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Cancer is a highly heterogeneous disease with different functional disorders among individuals. The ini-
tiation and progression of cancer is usually related to dysregulation of local regions within pathways.
Identification of individualized risk pathways is crucial for revealing the mechanisms of tumorigenesis
and heterogeneity. However, approach that focused on mining patient-specific risk subpathway regions
is still lacking. Here, we developed an individualized cancer risk subpathway identification method that
was referred as InCRiS by integrating multi-omics data. Then, the method was applied to nearly 3000
samples across 9 TCGA cancer types and its robustness and reliability were evaluated. Dissecting dysreg-
ulated subpathways in these tumor samples revealed several key regions which may play oncogenic roles
in cancer. The construction of risk subpathway dysregulation profile of pan-cancers revealed 11 pan-
cancer molecular classification (InCRiS subtypes) with significantly different clinical outcomes.
Moreover, subpathway regions that tend to be disordered in individuals of specific subtypes were exam-
ined for understanding the pathogenesis of tumor and some key genes such as CTNNB1, EP300 and
PRKDC were nominated in different subtypes. In summary, the proposed method and resulting data pre-
sented useful resources to study the mechanism of tumor heterogeneity and to discovery novel therapeu-
tic targets for precise treatment of cancer.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The initiation and development of malignant tumor is a com-
plex process involving dysregulation of multiple molecules and
their interactions [1]. Thus, it is a great challenge to elucidate the
pathogenesis of cancer. The emergence of large-scale cancer multi-
dimensional omics data provides new opportunities for cancer
related researches. Identification of risk pathways (pathways that
significantly disordered in tumor individuals) is a useful strategy
for interpreting these data and understanding the mechanism of
tumorigenesis.
Currently, a series of methods and tools have been developed
for identifying disease risk pathways. These methods can be classi-
fied into three categories including over-representation approach
(ORA) [2], functional class scoring (FCS) [3,4] and pathway
topology-based methods. ORA methods mainly evaluate whether
the risk gene set (e.g. differentially expressed genes) of one disease
significantly over-represented in a biological pathway by using sta-
tistical tests. For example, DAVID [5] , KOBAS [6], Enrichr [7] and g:
Profiler [8,9] are popular used platforms that provide pathway
enrichment analysis based on hypergeometric test. The gene set
enrichment analysis (GSEA) method [10] is a representation of
FCS methods, in which the degree of differential expression of
genes within pathway was considered based on their ranks on
the background list. In biological pathways, different genes are
connected to each other, forming a complex topological network
structure and different genes contribute differently to the function
of pathway. For example, the P53 gene plays a central role in the
P53 signaling pathway. Thus, a series of pathway topology-based
methods such as SPIA [11] and TPEA [12] which consider both
upstream and downstream regulatory associations between genes
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and the importance of topological positions within pathways were
proposed. The occurrence and development of diseases are often
caused by abnormalities of several different local regions (subpath-
ways) within biological pathways, rather than the overall scale of
pathways. Thus, identification of risk subpathway regions could
capture functional dysregulation of the disease at a more precise
level. Researchers have developed a series of data-driven methods
and tools for subpathway identification, such as Clipper [13], Sig-
net [14], HotNet [15] and HotNet2 [16]. However, most of these
methods focused on a single omics data, transcriptome or genome.
Furthermore, these methods identify disease risk pathways at the
population level and ignore the individual differences.

Cancers were highly heterogeneous diseases which had great
differences in drug sensitivity, survival prognosis and other aspects
among individuals. Currently, many studies aimed to classify can-
cer subtypes for revealing the tumor heterogeneity and promoting
the precision treatment. For example, Arora et al. proposed ‘surv-
Clust’ method and identified prognostic subtypes for 18 cancer
types across multiple data [17]. Hoadley et al. performed integra-
tive analysis using multiple omics data and reclassified human
tumors into unified subtypes of pan-cancer [18,19]. There are indi-
vidualized differences in the dysregulation functions among differ-
ent patients. Therefore, identification of risk pathways at
individual level may be of great significance for researches on
the mechanism of tumor heterogeneity, and ultimately promote
the realization of precision medicine. Several methods have been
developed. Vaske et al. developed the ‘‘PARADIGM” method [20],
which inferred cancer individual-level pathway activity based on
multi-dimensional cancer omics data. The ‘‘Pathifier” method
inferred pathway activity of individual samples based on gene
expression [21]. ‘‘Individpath” method identified dysfunctional
pathways at individualized level based on the disrupted coordina-
tion of gene expression [22]. These individualized approaches are
helpful for understanding the mechanism of cancer heterogeneity,
but they did not consider pathway topologies. Furthermore, these
methods only focused on the whole pathway, rather than their
local regions which provided more insights into the mechanism
of tumorigenesis.

Here, we propose a data-driven method for identifying dysreg-
ulated subpathway regions in specific patient by integrating multi-
omics data. The feasibility and reliability of method were evaluated
based on cancer hallmark/oncogenic pathway data. We also iden-
tified some novel key subpathway regions in pan-cancer. The dys-
regulated subpathway profile was constructed and 11 subtypes
with significant differences in survival outcomes were identified
in pan-cancer. Dissecting subpathways that tend to be disordered
in individuals of specific subtypes suggested that our method
may server as a useful resource for investigating the pathogenesis
of cancer.
2. Materials and methods

2.1. Data collection

2.1.1. Multi-omics data of cancer
We obtained multi-omics data for tumor individuals from the

TCGA database [23] (Fig. 1A). In this study, cancer types which con-
tained more than 10 normal samples at the expression level were
selected for further analysis. Finally, multi-omics (somatic muta-
tion, copy number data and expression profile) datasets of 2979
tumor individuals and 393 normal samples from nine cancer types
(BLCA, BRCA, KIRP, LIHC, LUSC, READ, STAD, THCA and UCEC) were
obtained (Supplementary Table S1). In addition, the clinical sur-
vival data (if available) for these individuals were also obtained.
839
Somatic mutation The mutation data were downloaded in the
form of mutation annotation file (MAF). We removed the silent
mutations, and then organized mutation annotation files into
mutation or non-mutation matrix for cancer types of TCGA. Hyper-
mutated samples with genes mutated more than 1000 were also
removed.

Copy number data Copy number datasets of these nine cancer
types from TCGA were obtained. We ran GISTIC [24] to identify
genes with copy number variation, and only large segment of dele-
tions or amplifications were taken into consideration. Additionally,
both deletions and amplifications of genes were regarded as equal
alterations in our method.

Expression profile In this study, we obtained expression data
(level 3) of cancer types that have more than 10 normal samples.
Furthermore, genes withmissing expression value greater than 20%
were removed.

Furthermore, to validate the robustness and reliability of
method, multi-omics data of LIHC and THCA from PCAWG
(https://dcc.icgc.org/pcawg) [25] were also obtained. For somatic
mutation data, hypermutated samples with genes mutated more
than 1000 were removed. The GISTIC result file of copy number
data were downloaded and only large segment of deletions or
amplifications were regarded as variation. Genes with missing
expression value greater than 20% were also removed. Finally, 8
normal samples and 50 tumor samples of LIHC and 4 normal sam-
ples and 25 tumor samples for THCA in PCAWG were used to eval-
uate the method.

2.1.2. Biological pathway and protein–protein interaction network
Biological pathway data was obtained from our previously

download KGML files which contained gene-gene interactions of
KEGG database [26]. Then, the iSubpathwayMiner R package [27]
was used to reconstruct these pathways into undirected gene-
gene interaction graphs. Finally, 281 KEGG pathways in the form
of igraph (https://igraph.org/r/) which contained gene-gene inter-
actions were obtained.

We constructed a global protein–protein interaction (PPI) net-
work based on pathway datasets from different resources. Firstly,
the human gene-gene interactions within pathways from data-
bases including KEGG, Biocarta (www.biocarta.com), Reactome
[28], NCI/Nature Pathway Interaction Database [29], HumanCyc
[30] and Panther [31] were extracted by using the graphite R pack-
age [32]. Protein-protein interactions of Human Protein Reference
Database (HPRD) [33] were obtained and combined with these
gene-gene interactions from pathways to construct the global pro-
tein–protein interaction network, which consist of 13,013 genes
and 276,845 reliable interactions. Furthermore, we also obtained
17,939 genes and 9,972,783 interaction edges along with their
combined score (used as edge weights for locating subpathways)
from String database (v9.0) [34].

In addition, 2212 pathways from SBmaps [35] and the PCNet
[36] were obtained to validate the robustness and reliability of
method. For each pathway in SBmaps, genes were map to PPI net-
work from String database and extracted interactions with com-
bined interaction score at least 900. Genes which involved in
these extracted interactions were selected as the corresponding
pathway genes. Then, pathways which contain at least 5 selected
genes were retained and finally 1061 pathways in SBmaps were
used for further analysis. The above filtered steps ensure that inter-
actions between genes in each SBmaps pathway are high confi-
dence. The PCNet contains 19,781 genes and 2,724,724
interactions.

2.1.3. Cancer hallmarks and oncogenic pathways
We obtained 35 Gene Ontology (GO) sets that belonged to 10

cancer hallmarks according to a previous study [37]. Ten oncogenic
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Fig. 1. Workflow of InCRiS method. (A) Multi-omics (mRNA expression, somatic mutation and somatic copy number) data of 9 cancer types from TCGA. (B) Locating risk
subpathway regions at individual level. First, the transcriptome and genome dysregulation score of pathway genes were evaluated based on randomwalk algorithm. Then, we
integrated patient-specific score of pathway genes and weighted pathways. Finaly, PCST method was used to locate candidate individual risk subpathway regions. (C)
Evaluating the statistical significance of subpathways.
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functions that highlighted by TCGA analysis working groups [38]
were selected for further validation. Eight of these ten functions
were matched to our used KEGG canonical pathways (RAS, Cell
cycle, PI3K, p53, Notch, Wnt, Hippo, TGF-Beta).

2.2. Methods

2.2.1. Accessing the transcriptomic dysregulation of genes in individual
To access the transcriptomic dysregulation of genes in individ-

ual (Fig. 1B), we calculated patient-specific z-test statistic [39] for
per tumor sample. Under formula (1),

z ¼ e� b
s2

where, z represented the z-score of gene in a certain patient; e was
the particular expression value of gene in the patient; b and s, were
mean and standard deviation of the gene in normal samples of the
same cancer type, respectively. The patient-specific z-score was cal-
culated to be positive if one gene overexpressed in tumor sample,
and be negative opposite.

2.2.2. Construction of genomic alteration profile
We integrated somatic mutation and somatic copy number

variation profile to construct genomic alteration profile (Fig. 1B).
If a gene perturbed in mutation or copy number variation (CNV)
level, we considered it was genomic alteration and marked 1 in
the alteration profile, otherwise 0 was assigned.

2.2.3. Calculating the integrative dysregulation score of genes at
individual level

We first evaluated the dysregulation score of genes within path-
way at genomic and transcriptomic level, respectively. By compre-
840
hensive consideration of transcriptomic and genomic alterations,
we then integrated gene scores from different omics levels as the
integrative dysregulation score of genes at individual level
(Fig. 1B). The detail processes were as follow.

We evaluated the transcriptomic and genomic dysregulation
score of genes based on the random walk (RW) with restart algo-
rithm [40]. RW is an important network diffusion algorithm which
could effectively measure the relationships among nodes in the
network. The transcriptomic (genomic) dysregulation score WR

(WD) were calculated as follows:

Wtþ1 ¼ 1� rð ÞMWt þ rW0 ð2Þ

whereM represented the adjacency matrix of the above constructed
global PPI network; W correspond to WR (WD) in the following; W0

was the initial weight vector of each gene on the network; when
calculating the transcriptomic dysregulation score (WR) of genes
in each individual, the value of each genes in W0 was set as their
absolute value of z-score in the corresponding patient; when calcu-
lating the genomic dysregulation score (WD) of genes in each indi-
vidual, values in W0 was set as 1 for genes with genomic
alteration in the corresponding patient while the value of other
genes were set as 0; Wt is the weight vector at time t and r was
set as 0.7. In each individual, we evaluated the transcriptomic (ge-
nomic) dysregulation score WR (WD) for each gene based on the
above RW with restart algorithm. Then, we calculated the integra-
tive dysregulation score (IDS) of gene in each individual as follow:

IDS ¼ WD þWR ð3Þ

where IDSwas the integrative dysregulation score of a given gene in
the corresponding individual.
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2.2.4. Locating cancer risk subpathway regions in individual
We firstly weighted the nodes and edges for these reconstruct-

ing KEGG pathways at individual level. For each pathway, the edge
weight were defined as:

Segg0 ¼ 1� score=1000 ð4Þ

where Segg0 represented the edge weight between the two inter-
acted genes g and g’ within the given pathway, score was the com-
bined interaction score that obtained from String database for genes
g and g’. Here, score values in String database range from 0 to 1000,
so that Segg0 is between 0 and 1. The nodes (genes) of each pathway
were weighted at individual level. For a given pathway, the node
weights in a specific patient were assigned as the IDS score of each
gene in the corresponding patient.

Then, we used the PCST algorithm [41,42] to locate subpathway
regions that were heavily disturbed and tightly connected within
each entire pathway at individual level (Fig. 1B). The PCST method
aims to locate subpathway(s) G’ = (N’, E’) within entire pathway G=
(N, E) that was (were) satisfied:

min
E

0 2 E;N
0 2 N

ðE0
;N

0 Þconnected

X

e2E0
Se � l

X

n2N0
IDSn

ð5Þ

where Se was the weight of edge e which was contained in the cur-
rent subpathway G’, and IDSn was the weight of gene n in the speci-
fic patient. Here, we considered edges as equally important as nodes
in a pathway. Thus, the value of l was set as 1.
2.2.5. Evaluating statistical significance of subpathways
We used hypergeometric test to assess the statistical signifi-

cance of these located patient-specific subpathways (Fig. 1C). The
statistical significance P-value of each subpathway in a specific
patient was calculated as:

P x P Xð Þ ¼ 1�
XX

x¼1

{xM{
n�x
N�M

{nN
in which n was number of genes from a particular subpathway,

M was the number of patient-specific signature genes which were
defined as genes with IDS score ranked top 5% in the corresponding
patient, X was the number of overlap genes between the subpath-
way and patient-specific signature genes, N was total number of
genes from all subpathways and the patient-specific signature
gene set. Then, the P-value were corrected by using the Benjamini
& Hochberg (BH) method which was implemented in the p.adjust()
function of R. Finally, subpathways with BH corrected P-
value < 0.01 and contained more than 5 genes (size greater than 5)
were identified as individualized cancer risk subpathways.
2.2.6. Evaluating associations between subpathways and cancer
hallmarks

We used hypergeometric test to evaluate association between
subpathways and cancer hallmarks. First, the significance P-value
of hypergeometric test between each subpathways and GO terms
of cancer hallmarks was calculated to assess whether the overlap
genes between them was significant. The background gene set
were defined as unification of genes from all subpathways and
genes from cancer hallmark processes. A subpathway was regarded
to be associated with a cancer hallmark if the P-value between this
subpathway and at least one GO term that belonged to the corre-
sponding hallmark was<0.01.
841
2.2.7. Evaluating the specific activity of subpathway in tumor
individual

We defined InteScore, which was referred the measure that
used to estimate gene set expression from the study of Levine
et al. [43], to evaluate the specific activity of subpathway in tumor
individual. The InterScore of each subpathway was calculated as
follow:

InteScore ¼ mean0 �mean
S

� ffiffiffi
n

p

where mean’ was average IDS score of genes in a given subpathway,
mean and S was mean and standard deviation IDS score of all genes
and n was number of genes in the subpathway.

2.2.8. Survival analysis
We used R package ‘‘survival” (https://CRAN.R-project.

org/package = survival) to estimate overall survival for patients
and statistical significance among groups.

3. Results

3.1. Subpathways identified by InCRiS are associated with cancer
hallmarks and oncogenic function

We firstly applied our individualized cancer risk subpathway
identification method (InCRiS) to nine cancer types in TCGA includ-
ing BLCA, BRCA, KIRP, LIHC, LUSC, READ, STAD, THCA and UCEC.
Totally, 20,307 unique subpathways in 2925 individuals were
identified. We further dissected the number of subpathways that
dysregulated in individuals of each cancer type, and found 2781
(95%) individuals have more than 10 dysfunctional subpathway
regions. The average numbers of subpathway identified for individ-
uals were at the same level across different cancer types (Fig. 2A).
However, the number of individualized dysfunctional subpath-
ways varied within the same cancer type (Fig. 2A). We also found
that most subpathways were dysregulated in few individuals;
while a small subset of subpathways, denoted common subpath-
ways, were dysregulated in many individuals (Fig. S1A). This shows
that these pathway regions were widely dysfunction in cancer
individuals. The above analysis suggests the heterogeneity of dys-
function in cancer individuals, which highlighted the importance
of individualized subpathway identification.

Then, we evaluated the accuracy of our method by assessing the
association between individualized cancer risk subpathways
(InCRiSs) and cancer hallmarks/oncogenic processes (see Materials
and methods). The result showed that most of InCRiSs (74%) were
significantly involved in at least one cancer-related function.
Mostly, InCRiSs were associated with Self Sufficiency in Growth
Signals (62%) and Tissue Invasion and Metastasis (42%) (Fig. 2B),
which were confirmed hallmark functions in cancer occurrence
and development. Majority of patients had more than 75% of
InCRiSs that related with cancer hallmarks (Fig. S1B). The high
overlap between InCRiSs and cancer hallmarks implied that sub-
pathways identified by InCRiS were functional associated with can-
cer hallmarks. We dissected the oncogenic pathways in which
InCRiSs located for each cancer type and found that RAS, Cell Cycle
and PI3K oncogenic pathways were more widely dysregulated in
cancer individuals. In particular, all of READ patients had PI3K dys-
function and most of them (greater than90%) had RAS, Cell Cycle,
Wnt, TGF-Beta oncogenic functions dysregulated (Fig. 2C, Fig. S2).
In addition, Hippo was dysregulated in THCA (92%), yet p53 Signal-
ing pathway was disordered in LUSC (63%) and KIRP (62%) individ-
uals. Although p53 Signaling pathway was medium-frequently
recognized in patients, the p53 and its upstream regulator p300
tend to be essential in other canonical pathways such as PI3K
and Ras. In summary, our framework can efficiently locate well-
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Fig. 2. Characterization of individual cancer risk subpathways. (A) Number of risk subpathways identified in each patient across TCGA cancer types. Red dashed in violin
plots marks overall average value. (B) Heatmap shows which hallmarks the InCRiSs were associated (red). (C) Oncologic pathways were dysfunction in patients of 9 cancers.
Lines connected tumor individuals and oncologic pathways, which represents subpathway region(s) within that pathway is (are) dysregulated in the corresponding
individual. (D) Subpathway activity in TCGA cancers. Activity of InCRiSs in each TCGA cancer type was evaluated by their expression profile. Subpathways were grouped
based on the systemic classes of their locating entire pathways from KEGG. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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known fundamental dysregulated functions which had various
activities among cancers (Fig. 2D) and those subpathways were
strongly linked to oncogenic function.

3.2. Method comparison and evaluation

In this section, we aim to evaluate the feasibility of our InCRiS
method. First, InCRiS was compared with other methods including
GSEA [10], Clipper [13], HotNet2 [16] and LEANR [44]. For conve-
842
nience of method comparison, subpathways identified by InCRiS
and Clipper were mapped to entire pathways. These methods were
compared at entire pathway level. Firstly, we obtained 41 experi-
mentally validated cancer associated pathways from our previ-
ously developed CPAD database [45] which were used as gold
standard. We found that InCRiS recalled the most number of exper-
imentally validated cancer associated pathways in 5 (BLCA, KIRP,
LIHC, LUSC and THCA) out of these 8 cancer types (Fig. 3). InCRiS
also recalled relative high number of these validated pathways in
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BRCA (11) and STAD (7). This suggests that identifying risk path-
ways at the individual level can capture more comprehensive can-
cer pathways. Furthermore, we found that clipper, a method that
identified risk subpathway regions as InCRiS, also identified rela-
tive high number of experimentally validated pathways across
these eight cancer types (Fig. 3). This indicates that subpathway
strategy could identify cancer risk pathways more accurately. Next,
we dissected pathways uniquely identified by InCRiS in each can-
cer type and found that many of these pathways have been
reported to be associated with the initiation and progression of
tumor (Fig. S3). InCRiS thus not only provide risk pathway regions
at individual level, but also display considerable potential to com-
plement currently pathway identification methods.

Then, we further evaluate the robustness and reliability of
InCRiS method. We applied our approach to updated network
(PCNet), pathways (SBmaps) and independent multi-omics data-
sets (LIHC and THCA) (see data collection) respectively to evaluate
effects of the choice of these conditions on the results. First, we
updated the original integrated PPI network with PCNet and
assessed the consistency of identified subpathways with the orig-
inal results (subpathways identified based on the integrated PPI)
in individuals of LIHC and THCA from TCGA (see supplementary
method). We evaluated the overlap significance of entire pathways
which correspond to subpathways identified based on two differ-
ent networks in each individual. We obtained one significance P-
value of hypergeometric test for each individual and counted the
number of individuals that with significant consistency (overlap)
(hypergeometric test p < 0.05) of results. In 98% (770 of 786) indi-
viduals, significant consistency of results at entire pathway level
were observed. We next calculated the consistency and recall
ratios of identified subpathways in each individual (see supple-
mentary method). The higher consistency ratio represents the
greater proportion of subpathways identified in individual S con-
sistent with the original results. The higher recall ratio represents
the greater proportion of original KEGG subpathways recalled in
individual S. Higher consistency and recall ratios indicate higher
robustness of InCRiS method with respect to the influence of fac-
tors such as network and thus InCRiS method was reliable for iden-
tifying individualized risk subpathways. Evaluation results shown
that consistency and recall ratios were greater than 0.7 in 74%
and 70% individuals respectively (Fig. S4A). This indicated that
results before and after network switching showed relatively high
consistency at the sub-pathway level. Then, we identified SBmaps
pathways in individuals of LIHC and THCA from TCGA. Results
shown that SBmaps pathways identified in individuals exhibit high
consistency and recall rates in more than 90% individuals (see sup-
plementary method, Fig. S4B). The above results suggest network
and pathway data have limit effect on the results of InCRiS method.
Finally, we evaluated InCRiS method using independent datasets
with small sample size of LIHC (50 tumor samples) and THCA (25
tumor samples) from PCAWG database. We assessed the consis-
tency of entire pathways and subpathways identified in different
proportions of samples (�1%, 1%�5%, 5%�15%, 15%�25%, 25%�
50%,50%�75%, 75%�100%) of LIHC and THCA cancer types from
two different data sources (see supplementary method). It shown
that the results of independent datasets had high consistency at
both entire pathway and subpathway levels with the original
results (Fig. S4C). In summary, all the above results demonstrate
that InCRiS method is robust with respect to the influence of fac-
tors including network, pathway, dataset and also sample size
and thus reliable for identifying InCRiSs.

3.3. Dissecting InCRiSs reveals key oncogenic subpathway regions

Although dysregulation of subpathway regions has individual
difference, some subpathways which may be core function for
843
the initiation and progression of cancer were widely dysregulated
across tumor individuals. Thus, we next focused on subpathways
that widely disturbed in individuals of different cancer type.
Firstly, the InteScore [43] for subpathways which represents the
specific activity of subpathway in tumor individuals were calcu-
lated (see Materials and Methods). Then, we defined InCRiSs whose
InteScore ranked in top 5% and dysregulated in more than 30%
individuals as common subpathways. Here, we excluded UCEC
because the small sample numbers (only 7). In total, 440 common
subpathways were defined across the remaining 8 cancer types,
and 200 of these subpathways were related with the correspond-
ing cancer types. All these cancer-related common subpathways
were participated in 93 entire pathways (functions). In all these
cancers, we found over 60% of common functions (65% in BLCA,
85% in BRCA, 60% in KIRP, 81% in LIHC, 63% in LUSC, 66% in READ,
66% in STAD and 60% in THCA) have been reported that have influ-
ence the initiation and progression processes of the corresponding
cancer type (Table S2-S3). Especially, 44 of 52 (85%) and 39 of 48
(81%) common functions were supported by literatures to actively
participate in BRCA and LIHC respectively. For example, activation
of Toll-like Signaling Pathway inhibits cell proliferation and tumor
growth in breast cancer [46]. Via MAPK signaling pathway, telekin
showed anti-proliferation effects against human hepatocellular
carcinoma cells [47]. These results demonstrated that InCRiS could
efficiently capture oncogenic subpathway regions which may ser-
ver as key resource for researches of oncogenesis mechanism.

Next, we further identified key subpathway regions that widely
dysregulated in pan-cancer by combing clinical survival data of
cancer individuals. Candidate subpathways were firstly screened
from these 200 cancer-related common subpathways by univariate
cox regression analysis (P-value < 0.2). Considering heterogeneity
between cancer types, we further used stratified cox regression
to select subpathways from the above candidates. We selected
subpathways which had significant influence on survival with P-
value < 0.2 of univariate cox regression analysis and with P-
value < 0.05 of stratified cox regression from all common subpath-
ways as pan-cancer oncogenic subpathways. As a result, 9 sub-
pathways were identified (Table S4) and the topological structure
of 7 subpathways within KEGG were shown in Fig. 4. A classical
oncogenic subpath (Ras (HRAS, KRAS)->Raf (RAF1)->MEK
(MAP2K1, MAP2K2)->ERK (MAPK1, MAPK3)) within PI3K-AKT
pathway was identified (Fig. 4). Subpathway regions within some
famous signaling pathways such as PI3K-AKT, ErbB and Apoptosis
contained well-known cancer genes (KRAS, JUN, AKT etc.). Some
cancer genes such as PAK1 not only had high degree of dysregula-
tion at transcription level, but also has a relatively high frequency
of genomic (copy number) variation across tumor individuals
(Fig. 4). Furthermore, some cancer genes such as KRAS and RAF1
may be altered at only one omics level. This further indicated that
integrating multiple omics data can more effectively capture sub-
pathways associated with tumorigenesis.

3.4. Individualized subpathways applied for molecular classification of
pan-cancer

The division of cancer molecular subtypes is a key step towards
achieving precision medicine. The distinct patterns of subpathway
dysregulation in individuals may lead to tumor heterogeneity.
Therefore, we next investigated whether these identified individu-
alized risk subpathways can be applied to split tumor samples
from different cancer types into unified molecular classification
(subtype). We performed molecular classification by the following
steps: 1) select InCRiSs that dysregulated in more than 5% tumor
samples; 2) remove samples that have<11 dysregulated subpath-
ways; 3) construct a binary matrix that represented InCRiS profile
of pan-cancer, in which the element 1(0) represented the InCRiS



Fig. 3. Comparison of InCRiS method with LEANR, GSEA, Hotnet2 and clipper for identifying cancer related pathways. CPAD onco-pathways are used as gold standard and
green dots marked onco-pathways which were identified by each algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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have (not) dysregulated in the corresponding tumor individual; 4)
classify subtypes based on the hierarchical clustering for InCRiS
profile (see supplementary method). As a result, 11 clusters of
samples (InCRiS subtypes) across nine cancer types were classified
(Fig. 5A). We first validated the reliability of the 11 molecular clas-
sifications of pan-cancer (i.e. 11 InCRiS subtypes). The validation
processes were as follows: 1) the cancer samples were randomly
separated into two groups (one group contains 50% samples) as
training set and test set respectively; 2) performed molecular clas-
sification on the two datasets respectively (Fig. S5); 3) identifying
featured subpathways for each cluster (InCRiS subtype). A sub-
pathway is considered to be a featured subpathway of the cluster
if the subpathway dysregulated in more than 70% individuals of
the cluster; 4) the consistency of featured subpathways and sam-
ple distribution for 11 molecular subtypes in different datasets
were evaluated. The results shown that 7 of the 11 clusters (C1,
C2, C3, C6, C7, C9 and C10) from training and test sets exhibit rel-
ative high consistency with respect to the featured subpathways
and sample distribution (Table S5 and Figs. S5-S6).

Dissection of the sample distribution found that almost one
third samples were derived from BRCA and they distributed in all
11 InCRiS subtypes, especially in subtype C1, C2 and C9 (Fig. 5B).
This is consistent with previous research findings that BRCA has
a high degree of heterogeneity [48–51]. Then, we dissected tumor
samples within each subtype and found that C5, C7 and C8 clusters
mainly contained samples from three different cancer types (BRCA,
STAD and THCA) which all belonged to adenocarcinoma type. C4
844
subtype (BRCA-free subtype) contains only one BRCA sample and
samples from KIRP, LUSC, READ and THCA (Fig. 5B). In particular,
samples from KIRP and READ are mainly distributed in the C4 sub-
type, which may imply an associated molecular mechanism of
these individuals from these two cancer types.

To evaluate the clinical relevance of subtypes that stratified
based on InCRiSs, we performed overall survival analysis based
on the survival time data of tumor samples. Result showed that
the overall survival rate of these 11 subtypes were significantly dif-
ference (log-rank: p = 1.69e-05, Fig. 5C). We calculated the mean
and median survival time of individuals in each cluster
(Table S6). A mixed cluster (C7), which comprised a small number
of BLCA samples, a few BRCA samples and some STAD samples, had
worse prognosis (the shortest median survival time: 16.7 months).
Cluster C6, which was a cluster nearby C7, was also a mixed cluster
subjected by BRCA and THCA, had much better prognosis (median
survival time: 23.18 months). In addition, cluster C8 which was
dominated by samples from BRCA and THCA exhibited better prog-
nosis than patients in other clusters (median survival time:
31.7 months) (Fig. 5B-C & Table S6). In summary, the above analy-
sis suggest these InCRiS subtypes could provide the similarities and
differences of pan-cancer samples at histopathology and clinical
outcome.

Breast cancer has high heterogeneity which greatly impacts the
clinical outcomes and drug response of individuals [52]. In our
study, breast cancer samples were contained in most of pan-
cancer subtypes and we found that patients contained in different



Fig. 4. Subpathway regions that commonly dysregulated in tumor individuals. Seven common subpathways are showed regarding KEGG pathway topology. Cancer
drivers are marked in red squares. The points sticking on nodes represents CNV frequency, somatic mutation frequency and the average expression differential score (absolute
value of z-score) among individuals respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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subtypes had significantly different survival times (Fig. S7). Cur-
rently, breast cancer were classified into several intrinsic molecu-
lar subtypes (Luminal A, Luminal B, HER2-enriched and Basal-
like, etc.) based on gene signatures such as ER,PR and HER2, which
help the treatment options and have significantly improved thera-
peutic effects of breast cancer. However, there are still some
patients within the same molecular subtype that failed to respond
to the selected therapeutic strategy. For example, approximately
20 percent of the ER + patients were insensitive to endocrine ther-
apy or developed acquired drug resistance [52]. Thus, we further
aimed to classify breast cancer patients based on these identified
InCRiSs and hierarchical clustering. As a result, six subtypes of
breast cancer were identified (Fig. S8A-B). In HER2 and Luminal
A, survival analysis found that patients contained in different sub-
types which were classified based on InCRiSs had significantly dif-
ferent (P < 0.05) survival outcomes (Fig. S8C-D). This indicated that
these InCRiSs-based subtypes may provide novel insights into pre-
cise discrimination of breast cancer subtype.

3.5. Functional characterization of pan-cancer InCRiS subtypes

Changes of genes at different omics levels in the subpathway
region will lead to the corresponding functional disorders, and
then perturb cancer hallmark processes and finally result in the
occurrence and development of cancer. The heterogeneity of dys-
function in cancer individuals may contribute to the difference of
clinical outcomes and drug response of samples in different sub-
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types. Then, we looked to see what functional alterations are
shared within these pan-cancer subtypes. As a result, individuals
of subtype C1, C2, C4, C5 and C11 have distinct dysregulated sub-
pathway regions (Fig. 5). To explore how these functionally dysreg-
ulated subpathways contribute to the pathogenesis of cancer,
several subpathway regions (Wnt, Proteoglycans, Rap1, Cell cycle
and MAPK subpathways) were further examined (Fig. 6A). Among
them, a beta-catenin centered subpathway region that locates
within Wnt signaling pathway tend to dysregulate in individuals
of C5 subtype. Functional analysis of this subpathway region found
it associated with cancer progression related hallmark processes
including ‘tissue invasion and metastasis’ and ‘genome instability
and mutation’ (Table S7), which was consistent with the relatively
poor clinical outcomes of this subtype. Further exploring this sub-
pathway found that genomic variation of genes such as CTNNB1,
EP300 and CREBBP were dominated by mutation (i.e. mutation fre-
quency of these genes rank in top 1% in samples of the correspond-
ing subtype), while that were dominated by copy number variation
(CNV) for genes such as CCND1, MYC, VANGL2 and NKD2 in sub-
type C5 (Fig. 6B). The same situation was also found for genes
including MAP3K13, MECOM (upstream) and TP53 (downstream)
within MAPK subpathway region that tend to dysregulate in indi-
viduals of C4 subtype. These genes may be potential biomarkers
and targets for precise diagnosis and treatment of cancer. We also
identified one cell cycle subpathway region that mainly dysregu-
lated in individuals of C2 and C11 subtypes (Fig. 6A). It is worth
to note that dysregulation of PRKDC gene was mainly at genomic



Fig. 5. Molecular stratification in pan-cancer. (A) Heatmap presents subpathways (row) identified in tumor patients (column), if a subpathway were identified in
individual, the corresponding cell is colored orange, else is blue. Eleven distinct molecular subtypes were annotated in upper column bar and TCGA cancer types under. As for
the row annotation, we tagged: which pathway the subpathway belonged (right); which pathway class of entire pathway that contains the corresponding subpathway region
(middle); if the subpathways associate with survival (left); we assume that one subpathway associate with survival if there is significant difference (p value < 0.05) on overall
survival between it dysregulated samples and others. Bar plot presents the distribution of these InCRiS in C1-C11. (B) Distribution of InCRiS subtype samples across different
TCGA cancer types. (C) Overall survival of eleven InCRiS subtypes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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level, but that were dominated by different variation types in these
two subtypes (mutation for C2 and CNV for C11 respectively).
Except for genomic variation, some genes such as CDK1, CDC25C
and PKMYT1 in this subpathway region are mainly transcriptional
dysregulation in the corresponding subtypes (C2 and C11) (Fig. 6B).
The above analysis suggests changes of genes at different omics
levels may synergistically lead to functional dysregulation of their
locating subpathway regions. Thus, integrating multi-omics data
may identify dysfunctional subpathways more comprehensively.
Furthermore, a proteoglycans subpathway region, which associ-
ated with ‘Insensitivity to Antigrowth Signals’, ‘Limitless Replica-
tive Potential’ and ‘Tissue Invasion and Metastasis’ hallmark
processes, was mainly dysregulated in individuals of C1 subtype
(Fig. 6A and Table S7). We found that the Ras->Raf->MEK->ERK
path within this subpathway which is a crosstalk region between
RAP1 and proteoglycans pathway was also mainly dysregulated
in individuals of C11 subtype. This suggest that identification and
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analysis of subpathways at individualized level can provide more
detailed information for the pathogenesis of cancer.
4. Discussion and conclusion

Dysregulation of genes in cancer cells at different levels of
omics affect the corresponding dysfunction of pathways in which
they located, thus leading to the occurrence and development of
malignant tumors. However, the disordered pathways vary in dif-
ferent cancer individuals. Therefore, it is of great significance to
integrate multidimensional omics data to identify dysregulated
pathways at the individual level for the study of pathogenesis
and heterogeneity of cancer.

We firstly provided an individualized subpathway identification
method by considering changes of genes in the pathway at differ-
ent omics levels and the strength of connections between genes.



Fig. 6. Five subpathway regions that tend to dysregulate in individuals of C1 (Proteoglycans in cancer), C2 (cell cycle), C4 (MAPK signaling pathway), C5 (WNT
signaling pathway) and C11 (Rap1 signaling pathway, cell cycle). (A) Pies are genes involved in subpathways that tend to dysregulate in individuals of C11 subtype and
cyclic annular are genes involved in subpathways that tend to dysregulate in individuals of other subtypes. The colors in pies and circles represents somatic mutation
frequency (red), CNV frequency (blue) and gene expression activity (green) of the gene in the corresponding subtype, respectively. (B) Significantly dysregulated genes at
different omics level among individuals of different subtypes. If the dysregulated (mutation, CNV or differently expressed) frequency of one gene (involved in subtype
specifically dysregulated subpathway) rank top 1% across the subtype individuals, it is defined as significantly dysregulated gene. Genes with z-test Pvalue < 0.01 are regarded
as differently expressed in individual. Different markers are painted in prasinous (differently expressed), pink (mutation) and lightblue (CNV). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Then, we applied the method to 2925 individuals across nine can-
cer types of TCGA and validated the reliability of method by eval-
uating associations between identified subpathways and cancer
hallmark processes/oncogenic pathways. In the pipeline of InCRiS
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method, three types of data were used including pathway data,
PPI network and multi-omics data of tumor samples. Databases
such as Biocarta, Reactome, HumanCyc were integrated to con-
struct a comprehensive PPI network that was used in the InCRiS
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pipeline. And KEGG is a widespread used pathway data source.
When the InCRiS method was used in other studies, only multiple
omics data of individuals need to be changed. Furthermore, we also
evaluated and demonstrated the robustness and reliability of
InCRiS method with respect to PPI network, pathway, independent
datasets and sample size. Thus, the InCRiS framework may have
the potential to be widely used in other studies. On the other hand,
we removed genes with missing expression value greater than 20%
in the expression profile to ensure that the gene used for analysis
expressed in as many samples as possible. However, this might
remove many important mutated genes. Thus, a lower filtration
threshold can be considered when applied to other studies.

InCRiS results can provide information about disordered sub-
pathway regions at individual level. In addition, based on the dys-
regulated subpathways in individuals identified by InCRiS, it is also
can study common dysregulated subpathways in cancer or cancer-
specific subpathways. We identified core subpathway regions
which were widely dysregulated in pan-cancer samples based on
the InCRiS results in 2925 individuals. These subpathway regions
may help researchers to uncover the pathogenesis of cancer and
key genes in these pathway regions may have the potential as
targets for developing novel therapeutic drugs. Based on these
individualized risk subpathway regions, we constructed
the pan-cancer dysregulation subpathway profile and identified
11 pan-cancer molecular subtypes with significant differences in
clinical outcomes.

Further analyzing subpathway regions that tend to dysregulate
in individuals of specific subtypes provided some biological
insights for the pathogenesis of cancer. First, dysregulation of dif-
ferent genes within risk subpathway may be dominated by differ-
ent omics levels. This suggests that disorder of these risk
subpathways may be the result of the synergistic effects for genes
in it at different omics levels. Thus, it is essential to integrate multi-
omics data for identifying cancer risk pathways. Second, we dis-
covered that some key genes were significantly changed at differ-
ent omics levels within subpathways such as (Fig. 6B). These genes
may have the potential to act as novel therapeutic targets and
biomarkers for molecular subtype classification of cancer. Third,
dissecting several subpathway regions found that ‘Tissue Invasion
and Metastasis’ cancer hallmark process tend to disturb in individ-
uals of multiple subtypes such as C1, C4, C5 and C11 (Table S7), but
the dysregulated subpathway regions were different among indi-
viduals of these subtypes. This further demonstrates that the iden-
tification of subpathway could provide more precise information.

Recently, there are many popular used methods such as GSEA
[10]), SPIA [11], clipper [13], HotNet [15], HotNet2 [16] and PARA-
DIGM [20] for identification of risk pathways in human diseases.
Among these methods, clipper and HotNet/HotNet2 identified risk
subpathways (subnetworks) based on only single omics data (tran-
scriptome or genomic data respectively) at cohort level, while
PARADIGM inferred patient-specific pathway activities by inte-
grating multi-omics data. Compared with these methods, our
method was characterized by focusing on identification of sub-
pathway regions at the individual level and had several unique
advantages. First, individualized identification of risk subpathways
can comprehensively capture oncogenic pathways (Fig. 3). Second,
identification of subpathway can help researchers to more pre-
cisely target the individual carcinogenic pathway region, and pro-
vide more refined guidance for the precise targeted therapy and
pathogenic mechnisms of cancer. Thus, our method has consider-
able potential to complement these currently existed methods.

In summary, we provided a computational framework to iden-
tify individualized risk subpathway regions in cancer and then
applied it to pan-cancer individuals. Our method and findings pre-
sented here will be useful for researches on the pathogenesis of
cancer and its precision treatment.
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