporting a central role of IL-22, a modest enhancement of IL-22, compared
to IL-17 signaling genes, was detected in the transcriptome of human lesional psoriatic skin [119],
and the therapeutic strategy of blocking IL-22 was not successful. Indeed, the development of a
IL-22-neutralizing antibody for the treatment of psoriasis, named fezakinumab, was discontinued and
switched on atopic dermatitis [130].
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3.5. Interleukin (IL)-23

IL-23 belongs to the IL-6/IL-12 cytokine family. It shows similarities with IL-12 as both are
heterodimers constituted by two subunits: the p40 subunit, shared by both cytokines, and p19 or p35
subunit uniquely composing IL-23 or IL-12, respectively [163].

Different cell types, including keratinocytes and antigen-presenting cells such as dermal myeloid
dendritic cells, macrophages and epidermal Langerhans cells are able to produce IL-23 [164], usually
following exposure to bacterial and fungal products binding to TLRs [165]. Moreover, IL-23 expression
could be induced by other factors, including TNF-α, IFN-α, TLR ligands, and TSLP [166,167]. IL-23 acts
on a wide array of immune cells through the IL-23 receptor complex (IL-23R), expressed on memory
T cells, NK cells, neutrophils, mast cells, innate lymphoid cells, and macrophages [168]. Together with
TGFβ, IL-1β, and IL-6, IL-23 contributes to the cytokine milieu required for differentiation, expansion,
and survival of IL-17-producing T cells [48,169]. Indeed, IL-23 drives the differentiation of CD4+ T cells,
CD8+ T cells, γ/δ T cells, and ILC3 in inducing IL-17 expression, but also expression of IL-17F, IL-22,
and IL-21 [170]. Additionally, IL-23 stimulates further expression of the IL-23 receptor, thus creating
a self-amplificating loop [48]. The centrality of IL-23 is intimately linked to IL-17, which represents
the key effector cytokine in its signalling pathway [171,172]. Notably, genome-wide association studies
recognized IL-23p19 and IL-23R as susceptibility genes [8,173]. Furthermore, in the psoriatic lesional
skin showed an overexpression of IL-12p40 and IL-23p19 compared to non-lesional skin, conversely to
IL-12p35 that is not overexpressed [174,175]. The increased expression of IL-23 in lesional psoriatic skin is
associated with a marked infiltration of myeloid dendritic cells (CD11c+ dendritic cells), which are the
main sources of IL-23 [57]. Consistently, IL-23 serum levels were found significantly higher in psoriatic
patients than in healthy controls [176], and expression levels of IL-23 in psoriatic plaques decrease after
NB-UVB treatment and biologic therapies, and inversely correlate with clinical responses [137,177–180].
Functional studies investigating IL-23 contribution to the pathogenesis of psoriasis proved: (i) its ability to
induce the development of psoriasiform skin lesions in mice by intradermal injection [181–183]; (ii) the
inhibition of psoriasis development by injection of IL-23-neutralizing antibodies in two different mice
models [153,182]; (iii) the absence of psoriasiform lesions after imiquimod application in IL-23p19 knockout
mice in comparison to wild-type mice [62]. Finally, the remarkable efficacy observed in clinical trials testing
anti-IL23p19 agents constitutes the confirmatory proof of the IL-23 role in psoriasis [147].

3.6. Tumor Necrosis Factor Alpha (TNFα)

TNF-α constitutes a landmark mediator in the pathogenesis of psoriasis since it is the first cytokine
to be successfully targeted by therapeutic monoclonal antibodies or fusion proteins for the treatment
of the disease. Increased levels of TNF-α have been detected in both lesional skin and serum of
psoriatic patients, compared to non-lesional or healthy skin [184,185]. TNF-α is produced by various
cell types including T cells, DCs, and keratinocytes [81–89]. It shows pro-inflammatory activity that is
potentiated by synergistic interactions with other mediators including IL-17 [90,120,121]. It is considered
an upstream cytokine in the IL-23/IL-17 pathway, acting as inducer of IL-23 production by DCs [57,154].

3.7. Anti-Inflammatory and Regulatory Signals Involved in Psoriasis

Regulatory T (Treg) cells represent a subset of T helper cells that limit immune responses
and maintain peripheral tolerance, contrasting chronic inflammation, and preventing autoimmune
pathogenic process. Their differentiation is driven by a cytokine milieu consisting in TGF-β, IL-4,
IFN-γ, IL-2, and IL-6 [186]. Treg cells can be identified by: (i) the high expression of IL-2 receptor alpha
chain (CD25); (ii) the expression of transcription factor forkhead box P3 (FoxP3) Foxp3; and (iii) the
production of TGF-β, IL-10, perforin, and granzyme A [187–189]. Similarly to IL-10-producing
Treg cells, other human Treg subsets have been described, such as CD8+ Treg cells and Th3 cells.
Treg functional abnormalities and their reduced number have been thought to contribute to psoriatic
inflammation, but data are conflicting. However, numerical and/or functional defects within Treg
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cell subpopulations, likely due to methodological differences or biases related to patient selection,
have been reported in psoriasis [187,190]. The imbalance between Treg and effector T cells in the
bloodstream of psoriatic patients improved along successful antipsoriatic systemic treatment [191].
In an imiquimod-induced psoriasis mice model, the amelioration of psoriasis-like skin lesions was
associated with reduced number of Th17 cytokines and an increased number of Treg cells [191]. On the
contrary, at lesional skin level a higher number of Treg cells, compared to control or uninvolved skin,
has been detected and their number positively correlated with disease severity. This evidence could
suggest a qualitative functional defect of Treg cells in controlling inflammation that is in line with
a psoriasis mouse model (knockout for CD18-codifying gene) showing that primary dysfunction
of Treg cells determines pathogenic inflammatory T cell proliferation [192]. Furthermore, Treg cells
isolated from psoriatic lesional skin or peripheral blood of psoriatic patients demonstrated to be
functionally deficient in suppressing effector T cells, upon either alloantigen-specific or polyclonal
TCR stimulation [193]. Through the production of IL-10, which downregulates the expression of
important proinflammatory cytokines, chemokines, adhesion molecules as well as co-stimulatory
molecules, Treg cells could potentially suppress psoriatic inflammation, though clinical trial testing
recombinant human IL-10 in psoriatic patients showed modest and transient efficacy [194–196].
The anti-inflammatory signal mediated by IL-10 could be potentiated by IL-4 suppressive activity on
IL-17 production. Indeed IL-10 stimulates the expression of IL-4 that constitutes a negative regulator
of Th17 cell differentiation and keratinocyte activation. Successful antipsoriatic therapies induced
IL-4 expression, whose increase is thought to be critical to obtain clinical response [194–196]. Notably,
recombinant human IL-4 improves psoriasis [197–199]. Another functional aspect that needs to be
clarified is the pathogenic role of IL-17A-positive, FoxP3-positive Treg cells isolated from lesional
skin of psoriasis patients that are oriented towards a pro-inflammatory polarization, loosing FoxP3
expression and increasing levels of RORγt expression levels, similarly to Th17 cells [200].

4. The Current Pathogenic Model

Psoriasis can be classified as an IL-23/IL-17-mediated disorder as strongly supported by various
lines of evidence. Among them, genetic findings highlighted the importance of IL-23 signaling and the
T17 differentiation in psoriasis as some genetic variants of both IL-23 subunits and IL-23R genes confer
predisposition to the disease, whereas an IL-23R variant protects against psoriasis [201–204]. In addition to
this axis representing the core of psoriasis pathogenesis, upstream cytokines (IFN-α, IFNγ, and TNFα),
synergizing cytokines (IL-22 and TNFα), and downstream mediators (IL-8, IL1F9, and CCL20) complete
the pathogenic puzzle (Figure 2B). pDCs, mDCs, and autoreactive T cells, in concert with mast cells
and neutrophils, prime the pathogenic cascade. Subsequently, IL-23/IL-17-mediated inflammation,
supported by other pro-inflammatory and pro-proliferative molecules derived from T cell activation,
induces tissue responses that in turn participate to the pathogenic mechanism, favoring migration of
inflammatory cells from bloodstream to the lesional site, proliferation (induction of epidermal hyperplasia
and neoangiogenesis), and generation of feed-forward loops that fuel inflammation. This cytokine-driven
process is transduced intracellularly by the upregulation of certain signaling pathways, including NF-κB
signaling whose initial activation may be genetically determined by CARD14 gene (mapping on PSORS2)
variants [205,206]. Similarly, variants of the TRAF3IP2 gene, recognized as another susceptibility gene,
affects IL-17 and TNF signaling [207–209].

4.1. Early Phases

The activation of immune cells, in particular DCs and/or autoreactive T cells, characterizes the early
steps of the pathogenic cascade. Because of the immunologic microenvironment, both pDCs and mDCs,
once activated, are skewed toward an “inflammatory” phenotype, turning into relevant producers of
cytokine and other inflammatory mediators, and becoming mature antigen presenting cells (DC-LAMP+)
expressing T cell costimulatory molecules, such as CD86 and HLA-DR. As previously described, pDCs
may be activated by various triggers (Figure 4), and represent the initiators of the pathogenic inflammatory
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cascade through their ability to produce IFN-α. A downstream effect of IFN-α production by pDC is the
activation of mDCs, which become highly inflammatory dermal DCs (Tip-DCs), expressing TNF, NO,
IL-20, and the p40 cytokines. Within the dermis, IL-23—producing Tip-DCs and mature DC-LAMP+ DCs
interact with T cells driving their differentiation towards a dominant IL-17+ T cell phenotype [210].
Another alternative pathway for priming the pathogenic cascade is represented by T cells producing
mainly IFN-γ, and to a lesser extent IL-17A. These IL-17—producing lymphocytes are specific for
self-antigens, such as LL-37, ADAMSTL-5, and neolipid antigens. Nevertheless, no monoclonal expansion
of autoreactive T cells characterizes the T cell compartment as diverse polyclonal α/β and γ/δ T cell
repertoires have been detected in lesional psoriatic skin [211].
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Figure 4. Activation of pDCs. Self-nucleic acids (both DNA and RNA) derived from damaged cells when
complexed with AMPs, including LL37, and Th17-derived cytokine IL-26, can activate pDCs through
TLR activation. pDCs migration and activation can be also induced by chemerin, an inflammatory
protein mainly secreted by fibroblasts. pDCs: plasmacytoid Dendritic Cells; TLR: Toll-like Receptor.

4.1.1. Dendritic Cell Activators

TLR Agonists

DCs are activated by diverse TLR agonists, in particular by self-RNA or DNA derived from
virus or bacteria. However, self RNA or DNA derived from dying cells may also activate DCs
when it is assembled in complexes together with LL37, IL-26, and other AMPs, as they could bind
TLR7, -8, or -9. TLR7 and TLR9 are selectively expressed by pDCs, whereas mDCs express TLR3
and TLR8 [212–214]. Forming complexes with LL37, self-DNA and self-RNA cannot be degraded
and they could bind endosomal TLR7 and -9 in pDCs or TLR8 in mDCs. In particular, self-DNA,
when condensed with LL37, DEFB4, hBD3, and lysozyme, is able to trigger pDC activation through
TLR9 [70] and to induce IFN-α, while self-RNA complexed with LL37 stimulates mDCs to produce
TNF and IL-6 and to become fully mature [72]. Of note, mature DC-LAMP+ mDCs in lesional psoriatic
skin co-localize with self-RNA-LL37 complexes [57], and pDCs in lesional psoriatic skin co-localize
with LL37 [215]. More recently, a Th17 cytokine with direct antibacterial activity, IL-26, was shown to
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be highly expressed in psoriasis lesional skin, and to promote pDC-derived IFN-α production when
complexed with self-DNA, through TLR9 [73].

Chemerin

Chemerin is an inflammatory tissue protein produced by fibroblasts, mast cells, and endothelial
cells that has been detected in ovarian cancer ascites and in the synovial fluid of rheumatoid arthritis
patients [216,217]. Increased levels of chemerin expression has been also detected in lesional psoriatic
skin compared to distant uninvolved skin, in atopic dermatitis, and in normal skin. In psoriatic dermis,
fibroblasts represent the major source of chemerin which is able to induce pDCs migration in vitro and
ERK1/2 phosphorylation [95]. Thus, chemerin, binding to its cognate receptor, chemR23, expressed
on pDCs, acts as a chemotactic factor for the recruitment of pDC to prepsoriatic skin [109]. Indeed,
chemerin expression specifically marks the early phases of evolving psoriatic skin correlating with pDC
migration and activation: chemerin expression patterns are different in chronic stable plaques compared to
recent plaques or to unaffected skin adjacent to psoriatic lesions. Along these lines, unaffected adjacent skin,
as well as recent lesions, is characterized by strong expression of chemerin in the dermis, accompanied
by neutrophil, pDC, and mast cells infiltration [109]. On the contrary, low chemerin expression can be
detected in chronic stable plaques showing neutrophil and CD8+ lymphocyte accumulation within the
epidermis, but rare pDCs [109,111].

Thymic Stromal Lymphopoietin (TSLP)

Although TSLP was established as major proallergic cytokine in atopic dermatitis (AD) [218], recently
it has been also proved to contribute to human psoriasis physiopathology [166]. TSLP is mainly produced
by KCs, while mDCs are the major TSLP-responsive cellular subset in both humans and mice [219,220].
TSLP induces DC maturation and production of inflammatory cytokines (i.e., IL-4, IL-12, and IL-23),
that may be synergistically enhanced by CD40L [166,221]. Thus, given the central role of mDC-derived
IL-23 in psoriasis, and its relevance in driving IL-17 production, TSLP is becoming a novel player within
the complex cytokine network supporting the IL-23/IL-17 axis (Figure 1).

4.1.2. Autoantigens

The identification of the primum movens triggering the inflammatory cascade in psoriasis is a
fascinating aspect of psoriasis pathogenesis. It has become clear that multiple early triggers could exist,
not exclusively linked to DC activation by TLR agonists, as described above.

The presence of autoantigens and autoreactive T cells, and thus an autoreactive mechanism in
psoriasis, was suggested by the early 2000s, with the presence of streptococcal M protein-specific
T cells cross-reacting against self-antigens (type I keratins). This phenomenon was thought to be
due to molecular mimicry induced by the highly similar structure characterizing streptococcal M
protein and type I keratins [222,223]. More recently, a psoriasis mice model was developed based on an
autoimmune mechanism, wherein injection of IL-17-producing CD4+ T cells recognizing desmoglein 3
as autoantigen was able to develop psoriasis-like lesions [224]. This autoimmune hypothesis has
been fostered by the crucial role that the IL-23/IL17 axis plays in other autoimmune disease, and by
the strong pathogenic association with HLA-C*06:02, a HLA- Class I molecule, recognized as a
psoriasis-susceptibility gene. Nevertheless, the identification of the first autoantigen in psoriatic
patients occurred only in the recent years, in 2014, with the detection of circulating and skin-infiltrating
autoreactive T cells against LL37 [146], followed by the identification of other autoantigens including
ADAMTSL5 and lipid antigens generated by phospholipase A2 group IVD (PLA2G4D) [225,226].

LL37

LL37 is secreted by keratinocytes, neutrophils and macrophages, and its expression can be
induced by IL-17 stimulation [146]. It is highly expressed in lesional psoriatic skin and it is
pathogenically relevant as it forms complexes with extracellular self-nucleic acids activating DCs
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through TLR7/8/9 [70–72]. Its pathogenic relevance has been strengthened by the identification of
LL37-specific autoreactive T cells, belonging to both CD4+ and CD8+ T-cell compartments, that were
found in 46% of psoriasis patients and even more frequently in moderate-to-severe psoriasis patients
[in up to 75% of patients with Psoriasis Activity Severity Index (PASI) > 10] [146]. LL37 is presented by
both HLA-Class I (i.e., Cw6*02) and HLA-Class II alleles (HLA-DR1, -DR4, and -DR11,), promoting
CD8+ and CD4+ activation, respectively [146]. LL37-targeting T cells secrete key-pathogenic cytokines
and chemokines, particularly IFN-γ, but also IL-17, IL-22, IL-21, IL-22, and IL-8, and they express
skin-homing chemokine receptors, namely CCR4, CCR6, and CCR10 [146].

Thrombospondin Type 1 Motif-Like 5 (ADAMTSL5)

A melanocyte-derived protein, ADAMTSL5, has been identified as an autoantigen in 2015 by
Prinz’s group [225]. ADAMTSL5 expression is induced by CXCL1, a neutrophil chemoattractant and a
melanocyte growth factor, and it is produced by KC upon IL-17 stimulation with IL-17 [225]. ADAMSTL5
expression has been detected not only in melanocytes, but also in keratinocytes throughout the epidermis.
The number of melanocytes in psoriatic lesional skin is increased and, notably, T cells, including cytotoxic
T cells, co-localize with melanocytes [227]. However, melanocytes detected in psoriatic epidermis do not
show signs of cell death, and their number increases in psoriatic lesions, suggesting that melanocytes
are likely targets of a non-cytotoxic CD8+ T cell–mediated autoimmune response [224]. Similar to LL37,
ADAMTSL5 expression pattern mirrors the infiltrating pattern of T cell and DCs aggregates in the
superficial dermis of lesional skin. The high expression of both autoantigen peptides, namely ADAMTSL5
and LL37, in lesional skin co-localizes with DCs, neutrophils, macrophages, and T cells, and it significantly
decreases in psoriatic lesional skin treated with either an IL-17 or a TNF blocker [228,229]. This may
suggest that ADAMTSL5, as well as LL37, are presented to autoreactive CD4+ T cells by HLA-Class II
molecules, and to CD8+ T cells by HLA-Cw6*02, that are expressed on antigen-presenting cell surface
within the dermal lymphoid tissue structures [225,229].

Lipid Antigens Generated by Phospholipase A2 Group IVD (PLA2G4D)

Besides peptides, lipid-originated antigens may also be recognized as non-self by T cells [226].
Phospholipase A2 group IV (PLA2G4D) is a novel PLA2 enzyme that is absent in normal

skin whereas it is highly expressed and shows enhanced activity in psoriatic skin lesions [230].
PLA2 expression is detected in mast cells and keratinocytes, and it generates the lipid products
that are presented by antigen presenting cells through CD1a, a lipid antigen-presenting protein
that shares similarities with HLA-Class I molecules [231]. The interaction between CD1a and
PLA2G4D-originating lipid antigens induces activation of T cells and release of IFN-γ, IL-17, and IL-22.
CD1a-reactive T cells are increased in the blood and skin of patients affected by psoriasis and they also
express CLA+, suggesting their ability to migrate into the skin [232,233].

4.2. Amplification Phase and Tissue Cell Response

The amplification phase consists of a wide activation of T cell subsets and other immune cells
that boost inflammation and consequent tissue cell responses. In particular, DC activation leads to
a reorganization of the dermal T cell infiltration, and to the formation of DCs/T cell clusters that
facilitate the activation of the T cell response. Of note, these clusters also co-localize with autoantigens.
Moreover, most of the infiltrating dermal DCs secrete IL-23, thus sustaining IL-17-producing T cells.
The IL-23/IL-17-driven inflammation is further amplified by the large amounts of pro-inflammatory
and pro-proliferative mediators, and it contributes to boost the typical psoriatic tissue cell response,
characterized by a typical gene expression profile and histology. In this scenario, keratinocyte-mediated
feed-forward circuits are central for inflammatory cell recruitment and for the amplification of
inflammatory and proliferative signals. IL-17A acts in synergism with other key-cytokines in psoriasis
such as TNF-α and IL-22, stimulating the expression AMPs (LL37, β-defensins, LCN2, S110A family
proteins), inflammatory cytokines (IL-1 family members and IL-6), and chemokines (CXL1, -3, -5, -8,
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and CCL20). In particular, IL-17, together with IL-22 and TNF-α, stimulates KCs to produce CXCL-1, -3,
and -8, chemokines attracting neutrophils and sustaining their activation and survival. This synergism
increases also the production of CCL20, important for recruitment of CCR6+ skin-homing cells, such as
IL-17-producing T cells, IL-22-producing T cells, and DCs [54,86,87,119]. Additionally, the CCL20/CCR6
chemokine system, together with the CCL19/CCR7 axis, is centrally involved in the dermal lymphoid
aggregate formation. These aggregates consist of mature mDCs expressing DC-LAMP/CD208, CD11c,
HLA-DR, CCR6, and T cells expressing CCR6+ that produce both IL-17 and CCL20 [86,87,234,235].
The formation of these clusters induces the in situ activation of T cells, and it represents the downstream
effect of DC activation and maturation by autoantigens or TLR ligands [236,237]. The massive presence
of mature DC-LAMP+ DCs aggregated with T cells contributes to the chronic inflammatory process
and it correlates with clinical induration scores of psoriatic plaques and with disease severity. Moreover,
IL-17 could drive broad feed-forward loops enhancing directly or indirectly the expression of far upstream
mediators such as LL37 and CXCL1. On the other hand, TLRs, which are considered crucial in the early
steps of the pathogenesis of the disease, could also have effects on far downstream steps once inflammation
is established. In fact, the inhibition of TLR7, 8, and 9 is able to suppress IL-23-induced inflammation in a
mice model, decreasing also the IL-17 signature genes and the down-stream IL-17 signaling [238].

All together these results support the concept that in psoriasis a vicious loop reverberates the
IL-17 signal within the lesional site.

In a similar manner, IFN-γ amplifies IFN-γ signaling and induces the recruitment of IFN-γ-producing cells,
via KC production of CXCL9, CXCL10, and CXCL11, that attract CXCR3+ T cells which are highly enriched
in IFN-γ-producing T cells (Figure 3C) [89]. Though KCs are considered the key responding cells to the
cytokine microenvironment, the contribution of other tissue cells should be underscored. The relevance
of melanocytes in the pathogenesis of the disease has become more appreciated since the identification
of a melanocyte-derived autoantigen. Endothelial cells favor inflammatory cell migration into lesional
sites through the expression of adhesion molecules including ICAM-1, VCAM-1, ELAM-1, HECA-452,
and 4D10I-CAM [239,240]. Fibroblasts also secrete chemerin, other pro-inflammatory products such as IL-6,
and MMPs [119].

5. The Pathogenic Cascade Compendium

The early steps of the pathogenic cascade consists in the activation of IFN-α-producing pDCs
triggered by TLR agonists, and/or the activation of autoreactive T cells producing IFN-γ, and other
key-cytokines such as IL-17. While autoreactive T cells may potentially initiate the pathogenic process,
leading to the psoriatic phenotype, pDCs, through their IFN-α-production, stimulate mDC to become
highly inflammatory dermal DCs producing TNF-α, IL-23, IL-20, and NO. Besides IFN-α, they may
be also stimulated by TSLP and TNF-α. Their IL-23 production stimulates IL-17 producing cells,
which include Th17, Tc17, γδ T cells, ILC3, mast cells, and neutrophils. IL-17, in cooperation with
other cytokines such as TNFα and IL-22, induces the development of the psoriasis phenotype through
tissue cell activation. The most relevant tissue response is provided by keratinocytes that, releasing
chemokines and other pro-inflammatory molecules (AMPs), sustain skin inflammation.

6. Conclusions

Nowadays, psoriasis is the best-studied immune-mediated skin disease. Multiple cytokine-mediated
signaling pathways can be traced within the psoriasis transcriptome, although just a few turned out
to be crucial for the development of the psoriasis phenotype, with their blockade being therapeutically
advantageous. The classic view of psoriasis pathogenesis was established on the IL-12/Th1 pathway but
has now been profoundly revised, and “under the IL-17 light”, the pathogenic role of IFN-γ has been
reconsidered, placing it in the early steps of the psoriatic cascade, and acting as an activating factor for
antigen-presenting cells. The current pathogenic model is centered on the IL-23/IL-17 axis, and it is being
dynamically integrated and remodeled according to new acquisitions, such as the recent identification
of autoantigens and autoreactive T cells. However, many aspects still need to be elucidated, and their
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clarification will help to better understand the pathology of psoriasis and to improve the therapeutic
strategy against this disease.
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