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Abstract. Hepatocellular carcinoma (Hcc) is the most 
common type of primary liver cancer, and can be induced 
by hepatitis B virus (HBV) infection. The aim of the present 
study was to screen prognosis-associated long noncoding 
rnas (lncrnas) and construct a risk score system for the 
disease. The rna-sequencing data of patients with Hcc 
(including 100 Hcc samples and 26 normal samples) were 
extracted from The cancer Genome atlas (TcGa) database. 
in addition, GSe55092, GSe19665 and GSe10186 datasets 
were downloaded from the Gene expression omnibus 
database. combined with weighted gene co-expression 
network analysis, the identification and functional annota-
tion of stable modules was performed. using the Metade 
package, the consensus differentially expressed rnas 
(de-rnas) were analyzed. To construct a risk score system, 
prognosis-associated lncrnas and the optimal lncrna 
combination were separately analyzed by survival and penal-
ized packages. Finally, pathway enrichment analysis for the 
nodes in an lncrna-mrna network was conducted via Gene 
Set enrichment analysis. a total of four stable modules and 
3,051 consensus DE‑RNAs were identified. The stable modules 
were significantly associated with the histological grades of 
Hcc, tumor, node and metastasis stage, pathological stage, 
recurrence and exposure to radiation therapy. a 9-lncrna 
optimal combination [diGeorge syndrome critical region 
gene 9, glucosidase, β, acid 3 (GBA3), Hla complex group 4, 
n-acetyltransferase 8B, neighbor of breast cancer 1 gene 2, 
prostate androgen‑regulated transcript 1, ret finger protein 
like 1 antisense rna 1, solute carrier family 22 member 18 anti-
sense and T-cell leukemia/lymphoma 6] was selected from the 

14 prognosis-associated lncrnas, and was further supported 
by the validation dataset, GSe10186. The lncrna-mrna 
co-expression network revealed lncrna GBA3 as a positive 
regulator of phosphoenolpyruvate carboxykinase 2, an impor-
tant enzyme in the metabolic pathway of gluconeogenesis. 
a risk score system was established based on the optimal 9 
lncrnas, which may be valuable for predicting the prognosis 
of patients with HBV-positive Hcc and improving under-
standing of mechanisms associated with the pathogenesis of 
this disease. on the contrary, a larger, independent cohort of 
patients is required to further validate the risk-score system.

Introduction

Hepatocellular carcinoma (Hcc) is the most common type 
of primary liver cancer in adults, accounting for the highest 
mortality rate in patients with cirrhosis (1). Hcc is typically 
associated with hepatitis virus infection [hepatitis B virus 
(HBV) or hepatitis c virus (HcV)] or exposure to afla-
toxin and alcohol; ~75% of Hcc cases are induced by HBV 
infection (2,3). Patients with Hcc are characterized by the 
presentation of yellow skin, weight loss, abdominal swelling, 
nausea, loss of appetite, vomiting, abdominal pain or fatigue (4). 
The stages of disease progression in newly diagnosed patients 
can greatly affect the prognosis of Hcc (5). Patient outcome 
is typically poor, with only 10-20% of Hcc cases fully recov-
ering following surgery (6). Hcc commonly occurs in males 
aged 30-50 years; annually, 662,000 cases of Hcc-associated 
mortality are reported worldwide (7). Therefore, the patho-
genesis of HBV-induced Hcc requires further investigation to 
improve the diagnosis and treatment of this disease.

long noncoding rnas (lncrnas) serve important 
roles in various cellular activities, including gene expres-
sion regulation, tumor growth, apoptosis, autophagy and cell 
differentiation (8,9). Via regulation of lncrnas, such as zinc 
finger E‑box binding homeobox 2 antisense RNA 1, HBV X 
(HBx) promotes the metastasis of Hcc cells via the induc-
tion of epithelial-mesenchymal transition (10). The expression 
of lncrna downregulated expression by HBx is reduced 
in HBV-associated Hcc samples, and exhibits an inverse 
correlation with HBx expression and functions as a tumor 
suppressor in HBV-associated hepatocarcinogenesis (11). The 
lncrna unc-51 like kinase 4 pseudogene 2 is upregulated in 
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HBV-associated Hcc tissues and may be involved in medi-
ating disease pathogenesis by associating with enhancer of 
zeste homolog 2 (12). The expression of lncrna LINC00152 
can be enhanced by HBx, and its suppression is a poten-
tial therapeutic strategy for the treatment of Hcc (13,14). 
The serum expression levels of lncrnas AX800134 and 
uc001ncr were identified as potential diagnostic markers for 
HBV-associated Hcc (15). The lncrnas uc003wbd and 
AF085935 are dysregulated in the serum of patients with HBV 
or Hcc, and may be potential targets for the screening of HBV 
and Hcc (16). The lncrna dBH antisense rna 1 contributes 
to cell proliferation and survival via the ras/mitogen activated 
protein kinase signaling pathway, and serves a carcinogenic 
role in HBV-associated Hcc (17). Therefore, identifying the 
lncrnas associated with HBV-induced Hcc is important for 
understanding the underlying mechanisms and identifying 
novel therapies for the treatment of this disease.

Bioinformatics methods are extensively used for analyzing 
gene expression profiles to investigate the mechanisms of 
human diseases (18). Wang et al (19) analyzed the rna-Seq 
data of patients in The cancer Genome atlas (TcGa), and 
used four independent prognostic lncrnas identified by 
univariate cox proportional hazards (cox-PH) regression 
analysis to construct a risk score model. Zheng et al (20) sorted 
the samples downloaded from TcGa into four cohorts, based 
on their clinical history of viral hepatitis infection and alcohol 
consumption. Then, the lncrnas dysregulated in normal 
samples versus three tumor sample cohorts, based on HBV 
infection, HcV infection and history of alcohol consump-
tion, were identified to further select for disease‑associated 
lncrnas; however, a risk score model was not generated and 
further investigation is required. Yuan et al (21) collected 
samples from Hcc patients, patients with HBV-positive chronic 
hepatitis and cancer-free controls, and subsequently conducted 
reverse transcription-quantitative polymerase chain reaction 
(rT-qPcr) analysis of 10 candidate lncrnas to identify 
differentially expressed lncrnas in Hcc patients compared 
with patients with chronic hepatitis or healthy controls. risk 
score analysis revealed that the combination of three lncrnas 
with α-fetoprotein could distinguish patients with Hcc from 
those with chronic hepatitis or healthy controls. in the present 
study, the rna-Seq data of patients in TcGa and three other 
datasets of HBV infection were downloaded. The rna-Seq 
data from TcGa, GSe55092 and GSe19665 were inte-
grated together to determine differentially expressed rnas 
(de-rnas). Subsequently, prognosis-associated lncrnas 
were selected by univariate cox-PH regression analysis. The 
risk score system based on these lncrnas was supported by 
the validation dataset, GSe10186. The constructed risk score 
system in the present study differs from those in the three 
aforementioned studies, and may provide a novel basis for 
predicting the prognosis of patients with HBV-induced Hcc.

Materials and methods

Expression profile data. The mrna-sequencing data of 
Hcc (platform: illumina HiSeq 2000 rna Sequencing; 
extracted on 11th February 2018) were extracted from TcGa 
(https://cancergenome.nih.gov/) database, which included 
100 Hcc and 26 normal samples.

additionally, microarray data in the Gene expression 
omnibus (Geo, http://www.ncbi.nlm.nih.gov/geo/) database 
were identified using ‘hepatocellular carcinoma’ as the key 
word. relevant databases were selected based on the following 
criteria: i) The database contained gene expression profile 
data; ii) the samples were solid tumor tissues from patients with 
Hcc; iii) the database contained HBV infection information; 
and iv) the database contained human expression profiles. A total 
of three databases [including GSe55092 (22), GSe19665 (23) 
and GSe10186 (24,25)] were selected. GSe55092 (including 
39 Hcc samples and 81 normal samples) and GSe19665 
(including 5 Hcc samples and 5 normal samples) were based 
on the affymetrix-GPl570 platform (affymetrix; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA); the databases 
contained no prognosis information, and were used for 
screening prognosis-associated lncrnas and constructing the 
risk score system. GSe10186 (including 118 Hcc samples; 
platform: affymetrix-GPl5474; affymetrix; Thermo Fisher 
Scientific, Inc.) contained prognosis information and used for 
validating the risk score system. among the 118 Hcc samples, 
there were 79 samples with HBV infection status and prognosis 
information (including 19 HBV positive samples and 60 HBV 
negative samples; 48 alive samples and 31 dead samples, mean 
survival time=88.62±45.04 months) (Table i).

Data preprocessing. The datasets were preprocessed 
by the following two methods according to their differ-
ences in testing platforms. For TcGa, the preprocesscore 
package (version 1.40.0, http://bioconductor.org/packages/
release/bioc/html/preprocesscore.html) (26) in r was applied 
for data normalization. For the CEL files based on Affy plat-
form, format conversion, the supplement of missing values, 
background correction and data standardization were conducted 
with the oligo package (version 1.41.1, http://www.bioconductor.
org/packages/release/bioc/html/oligo.html) (27) in r.

Then, lncrnas were annotated with the ref_seq and 
Transcript_id provided by annotation platforms. The 
detection sequences in the platforms were aligned with 
the human reference genome Grch38 by clustal 2 soft-
ware (http://www.clustal.org/clustal2/) (28). By combining 
the annotation and alignment results, lncrnas and relevant 
expression information were finally obtained (29,30).

Weighted gene co‑expression network analysis (WGCNA). 
WGCNA is an algorithm for the construction of a 
co‑expression network and the identification of disease‑asso-
ciated modules (31). With TCGA as the training dataset, 
and GSe55092 and GSe19665 as the validation datasets, 
the R package WGCNA (version 1.61, https://cran.r‑project.
org/web/packages/WGCNA/index.html) (31) was used to 
build a co-expression network and screen the stable modules 
associated with HCC. The processes of WGCNA included 
calculating correlations in expression between the datasets, 
and determining adjacent function and module partition (each 
module contained ≥200 RNA, cutHeight=0.99). Additionally, 
functional annotation for the stable modules was conducted via 
the userListEnrichment function in the WGCNA package (31).

Differential expression analysis. For TcGa, GSe55092 and 
GSe19665, the de-rnas between Hcc and normal samples 
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were analyzed via the Metade.eS algorithm in the Metade 
package (version 1.0.5, https://cran.r-project.org/web/pack-
ages/MetaDE/) (32,33). The RNAs with Qpval >0.05, tau2=0, and 
P<0.05 and false discovery rate <0.05 were defined as consensus 
de-rnas. in particular, this study focused on the differential 
expression of lncrnas in stable modules.

Construction and validation of risk score system. univariate 
cox regression analysis in survival package (version 2.4, 
https://cran.r-project.org/web/packages/survival/index.html) (34) 
was performed using TcGa to select for prognosis-associated 
lncrnas from the lncrnas in stable modules. The lncrnas 
with P<0.05 were considered to be prognosis-associated 
lncrnas.

Subsequently, the optimal lncrna combinations were 
screened by the cox-PH model in penalized package 
(http://bioconductor.org/packages/penalized/) (35). The 
parameter ‘lambda’ in the Cox‑PH model was acquired via 
1,000x calculation based on a cross-validation likelihood 
(cvl) algorithm (36). The risk score system was constructed 
via weighting the expression level (exprlncrna) of each lncrna 
in the optimal lncrna combination using the corresponding 
regression coefficient (β). The formula of the risk score system 
was as follows: 

risk score = βlncrna1 x exprlncrna1 + βlncrna2 x exprlncrna2 + 
… + βlncrnan x exprlncrnan.

additionally, the robustness of the risk score system in 
prognosis prediction was evaluated using GSe10186 as the 
validation dataset, with Kaplan-Meier (KM) survival curves 
and receiver operating characteristic (roc) curve analysis.

Analysis of lncRNA‑associated pathways. Gene sets were 
extracted from stable modules involving the optimal lncrnas. 
using Gene Set enrichment analysis (http://software.broadin-
stitute.org/gsea/index.jsp) (37), pathway enrichment analysis 

was performed to identify lncrna-associated pathways. The 
cut-off criterion was set as P<0.05.

Results

WGCNA is able to select for stable modules. There were 15,988 
mrnas and 851 lncrnas shared by GSe55092, GSe19665 and 
TCGA. The modules significantly associated with HCC were 
selected by WGCNA. The consistency of the expression values 
of the common rnas was analyzed to ensure the comparability 
of rna expression in the three datasets. The expression correla-
tions were all >0.80 and P<1x10-200. Therefore, the three datasets 
exhibited significant and positive correlations (Fig. 1A‑C).

an appropriate adjacency matrix weighting parameter 
β (power) was selected to enable the co-expression network 
to approach a scale-free network distribution. The squares 
of the correlation coefficients between log(k) and log[p(k)] 
were acquired to select parameter β. a higher square value 
indicated that the co-expression network was closer to 
scale-free network distribution (Fig. 1d). The corresponding 
parameter β was selected when the square value first reached 
0.9, namely β=8. The mean connectivity degree of the rnas 
in the co-expression network was 8 when β=8, which was in 
accordance with small world architecture (Fig. 1e).

using TcGa as the training dataset, a total of 10 modules 
were identified by constructing RNA adjacent matrices and 
system clustering trees (Fig. 2a). according to the modules of 
TcGa and the rnas in each module, corresponding module 
partitioning was performed with GSe19665 (Fig. 2B) and 
GSe55092 (Fig. 2c) to determine the stabilities of the modules 
of TcGa. Module partitions and correlations for TcGa were 
presented in Fig. 3a and B, respectively. The results suggested 
that rnas within the same module were gathered together, 
thus possessing similar expression (Fig. 3a). additionally, 
the clustering results of GSe55092 (Fig. 3c) and GSe19665 
(Fig. 3d) indicated that magenta, blue, yellow and green 
modules were characterized by independent branches; four 

Table i. clinical information of samples in TcGa, GSe19665 and GSe10186.

characteristics TcGa GSe19965 GSe10186

Tumor samples 100 5 79
control samples   26 5 0
age (mean ± Sd, years) 61.64±14.70 64.30±8.23 na
Sex (male/female) 60/40 9/1 na
neoplasm histological grade (G1/G2/G3/G4/na) 12/51/35/1/1 na na
Pathologic stage (i/ii/iii/iV/na) 38/33/23/3/3 na na
Satellite lesions (positive/negative/na) na na 2/59/18
Pathology differentiated (moderately/poorly/moderately-poorly) na 7/1/2 na
Microvascular invasion (positive/negative/na) 36/52/12 na 16/45/18
Alcohol status (Yes/No/NA) NA NA 46/30/3
HBV infection (positive/negative/na) 57/43 5/5 19/60
live status (dead/alive) 42/58 na 48/31
overall survival time (mean ± Sd, months) 31.22±29.53 na 88.62±45.04

na, not available; Sd, standard deviation; TcGa, The cancer Genome atlas.
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Figure 1. correlations between TcGa, GSe55092 and GSe19665, and the selection of the adjacency matrix weighting parameter β (power). (a) correlation 
between the expression data of TcGa and GSe55092. (B) correlation between the expression data of TcGa and GSe19665. (c) correlation between the 
expression data of GSE55092 and GSE19665. (D) The selection diagram of the adjacency matrix weighting parameter ‘power’ (the red line indicates that the 
square of correlation coefficient was 0.9). (E) Mean connectivity of RNAs under various values of ‘power’ (the red line indicates that the mean connectivity 
degree of the rnas in co-expression network was 8 when β=8). TcGa, The cancer Genome atlas.

Figure 2. Module partition trees corresponding to the analyzed datasets. (a) TcGa, (B) GSe19665 and (c) GSe55092. The colors represent separate modules. 
TcGa, The cancer Genome atlas.
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modules (blue, magenta, yellow and green) were revealed to 
be stable modules (preservation Z score >10). Additionally, 
functional annotation demonstrated that the lncrnas in blue, 
magenta, yellow and green modules respectively associated 
with ‘inflammatory responses’, ‘cell cycle’, ‘blood coagula-
tion’ and ‘cell adhesion’ (Table II). Furthermore, the clinical 
information [including age, gender, grade, tumor, node and 
metastasis (TnM) stage, pathological stage, recurrence, radia-
tion therapy and vascular invasion] of the samples in TcGa 
were integrated to calculate the correlation between the rnas 
in each module and clinical factor. The results revealed that 
the four stable modules were significantly correlated to grade, 
TnM stage, pathologic stage, recurrence and radiation therapy 
(Fig. 4). Thus, the lncrnas in the four stable modules were 
examined for subsequent analysis.

Differential expression analysis. For TcGa, GSe55092 and 
GSe19665, 3,051 consensus de-rnas were reported. The 
3,051 de-rnas included 10 lncrnas and 3,041 mrnas. The 
clustering heatmaps for the consensus de-rnas in the three 
datasets are presented in Fig. 5.

Construction and validation of the risk score system. The 
expression levels of the lncrnas in stable modules were 
extracted from TcGa, and then 14 prognosis-associated 
lncrnas were selected based on univariate cox regression 

analysis. using the cox-PH model, the optimal lncrna 
combination was selected from the 14 prognosis-associated 
lncrnas. Finally, a 9-lncrna optimal combination was 
obtained, involving: diGeorge syndrome critical region 
gene 9 (DGCR9); glucosidase, β, acid 3 (GBA3); Hla 
complex group 4 (HCG4); n-acetyltransferase 8B (NAT8B); 
neighbor of breast cancer 1 gene 2 (NBR2); prostate 
androgen-regulated transcript 1 (PART1); ret finger 
protein like 1 antisense rna 1 (RFPL1S); solute carrier 
family 22 member 18 antisense (SLC22A18AS) and T-cell 
leukemia/lymphoma 6 (TCL6; Table iii). The formula for 
the risk score system based on the optimal lncrna combi-
nation was: 

risk score = (-0.03084) x expdGcr9 + (0.203324) x expGBa3 + 
(0.441589) x expHcG4 + (0.766193) x expnaT8B + (-0.5517) x 
expnBr2 + (0.378576) x expParT1 + (0.058961) x exprFPl1S + 
(0.042655) x expSlc22a18aS + (1.473117) x expTcl6.

risk scores were calculated for the samples in the dataset 
from TcGa using the risk score system. Based on the 
median of risk scores, the samples in TCGA were classified 
into high- and low-risk groups. Then, the difference between 
the survival times of individuals within the two groups was 
characterized by KM survival curves. The results indicated 
that the risk score system could effectively distinguish the 

Figure 3. MDS plot and system clustering trees. (A) MDS plot of the RNAs in the modules of TCGA (the horizontal and vertical axes represent the fit of the first 
and second principal components, respectively). (B) System clustering tree for the modules of TcGa. (c) System clustering tree for the modules of GSe55092. 
(d) System clustering tree for the modules of GSe19665. MdS, multidimensional scaling; TcGa, The cancer Genome atlas.
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high- and low-risk groups (P<0.01; Fig. 6a). Subsequently, 
the risk score system was applied to the validation dataset 
GSe10186, demonstrating that the high- and low-risk groups 
could also be differentiated (P=0.0341; Fig. 6B). Therefore, 
the risk score system exhibited high robustness, and the nine 
lncRNAs were significantly associated with the prognosis of 
patients with Hcc. Furthermore, roc curve analysis was 
applied to evaluate the predictive diagnostic value of the 
9-lncrna risk score system using TcGa and the validation 
dataset. The sensitivity, specificity, positive predictive value, 
negative predictive value, and the area under the roc curves 
(auc) were determined. The auc values of the 9-lncrna 
risk score system for TcGa and GSe10186 were 0.953 and 
0.922, respectively (Fig. 7).

Analysis of lncRNA‑associated pathways. mrnas closely 
associated with the nine lncrnas were selected from the 
four stable modules, and an lncrna-mrna co-expression 
network was constructed (Fig. 8). in particular, phospho-
enolpyruvate carboxykinase 2 (PCK2) was positively 
regulated by the lncrna GBA3 in the co-expression 
network. The gene sets corresponding to the nine lncrnas 
were separately determined with pathway enrichment 
analysis. The results revealed that the mrnas associated 
with the nine lncRNAs were mainly enriched in ‘cell cycle’, 
‘drug metabolism’, ‘peroxisome proliferator‑activated 
receptor (PPAR) signaling pathway’, ‘cell focal adhesion’, 
‘calcium signaling pathways’, and ‘endogenous cell receptor 
interactions’.

Figure 4. correlation heatmap between the modules of TcGa and clinical factors. The horizontal and vertical axes indicate clinical factors and modules, 
respectively. color gradient from blue to red indicates that the correlation shifts from negative to positive. The numbers in grids and parentheses respectively 
represent correlation coefficients and P‑values. TCGA, The Cancer Genome Atlas.

Table II. Stabilities of the 10 modules identified in TCGA and the biological functions enriched for the lncRNAs in the modules.

TcGa color Module size mrna lncrna Preservation Z-score Module annotation

Module 1 Black 206 206 0 5.6804 chemotaxis
Module 2 Blue 371 364 7 18.9870 Inflammatory response
Module 3 Brown 303 302 1 0.7094 oxidation-reduction process
Module 4 Green 264 255 9 26.5495 cell adhesion
Module 5 Grey 796 794 2 0.8546 response to nutrient levels
Module 6 Magenta 147 143 4 26.2491 cell cycle
Module 7 Pink 150 150 0 8.0652 regulation of cell proliferation
Module 8 red 233 232 1 0.3724 Synaptic transmission
Module 9 Turquoise 555 552 3 6.3217 ion transport
Module 10 Yellow 286 283 3 25.7553 Blood coagulation

Module size, mrna, lncrna columns represent the number of all rnas, mrna, and lncrnas in the corresponding module, respectively. 
5<Z≤10 indicates stable, and Z>10 indicates highly stable. Module annotation indicates the functions involving the lncRNAs in the modules. 
lncrna, long noncoding rna; TcGa, The cancer Genome atlas.
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Discussion

in the present study, blue, magenta, yellow and green 
modules were screened as four stable modules by WGCNA. 
additionally, the four stable modules were determined to be 
significantly associated with certain clinical factors, including 
grade, TnM stage, pathologic stage, recurrence and radiation 
therapy. For TcGa, GSe55092 and GSe19665, a total of 3,051 
consensus DE‑RNAs were identified, including 10 lncRNAs 

and 3,041 mrnas. Subsequently, 14 prognosis-associated 
lncrnas were selected, and a 9-lncrna optimal combina-
tion, including DGCR9, GBA3, HCG4, NAT8B, NBR2, PART1, 
RFPL1S, SLC22A18AS and TCL6 was identified. A risk score 
system was built based on the optimal lncrna combination, 
which effectively distinguished high- and low-risk individuals 
within the validation dataset GSe10186.

DGCR5 expression was reported to be lower in Hcc 
serum and tissues (38); therefore, DGCR5 may function as 

Figure 5. Heatmaps of the consensus differentially expressed RNAs in TCGA, GSE55092 and GSE19665. White and black represent normal and tumor 
samples, respectively. TcGa, The cancer Genome atlas.

Table iii. lncrnas in the optimal lncrna combination.

lncrna coefa Hazard ratio P-value Module color

DGCR9 -0.0308 0.90 0.0230 Blue
GBA3 0.2033 1.07 0.0240 Magenta
HCG4 0.4416 1.11 0.0170 Magenta
NAT8B 0.7662 1.11 0.0120 Magenta
NBR2 -0.5517 0.72 0.0068 Yellow
PART1 0.3786 1.04 0.0490 Green
RFPL1S 0.0590 1.09 0.0340 Green
SLC22A18AS 0.0427 1.11 0.0200 Green
TCL6 1.4731 1.23 0.0004 Green

aCoef, the coefficient value obtained from the Cox‑Proportional Hazards Cox‑PH model. Hazard ratio represents the risk score. Module color 
indicates the module in which the lncrnas were located. DGCR9, diGeorge syndrome critical region gene 9; GBA3, glucosidase, β, acid 3; 
HCG4, Hla complex group 4; lncrna, long noncoding rna; NAT8B, n-acetyltransferase 8B; NBR2, neighbor of breast cancer 1 gene 2; 
PART1, prostate androgen-regulated transcript 1; RFPL1S, ret finger protein like 1 antisense RNA 1; SLC22A18AS, solute carrier family 22 
member 18 antisense; TCL6, T-cell leukemia/lymphoma 6.
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a valuable diagnostic and prognostic marker in patients with 
HCC. There was a significant correlation reported between 
NAT2 polymorphism and Hcc in smokers positive for HBV, 
indicating that NAT2 may be associated with HBV-associated 
hepatocarcinogenesis in smokers (39,40). NAT10 exhibits 
higher levels of expression in Hcc tissues compared with 
peritumoral tissues (41); thus, NAT10 may be applied in the 
prognosis and treatment of patients with Hcc. NAT10 over-
expression enhances the tumorigenic activity of mutated p53 
via upregulating its expression, and is correlated with the poor 
survival of patients, suggesting that NAT10 serves critical 
roles in the prognosis and therapy of p53-mutated Hcc (42). 
Therefore, DGCR9 and NAT8B may be important in the 
pathology of Hcc.

in the present study, PCK2 was proposed to be positively 
regulated by GBA3 in the lncrna-mrna co-expression 

network. The insulin signaling pathway (involving PCK2) and 
the ubiquitin-mediated proteolysis pathway [involving HecT, 
UBA and WWE domain containing 1, E3 ubiquitin protein 
ligase (HUWE1)] serve critical roles in hepatocarcinogenesis, 
and PCK2 and HUWE1 may affect the proliferation of Hcc 
cells via involvement in the aforementioned pathways (43). Via 
the induction of NBR2 and adenosine 5'-monophosphate-acti-
vated protein kinase/PParα signaling, microrna-19a can 
suppress the autophagy of d-Galn/lipopolysaccharide-stim-
ulated hepatocytes (44). SLC22A18 is a paternally imprinted 
gene that encodes a polyspecific organic cation transporter, 
which exhibits gain-of-imprinting in breast cancers and hepa-
tocarcinomas (45). SLC22A18 is predominantly expressed 
in fetal and adult kidney and liver tissues; additionally, 
SLC22A18 and SLC22A18AS exhibit genomic imprinting in 
adult liver and breast tissues (46). collectively, these studies 

Figure 7. roc curve analysis of the 9-lncrna risk score system. (a) roc analysis of 9-lncrna risk score system for The cancer Genome atlas dataset. 
(B) ROC analysis of 9‑lncRNA risk score system for validation dataset GSE10186. The sensitivity, specificity, PPV, NPV and the AUC were presented. AUC, 
area under the curve; lncrna, long noncoding rna; nPV, negative predictive value; PPV, positive predictive value; roc, receiver operating characteristic.

Figure 6. KM survival curves. (a) KM survival curve demonstrating the overall survival times of TcGa. (B) KM survival curve presenting the overall survival 
times of the validation dataset GSe10186. red and black indicate high- and low-risk groups, respectively. KM, Kaplan-Meier; TcGa, The cancer Genome atlas.
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suggest that GBA3, NBR2 and SLC22A18AS expression may 
affect the progression of Hcc in patients.

To the best of our knowledge, no studies have previously 
reported associations of PART1 or TCL6 with Hcc; however, 
PART1 and TCL6 have been linked to the prognosis of other 
tumors. For example, the lncrna PART1 correlated with 
the overall survival and progression-free survival of patients 
with oral squamous cell carcinoma (47). ParT1 also contrib-
utes to cell proliferation and apoptosis in prostate cancer 
by suppressing Toll-like receptor signaling pathways (48); 
therefore, ParT1 may present a potential therapeutic target. 
additionally, the expression of TCL6 is downregulated in clear 
cell renal cell carcinoma, and may be an unfavorable prog-
nostic indicator for the disease (49). Thus, it is possible that 
PART1 and TCL6 may also be involved in the pathogenesis 
of Hcc.

There are certain limitations to the present study. The 
constructed 9-lncrna risk score system requires the demon-
stration of clinical relevance by using clinical samples obtained 
from an independent patient cohort. additionally, platform 
differences and data heterogeneities between the downloaded 
datasets may affect the accuracy of the risk score system. The 
validation dataset, GSe10186, contained the largest number 
of samples with HBV infection information among the three 
Geo datasets; however, a greater number of samples is 
required for rigorous and robust analysis.

in conclusion, four stable modules and 14 prognosis-asso-
ciated lncrnas were identified. a risk score system was 
established based on the optimal nine lncrnas, which 
may be valuable for predicting the prognosis of patients 
with HBV-positive Hcc, and improve understanding of the 
pathology of Hcc. Furthermore, employing the system with 
a larger independent cohort of patients is required for further 
validation.
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Figure 8. lncrna-mrna co-expression network for the nine optimal lncrnas. Squares represent lncrnas. regular triangles and inverted triangles sepa-
rately represent consensus upregulated genes and downregulated genes. circles represent non-consensus differentially expressed rnas co-expressed with 
lncrnas. The color of a node indicates the module involved. red and green lines represent positive and negative co-expression associations, respectively. 
lncrna, long noncoding rna; dGcr9, diGeorge syndrome critical region gene 9; GBa3, glucosidase, β, acid 3; HcG4, Hla complex group 4; naT8B, 
N‑acetyltransferase 8B; NBR2, neighbor of breast cancer 1 gene 2; PART1, prostate androgen‑regulated transcript 1; RFPL1S, ret finger protein like 1 antisense 
rna 1; Slc22a18aS, solute carrier family 22 member 18 antisense; Tcl6, T-cell leukemia/lymphoma 6.
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