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ABSTRACT
Family medicine has traditionally prioritised patient care 
over research. However, recent recommendations to 
strengthen family medicine include calls to focus more 
on research including improving research methods used 
in the field. Binary logistic regression is one method 
frequently used in family medicine research to classify, 
explain or predict the values of some characteristic, 
behaviour or outcome. The binary logistic regression 
model relies on assumptions including independent 
observations, no perfect multicollinearity and linearity. The 
model produces ORs, which suggest increased, decreased 
or no change in odds of being in one category of the 
outcome with an increase in the value of the predictor. 
Model significance quantifies whether the model is better 
than the baseline value (ie, the percentage of people 
with the outcome) at explaining or predicting whether 
the observed cases in the data set have the outcome. 
One model fit measure is the count- R2 , which is the 
percentage of observations where the model correctly 
predicted the outcome variable value. Related to the 
count- R2  are model sensitivity—the percentage of 
those with the outcome who were correctly predicted to 
have the outcome—and specificity—the percentage of 
those without the outcome who were correctly predicted 
to not have the outcome. Complete model reporting for 
binary logistic regression includes descriptive statistics, 
a statement on whether assumptions were checked 
and met, ORs and CIs for each predictor, overall model 
significance and overall model fit.

INTRODUCTION
From its inception, the field of family medicine 
has prioritised patient care over research.1 
However, research has an important place in 
family medicine to improve quality, respon-
siveness and innovation in patient care.2 As 
a result, there have been numerous calls in 
recent years3 for family and community medi-
cine practitioners around the world4 5 to 
become more involved in research.6 Among 
the recommendations for improving family 
medicine research is strengthening the use of 
appropriate research methods.6

Binary logistic regression is one method 
that is particularly appropriate for analysing 
survey data in the widely used cross- sectional 
and case–control research designs.7–9 In 
the Family Medicine and Community Health 
(FMCH) journal, 35 out of the 142 (24.6%) 
peer- reviewed published original research 

papers between 2013 and 2020 reported using 
binary logistic regression as one of the analyt-
ical methods. Given the high percentage 
of FMCH publications that include binary 
logistic regression, understanding this 
method is important for FMCH authors and 
reviewers.

The binary logistic regression model is part 
of a family of statistical models called gener-
alised linear models. The main characteristic 
that differentiates binary logistic regression 
from other generalised linear models is the 
type of dependent (or outcome) variable.10 A 
dependent variable in a binary logistic regres-
sion has two levels. For example, a variable 
that records whether or not someone has ever 
been diagnosed with a health condition like 
lung cancer could be measured in two cate-
gories, yes and no. Likewise, someone might 
have coronary heart disease or not, be physi-
cally active or not, be a current smoker or not, 
or have any one of thousands of diagnoses or 
personal behaviours and characteristics that 
are of interest in family medicine.

In addition to a binary dependent variable, 
a binary logistic regression has at least one 
independent variable that is used to explain 
or predict values of the dependent variable. 
For the example of lung cancer diagnosis, 
some logical independent variables could 
be age or smoking status. People who are 
smokers have higher odds of lung cancer, as 
do people who are older. Unlike the depen-
dent variable, independent variables are not 
limited to be binary and can have two or more 
categories or be continuous.

There are many ways to identify and select 
variables that are important to include in a 
logistic regression model and researchers 
should carefully consider which variables to 
include. Some suggested strategies for vari-
able identification and selection in logistic 
regression are included in a 2019 paper by 
Shipe et al11 and other strategies for selecting 
variables are included in a 2018 paper by 
Heinze et al.12 For those researchers new to 
logistic regression, collaboration with expe-
rienced researchers or methodologists is 
recommended.6
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The following sections are a step- by- step demonstration 
of how to conduct and interpret a binary logistic regres-
sion model. The analyses in this paper were conducted 
in R V.4.1.113 using the following packages: tidyverse,14  
odds. n. ends,15 car,16 finalfit,17 knitr18 and table 1.19 The 
statistical code for reproducing the results or for adapting 
the code to use to conduct analysis on other data is avail-
able at this URL: https://github.com/jenineharris/ 
logistic-regression-tutorial

Step 1: exploratory data analysis
Before a binary logistic regression model is estimated, it 
is important to conduct exploratory data analysis (EDA). 
EDA can include descriptive statistics and/or graphs. 
EDA serves multiple purposes, including: confirmation 
that the data were measured and labelled correctly, iden-
tification of potential problems with data distributions 
(eg, no cases in an important category), a preview of what 
model results might show, and information that can be 
used in reproducing statistical results.20

As an example, consider a small data set with the survey 
responses of 32 long- term smokers. The data set includes 
three variables: lungCancer, yearsSmoke and bmi. The 
lungCancer variable is an indicator of whether the survey 
participant has ever been diagnosed with lung cancer; it 
has a value of 1 for yes and 0 for no. The years smoke 
variable is the number of years the survey participant has 
been a smoker, and the bmi variable is the category of 
body mass index (BMI) that the participant is in, which 
includes two categories: underweight or normal BMI and 
overweight or obese BMI. If the goal is to build a logistic 
regression model from these data where lung cancer diag-
nosis is the outcome variable and is predicted by years 
of smoking and BMI category, the first step would be to 
conduct EDA that first explores each variable and then 
explores the intersection of each predictor with the lung 
cancer outcome variable.

One way to explore each variable separately before 
modelling is to produce a table of descriptive statistics, 
choosing the most appropriate statistics for each variable 
type. Since years of smoking is closer to being continuous 
variable (rather than categorical), the best descriptive 
statistics would be either mean and SD or median and 
IQR. The way to choose between these two options is to 
determine whether the years of smoking data are normally 
distributed or not. Continuous variables that are relatively 
normally distributed are best described by mean and SD 
while those that are not normally distributed are more 
appropriately described by median and IQR.

The histogram (figure 1) suggests that the variable is 
right skewed rather than normal, so median and IQR 
would be a more appropriate choice for descriptive stats 
for the years smoke variable. The other two variables, 
bmi and lungCancer are both categorical, so the most 
appropriate descriptive statistics are percentages and 
frequencies. Table 1 shows an example of a useful data 
exploration prior to binary logistic regression modelling.

Table 1 shows that fewer than half of participants had 
ever been diagnosed with lung cancer, about 40% are 
overweight, and the median number of years smoking is 
just over 19. At this point, if something in the descriptive 
statistics seemed inconsistent with what you know about 
the sampling or the measurement, you could review the 
data and any data management steps to ensure everything 
was correctly recorded and labelled. Once satisfied with 
the univariate descriptive statistics, the next step might be 
computing descriptive statistics by outcome group. This 
step provides some insight into what the statistical model-
ling might find.

It is clear from table 2 that the people in the data who 
were diagnosed with lung cancer were smokers for a 
higher median number of years. It also appears that the 
distribution of people across BMI groups is different for 
the lung cancer and no lung cancer groups. For those 
without lung cancer, a higher percentage were in the 
underweight or normal BMI group and fewer in the over-
weight or obese BMI group compared with people being 
evenly split into these two BMI groups for those partici-
pants with lung cancer.

Tables 1 and 2 provide a few pieces of information 
useful for the regression modelling. First, the data seem 
to be cleaned and appropriately labelled. Second, the 
data suggest that model could show that the odds of lung 
cancer is higher with more years of smoking. The model 
might also find higher odds of lung cancer in those who 
are overweight or obese compared with underweight or 
normal BMI, but this is less clear from the descriptive 
analyses. If the model results are very different from what 

Figure 1 Histogram showing distribution of years smoking 
for a sample of 32 smokers.

Table 1 Example table showing characteristics of people in 
a small data set (n=32)

Characteristic Category n (%)

Ever 
diagnosed with 
lung cancer

No lung cancer 
diagnosis

18 (56.2)

Yes lung cancer 
diagnosis

14 (43.8)

Body mass 
index category

Underweight or normal 19 (59.4)

Overweight or obese 13 (40.6)

Years spent 
smoking

Median (IQR) 19.2 (15.4–22.8)

https://github.com/jenineharris/logistic-regression-tutorial
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the descriptive statistics suggest will happen, it is worth 
taking the time for further exploration of the data to 
ensure there are no mistakes in recording and managing 
it correctly and the model settings are as expected.

Step 2: check binary logistic regression assumptions
Statistical models like binary logistic regression are devel-
oped with certain underlying assumptions about the data. 
Assumptions are features of the data that are required 
for the model to work as expected and, when one or 
more assumptions are not met, the model may produce 
misleading results. For example, consider the mean as a 
basic statistical model. The mean is one way to explain 
where the middle is in a set of continuous numbers. For 
the mean to work as intended and produce a value that 
is in the middle, the numbers are assumed to follow a 
normal distribution. If the numbers are skewed to the 
right, like the years of smoking variable in figure 1, the 
calculated mean will be higher than the centre of the 
data. If the numbers are skewed to the left, the calculated 
mean will be lower than the centre of the data. With non- 
normal data, a different model, like the median, is likely 
to be a more accurate measure of central tendency.

Binary logistic regression relies on three underlying 
assumptions to be true:

 ► The observations must be independent.
 ► There must be no perfect multicollinearity among 

independent variables.
 ► Continuous predictors are linearly related to a trans-

formed version of the outcome (linearity).
Before conducting a logistic regression analysis, check 

these three assumptions. The model must meet all 
assumptions to be reported as unbiased and generalisable 
outside the sample.

Checking the assumptions
The independence of observations assumption requires 
that each of the observations in a data set is unrelated to 
the other observations in the data set. There are at least 
two different ways that data commonly fail this assump-
tion. The first way is that a data set includes multiple obser-
vations from the same person (or mouse, or organisation, 
or whatever the type of observation is). The second way 
is where data include some sort of grouping like multiple 

family members who live in the same residence, multiple 
people from the same class in a school, or several people 
who live close together in the same neighbourhood. When 
people are in the same family, class or neighbourhood, 
they are more likely to share characteristics, which can 
limit the amount of variability in the data and introduce 
bias into the results. Checking this assumption requires 
knowing how the data were collected to ensure that the 
observations are unrelated.

The no perfect multicollinearity assumption requires 
that the independent variables are not perfectly 
correlated with each other. Variables that are highly, 
or perfectly, correlated with each other are statistically 
measuring the same thing (or similar things) and so are 
essentially redundant. Including variables in a model 
that are redundant can result in unstable model results. 
Correlation coefficients are often used to check for 
correlation among independent variables; two variables 
that are correlated at r=0.7 or higher share 49% or more 
variance and are considered somewhat redundant and 
problematic to include together in a single model as sepa-
rate independent predictors.

There are several ways of checking the no perfect multi-
collinearity assumption. One that is commonly used is 
the Variance Inflation Factor or VIF. The VIF score for 
a variable quantifies how well that variable is explained 
by the other variables in the model. For binary logistic 
regression, the VIF score is generalised (GVIF) and takes 
on larger values.21 To use the GVIF in a similar way as the 

VIF, a new value is often computed:  GVIF
1

2∗Df  . Although 
there does not seem to be consensus on a cut- off value for 

the  GVIF
1

2∗Df  , one commonly used cut- off for the  GVIF
1

2∗Df   

is two. If this is used, variables with a  GVIF
1

2∗Df   value of 
two or higher might be considered problematic while 

those with  GVIF
1

2∗Df   less than two do not have any multi-
collinearity problems. In R, the vif() function in the car 

package prints the  GVIF
1

2∗Df   for logistic regression models. 
The output gives the value for each variable, like this: 

## yearsSmoke bmi
## 1.783835 1.783835
 

The two  GVIF
1

2∗Df   values are below two and so are not prob-
lematic. For this model, the no perfect multicollinearity 
assumption is met.

The linearity assumption requires that continuous 
independent variables, or predictors, have a linear rela-
tionship with the log- odds of the predicted probabilities 
for the outcome. Linear relationships are relationships 
that seem to follow a relatively straight line. One way to 
check this relationship is to create a scatterplot with the 
continuous predictor on the x- axis and the log- odds of 
the predicted probabilities on the y- axis. Add a loess curve 
and a line representing a linear relationship between the 
two variables to the scatterplot. The loess curve shows the 
relationship between the predictor and the transformed 

Table 2 Example of a stratified table showing 
characteristics of people by lung cancer status in a small 
data set (n=32)

Lung 
cancer No Yes

Years 
spent 
smoking

Median (IQR) 15.7 (14.8–19.1) 22.8 (21.4–29.6)

Body 
mass 
index 
category

Underweight 
or normal

12 (66.7) 7 (50.0)

Overweight 
or obese

6 (33.3) 7 (50.0)
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outcome in a more nuanced way, while the fitted line 
shows what the relationship between the two would be 
if it were linear. If the loess curve and the fitted line are 
approximately the same, the linearity assumption is met. 
If the loess curve deviates from the line, the linearity 
assumption fails.

The loess curve is very close to the linear relationship 
so the linearity assumption appears to be met (figure 2). 
Assuming that these data were collected using an accept-
able sampling frame without related observations (inde-
pendence of observations assumption), the data meet the 
assumptions to report the model as unbiased.

Step 3: estimate the binary logistic regression model
The dependent variable for binary logistic regression is 
a categorical variable with two categories (denoted as y 
in equation 1). In the statistical model it is transformed 
using the logit transformation into a probability ranging 
from 0 to 1 (equation 1).

Equation 1. A statistical form of the binary logistic 
regression model.

 p
(
y
)
= 1
1+e−

(
b0+b1x1+b2x2

)
  

In equation 1, the p(y) stands for the probability of one 
category (often the presence of a behaviour or condition) 
of the dependent variable  y , the  b  are coefficients of the 
independent variables or predictors, and the  x  are the 
independent variables. Those who are familiar with linear 
regression might notice that the statistical form of the 
linear regression model is inside the parentheses of the 
exponent of  e  in the denominator of the right- hand side 
of the equation.

Visualising the logistic function can help to clarify 
why this statistical form is useful for examining a binary 
outcome. Figure 3 shows the logistic function as the curve 
connecting the data points. Each data point is plotted 
with a value of the outcome along the y- axis. Because 
the outcome is binary with the two values of 0 and 1, the 
points are plotted at y=0 and y=1. The predictor variable 
is shown along the x- axis and appears to be continuous. 

Each data point takes a value of x which seems to range 
from about 10 to about 35. It is clear that the data points 
in the y=0 category of the outcome generally have lower 
values of x than the data points in the y=1 category. This 
pattern suggests that, as x increases, the probability of a 
person having the outcome value of y=1 also increases.

The grey logistic function line is the logistic regression 
model for these data. The line identifies the predicted 
probability of y=1 for each value of x. For example, if 
x=17, the predicted probability of y would be .18. This 
might be translated into into a percentage with a state-
ment like, there is an 18% probability that someone with 
an x value of 17 would have a y value of 1. A more concrete 
example might be to think of the x value as years a person 
has smoked cigarettes daily and y as their probability for 
being diagnosed with lung cancer. So, a person who has 
smoked daily for 17 years has an 18% probability of being 
diagnosed with lung cancer. Please note that these data 
are not actual lung cancer data; this is just an example to 
assist in developing intuition around the logistic function 
meaning. If these data were years of smoking predicting 
lung cancer diagnosis, equation 1 might be rewritten as 
equation 2:

Equation 2. Applying the statistical form of the binary 
logistic regression model.

 p
(
LungCancerDiagnosis

)
= 1
1+e−

(
b0+b1∗YearsSmoking

)
  

Step 4: compute ORs and report the results
While the predicted probabilities from the logistic func-
tion can be useful in measuring how well the model is 
predicting or explaining the outcome, the results of 
logistic regression are usually reported with ORs and 
CIs. Similar to the interpretation of a coefficient in 
linear regression, ORs quantify the change in the odds of 
having the outcome (ie, the odds that an observation has 
the value of 1 for the outcome variable) with a one- unit 
change in the predictor. Odds are computed using prob-
abilities (equation 3).

Equation 3. Computing odds from probabilities.

 odds = probability
1−probability  

Because the logistic function is used to compute prob-
abilities (see figure 1), add the logistic model from 

Figure 3 The logistic function with example data.

Figure 2 Checking the linearity assumption graphically.
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equation 1 into equation 3 to get equation 4 showing how 
odds are computed for a logistic regression model.

Equation 4. Computing odds from a logistic regression 
model.

 
odds =

1

1+e−
(
β0+β1x

)

1+ 1

1+e−
(
β0+β1x

) = eβ0+β1x

  
Once the  b0  and  b1  are estimated using a statistical soft-

ware package like SAS, R or SPSS, these values can be 
substituted into the simplified version of equation 4 to 
compute odds. This is not the final step, however, since 
odds and ORs are different. An OR is a ratio of two odds 
and is computed by dividing the odds of the outcome at 
one value of a predictor by the odds of the outcome at 
the previous value. So, for example, to compute the OR 
for lung cancer in our previous example, divide the odds 
of someone who has smoked for 15 years by the odds for 
someone who has smoked for 14 years. The result will be 
the increased or decreased odds of lung cancer with every 
1 year increase in age. Equation 5 shows the statistical 
form of this computation.

Equation 5. Using odds to compute ORs from a logistic 
regression model.

 OR = eb0+b1
(
x+1

)

eb0+b1x
= eb1  

As an example, consider the output from R showing 
the estimates for the regression model used in figure 2. 

##
## Call:
## glm(formula=lungCancer ~ (yearsSmoke), 

family=binomial(“logit”),
## data=lungCancerData)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## −2.2127–0.5121 −0.2276 0.6402 1.6980
##
## Coefficients:
## Estimate SE z value Pr(>|z|)
## (Intercept) −8.8331 3.1623 –2.793 0.00522 

**
## yearsSmoke 0.4304 0.1584 2.717 0.00659 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 

0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family 

taken to be 1)
##
## Null deviance: 43.860 on 31 degrees of 

freedom
## Residual deviance: 25.533 on 30 degrees 

of freedom
## AIC: 29.533
##
## Number of Fisher Scoring iterations: 6
 

The coefficient for years smoking is 0.4304. Substitute this 
value into equation 5,  OR = e.4304 , to get an OR of 1.54. 
So, for every 1 year increase in time spent as a smoker, 

the odds of lung cancer for a participant in our sample 
are approximately 1.54 times higher. While the OR is 
useful to understand the direction and magnitude of the 
relationship between a predictor and the outcome, more 
information is needed to understand whether the OR for 
the sample suggests a relationship in the population that 
the sample came from. To understand this, a 95% CI is 
typically computed and reported with each OR.

A 95% CI for an OR shows the range of values where 
the true population value of the OR likely lies. That is, 
if 100 samples were selected from the population and 
a 95% CI were computed using the data from each 
sample, 95 of those CIs would contain the true value 
of the OR (given appropriate research practices). Most 
statistical software packages compute 95% CIs with ORs 
as part of the logistic regression output. For example, 
the lung cancer model output might look like this: 

## (Intercept) 0.0001458295 0.00000005391304 
0.02024744
## yearsSmoke 1.5378933421 1.20314425841351 

2.28063266
 

This output includes the 1.54 OR for years of smoking along 
with the 95% CI 1.2 to 2.28. So, the odds of lung cancer 
increase by approximately 1.54 times for every year longer a 
participants smokes and, in the population that this sample 
came from, the true OR likely lies between 1.20 and 2.28. 
Because the range of the 95% CI does not include 1, this indi-
cates that the OR is statistically significantly different from 1. 
If the CI had included 1, the OR would not be statistically 
significantly different from 1. An OR of 1 indicates that there 
is no difference in odds. So, for example, someone with 14 
years of smoking would have no higher nor lower odds of 
lung cancer than someone with 15 years of smoking if the 
95% CI for the OR included 1.

A logistic regression model with a single predictor in it 
produces unadjusted ORs demonstrating the relationship 
between the predictor and the outcome without taking into 
account other independent predictors or confounding vari-
ables. Reporting the unadjusted ORs for the main predictor 
or predictors of interest may contribute to understanding 
how covariates influence the relationship between the 
predictor and outcome.22 23

Logistic regression models can also include categorical 
predictors. For example, adding a BMI variable with two cate-
gories, underweight or normal BMI and overweight or obese 
BMI, to the lung cancer model results in the following output: 

## (Intercept) 0.000003035556 
0.00000000001397127 0.003054554
## yearsSmoke 1.975695580376 

1.35547578843285321 3.860461189
## bmiOverwei 0.049426238402 

0.00109959322745114 0.739726723
 

Both of the CIs indicate that the association between the 
predictor and lung cancer is statistically significant. For 
every additional year of smoking, the odds of lung cancer 
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are approximately 1.98 times higher (95% CI 1.36 to 3.86). 
Compared with people in the under or normal weight BMI 
group, those who are classified as having an overweight or 
obese BMI have approximately 0.05 times the odds of having 
lung cancer (95% CI 0.001 to 0.74). When an OR is less 
than one, another way to report the OR is to subtract the 
value from one and report the result as a percent decrease 
in odds, like this: Compared with people in the under or 
normal weight BMI group, those who are classified as having 
an overweight or obese BMI have approximately 95.06% 
lower odds of having lung cancer (95% CI 0.001 to 0.74). 
Remember that the data shown here are for demonstration 
purposes only and these model results should not be taken 
as true relationships between the predictors and lung cancer.

Model significance and model fit
In addition to reporting the results of assumption checking 
and the ORs and CIs, the model significance and model 
fit are useful tools to understand how well your model is 
reflecting what was observed in the data. First, model signif-
icance determines if your model explains the data better 
than the baseline percentage of people with the outcome 
would explain the data. Model significance is determined by 
a χ2 statistic that is computed by comparing a null model that 
has no predictors in it (and thus is the percentage of people 
with the outcome of interest) to the model with predictors 
in it. The χ2 statistic is computed by taking the probability 
of the outcome and subtracting the value of the outcome 
for each participant. So, with the lung cancer data, the 
percentage of people who have lung cancer is 43.75%, so the 
predicted probability for each person in the data set to have 
lung cancer would be 0.4375. This value is subtracted from 
each person’s actual value for the outcome (0 or 1) and the 
result is squared. All of these squared values are then added 
up into a value called Null Deviance. The Null Deviance 
quantifies how far the predicted probabilities from a model 
with no predictors (null model) were from the true values 
of the outcome. The same process is then repeated for the 
predicted probabilities from the model with predictors. This 
is the model deviance.

The difference between the null deviance and the model 
deviance follows a χ2 distribution with the number of df being 
the number of coefficients in the model. If the χ2 is statistically 
significant, this indicates that the model is doing a signifi-
cantly better job at predicting the probability that someone 
has the outcome compared with just using the percentage of 
people with the outcome as a model. Most statistical software 
will provide the model χ2 and its significance. For example, 
the R package  odds. n. ends gives model significance like this: 

## 23.214 2 <0.001
 

The model using BMI category and years of smoking to 
explain lung cancer status is statistically significantly better 
than the baseline at predicting lung cancer status [  χ2  
(2)=23.214; p<0.001].

While model significance suggests whether a model is 
better than the baseline percentage of people with the 

outcome, model fit metrics are useful for knowing how much 
better than the baseline a model is at predicting the values 
of the outcome. One way to understand model fit for binary 
logistic regression is to compute the percentage of observed 
values of the outcome that your model correctly predicted. 
The contingency table used here computes predicted prob-
abilities based on the model and then classifies the proba-
bilities using a cut- off of 0.5. So, any predicted probability 
of 0.5 or greater is classified as having the outcome and any 
predicted probability below 0.5 is classified as not having the 
outcome. With the lung cancer example, what percentage 
of people who had lung cancer were predicted to have 
lung cancer and what percentage of people without were 
predicted to be without. An examination of the contingency 
table, or the table showing observed and predicted values, 
can help understand how well the model did in explaining 
the observed data (table 3).

The contingency table shows 15 people who did not have 
the outcome (observed=0) were correctly predicted to not 
have the outcome (predicted=0). Three people who did not 
have the outcome (observed=0) were incorrectly predicted 
to have the outcome (predicted=1). Ten people who had 
the outcome were correctly predicted, while four people 
who had the outcome were incorrectly predict. Altogether, 
15+10 or 25 of the 32 observations had the outcome correctly 
predicted by the model for a per cent correctly predicted of 
78.12%. So, for 78.12% of the people in the data set used to 
estimate the lung cancer model, the model then correctly 
predicted whether or not the participants had lung cancer.

The overall per cent correctly predicted gives a sense of 
how well the model did explaining or predicting the value of 
the outcome for all the participants. Sometimes it might be 
valuable to know how well the model did for those with the 
outcome or how well it did for those without the outcome. 
The term for how well a model predicts those with the 
outcome is sensitivity while specificity is how well the model 
predicts those without the outcome. In this case, 10 out of 14 
of the people with lung cancer were correctly identified by 
the model for a sensitivity of 0.714 or 71.4%. The specificity 
of the model was higher, with 15 out of 18 (83.3%) of people 
without the outcome correctly predicted by the model.

Summary
The final model report should include:
1. Descriptive statistics on the outcome variable and each 

of the predictors.
2. Information on which assumptions were checked and 

whether they were met.

Table 3 Contingency table showing observed and 
predicted values of the outcome for the lung cancer model

Number observed

Number predicted 1 0 Sum

1 10 3 13

0 4 15 19

Sum 14 18 32
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3. A statement about model significance.
4. A statement about model fit.
5. The model estimates including ORs and their 95% CIs.
6. An interpretation of the findings.

As an example, the lung cancer model shown here might 
be reported as follows:

We used binary logistic regression to examine whether 
years of smoking and BMI helped to explain lung cancer 
diagnosis in a sample of 32 people. The sample include 
14 people with lung cancer and 18 without. The data 
met the binary logistic regression assumptions of inde-
pendent observations, no perfect multicollinearity, and 
a linear relationship between the continuous predictor 
(years smoking) and the logit of the outcome. The mod-
el was statistically significantly better than the baseline at 
explaining lung cancer status [ χ2  (2)=23.214; p<0.001] 
and correctly predicted the lung cancer status of 78.1% 
of participants include 71.4% of those with lung cancer 
and 83.3% of those without. Model estimates suggest-
ed that, for every additional year of smoking, the odds 
of lung cancer are approximately 1.98 times higher 
(95% CI 1.36 to 3.86). In addition, compared with peo-
ple in the under or normal weight BMI group, those 
who are classified as having an overweight or obese BMI 
have approximately 0.05 times the odds of having lung 
cancer (95% CI 0.001 to 0.74).

ORs and CIs are often reported in tables for larger models, 
but for a model with just a few predictors, including the ORs 
and CIs in the text provides the same information and uses 
less space.

Researchers using logistic regression should note that 
logistic regression results, regardless of the size, direction or 
significance of the ORs, do not imply a causal relationship 
between the predictors and the outcome.24 Also, while this 
tutorial describes the basics of conducting and reporting a 
logistic regression analysis, there are many more details to 
know about these models and their appropriate uses.7–9 25–27
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