syduosnuelA Joyiny siapun4 DA @doing ¢

syduasnue|A Joyiny siapund JIAd adoin3 ¢

Europe PMC Funders Group
Author Manuscript
Oncogene. Author manuscript; available in PMC 2010 May 24.

Published in final edited form as:
Oncogene. 2009 October 15; 28(41): 3619-3630. doi:10.1038/onc.2009.225.

Regulation of p53 expression, phosphorylation and sub-cellular
localisation by a G-protein coupled receptor

Lev Solyakovl”, Emre Sayan?”, Joan Riley”#, Amy Pointon”, and Andrew B Tobin?

1Department of Cell Physiology and Pharmacology, University of Leicester, Hodgkin Building,
Lancaster Road, Leicester, LE1 9HN, UK

?Department of Cancer Studies and Molecular Medicine, University of Leicester, Hodgkin
Building, Lancaster Road, Leicester, LE1 9HN, UK

#MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN

Abstract

G-protein coupled receptors (GPCRs) have been extremely successful drug targets for a multitude
of diseases from heart failure to depression. This super-family of cell surface receptors have not,
however, been widely considered as a viable target in cancer treatment. In the current study we
demonstrate that a classical Gg/;1-coupled GPCR, the Mz-muscarinic receptor, was able to
regulate apoptosis via receptors that are endogenously expressed in the human neuroblastoma cell
line SH-SY5Y and when ectopically expressed in Chinese hamster ovary (CHO) cells. Stimulation
of the M3-muscarinic receptor was shown to inhibit the ability of the DNA-damaging
chemotherapeutic agent, etoposide, from mediating apoptosis. This protective response in CHO
cells correlated with the ability of the receptor to regulate the expression levels of p53. In contrast,
stimulation of endogenous muscarinic receptors in SH-SY5Y cells did not regulate p53 expression
but rather was able to inhibit p53 translocation to the mitochondria and p53 phosphorylation at
serine 15 and 37. This study suggeststhe possibility that a GPCR can regulate the apoptotic
properties of a chemotherapeutic DNA-damaging agent by regulating the expression, sub-cellular
trafficking and modification of p53 in a manner that is in part dependent on the cell type.
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Introduction

The wide involvement of G-protein coupled receptors (GPCRs) in biological responses
coupled to the fact that these receptors show very distinct tissue distributions and are
activated by specific ligands have made this receptor super-family an ideal candidate for
pharmacological intervention in a large number of diseases (Klabunde and Hessler, 2002).
Despite this success, targeting GPCRs in diseases where programmed cell death (apoptosis)
is a feature has been largely over looked. Prevalent among such diseases is cancer where
apoptosis is suppressed, primarily by liaisons in the p53 pathway (Vousden and Lu, 2002),
and where chemotherapeutic intervention is often directed to inducing apoptosis in the
cancerous cells .
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It has been known for some time that GPCRs can influence apoptosis in both a positive and
negative manner depending on the cell type and receptor subtype being investigated (Chen
et al., 1999; De Sarno et al., 2005; DeFea et al., 2000; Diao et al., 2000; Fang et al., 2000;
Murga et al., 1998; Tobin and Budd, 2003; Vichalkovski et al., 2005; Zhu et al., 2001). The
ability of GPCRs to regulate apoptosis is likely due to the plethora of signalling pathways
activated by these receptors, many of which are known to converge on apoptotic pathways
(Dorsam and Gutkind, 2007; Marinissen and Gutkind, 2001). Thus, GPCRs are able to
potently activate the PI-3 kinase/Akt pathway as well as the mitogen-activated protein
(MAP) kinase pathways, ERK-1/2, Jun-kinase and p38, and thereby influence apoptosis
(Fang et al., 2000; Murga et al., 1998; Zhou et al., 2002; Zhu et al., 2001). Similarly,
receptors coupled to calcium mobilisation, protein kinase C (PKC) activation and cyclic-
AMP production have all been shown to either promote or inhibit apoptosis (Dale et a/,
2000; Diao et al., 2000; Kwon et a/., 2001; Tobin and Budd, 2003).

In terms of cancer treatment many laboratories have focused on the role played by the
transcription factor p53 which appears to mediate apoptosis induced by many of the
commonly used DNA-damaging chemotherapeutic agents (for discussion see (Brown and
Attardi, 2005)). Furthermore, in approximately 50% of human tumours p53 inactivating
mutations are found and in those tumours where there is no mutation at the p53 locus there
is often a lesion in the pathways that regulate p53 expression or sub-cellular localisation
(Haupt and Haupt, 2006; VVogelstein et al., 2000). In light of the ability of GPCRs to regulate
the apoptotic process we wanted to test if the signalling potential of these receptors could
extend to the regulation of p53 under conditions where apoptosis was induced by a
chemotherapeutic DNA damaging agent.

Our work has centred on the Mg-muscarinic receptor which is a classical Gg11-coupled
GPCR that activates the PLC/calcium mobilisation pathway (van Koppen and Kaiser, 2003).
We and others have established that the M3-muscarinic receptor is able to protect cells from
apoptosis in transfected cell lines (Budd et a/., 2003; Tobin and Budd, 2003), the human
neuroblastoma cell line SH-SY5Y (De Sarno et al., 2003; De Sarno et al., 2005), cortical
neurons (Koh et al., 1991) and cerebellar granule neurons (Yan et al., 1995). Here we use
the fact that the M3-muscarinic receptor is a GPCR subtype able to regulate the process of
apoptosis seen in response to DNA-damage (Budd et a/., 2003; Tobin and Budd, 2003) to
test the notion that GPCRs were able to influence the cellular function of p53. To do this we
use two cell lines a Chinese hamster ovary cell line transfected with the human Ms-
muscarinic receptor (CHO-m3 cells) and the human neuroblastoma cell line, SH-SY5Y, that
endogenously expresses the Ms-muscarinic receptor.

The M3z-muscarinic receptor regulates the expression of p53 protein in CHO-m3 cells

Treatment of CHO-m3 cells with etoposide for 16 hours resulted in a ~2.5-fold increase in
caspase activity over control levels. Stimulation of the M3-muscarinic receptor using the full
agonist methylcholine significantly reduced caspase activation by 69.4 +8.9% (p<0.01, n=6)
(Fig.1A); an observation consistent with previous studies (Budd ef a/., 2004; Tobin and
Budd, 2003). The effect of methylcholine was blocked by the muscarinic specific antagonist,
atropine (Fig 1A). The ability of M3-muscarinic receptor stimulation to reduce etoposide-
mediated caspase activation correlated with changes in the expression levels of p53. Levels
of p53 increased in CHO-m3 cells challenged with etoposide and this was attenuated by the
stimulation of the M3-muscarinic receptor (Fig 1B).

In our studies p53 appears as a double band in Western blots (Fig 1B). Although the reason
for this is unclear it is possible that it either reflects differential phosphorylation status of
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p53 (Hu et al., 1999; Ullrich et al., 1992) or different p53 isoforms resulting from
differential splicing, polymorphisms or alternative promoter usage (Bourdon, 2007; Courtois
et al., 2004; Dumont et al., 2003).

si-RNA specific to p53 reduced the induction of p53 expression following etoposide
treatment by ~50% (Fig. 1C). This correlated with a similar reduction in etoposide-induced
caspase 3 activity (Fig 1C). Thus, indicating that caspase 3 activation following etoposide
treatment was mediated via an increase in p53 expression levels.

The ability of the M3-muscarinic receptor to down regulate p53 and protect cells from
apoptosis correlated with the ability of the receptor to prevent the activation of p53
responsive genes. RT-PCR analysis demonstrated that transcription of the p53 responsive
genes Bax, Mdm2 and NOXA were significantly increased following etoposide treatment
(Fig 1D). Stimulation of the M3-muscarinic receptor reduced transcription of these genes to
basal levels (Fig 1D) in a manner that correlated with the ability of the receptor to protect
from apoptosis.

We tested whether a short period of muscarinic receptor treatment would be sufficient to
down-regulate p53 levels in CHO-m3 cells resulting from prolonged treatment with
etoposide. In control experiments we found that four hours treatment with etoposide resulted
in an increase in p53 expression levels and that this was attenuated by a simultaneous four
hour treatment with methylcholine (Fig. 1E). If methylcholine stimulation was stopped after
four hours with the antagonist atropine (10.M; a concentration sufficient to completely
block muscarinic receptor signalling (Budd et al., 2004)) and the treatment with etoposide
continued for a further 12 hours the attenuation of p53 levels was still evident (Fig. 1E).
These data indicate that transient receptor stimulation was sufficient to suppress etoposide
mediated p53 expression levels. Interestingly, the suppression of p53 levels by the
muscarinic receptor was not due to the ability of the receptor to enhance p53 degradation.
This was demonstrated by inhibiting new protein synthesis using cyclohexamide and
monitoring the loss of p53 over time. Here etoposide treatment significantly decreased the
rate of p53 degradation in a manner that was not affected by the presence of methacholine
(Fig 1F).

Further RT-PCR studies revealed that the ability of the M3-muscarinic receptor to decrease
p53 protein expression levels in CHO-m3 cells was not due to an ability to decrease
transcription of p53 (supplementary Fig.S1). Since, DNA-damage had previously been
reported to both stabilisation and activate p53 through a process that is in part due to
phosphorylation of specific serine residues at the N-terminus of p53 (Chao et al., 2000;
Chehab et al., 1999; Meek, 1999; Shieh et al., 1997; Siliciano et al., 1997; Unger et al.,
1999) the phosphorylation status of p53 was investigated. Of particular importance is
serine-15 where phosphorylated has been reported to increase p53 stability via disruption of
Mdm2 binding (Shieh et al., 1997; Siliciano et al., 1997). We tested here if muscarinic
receptor stimulation was able to regulate the level of p53 phosphorylation at serine-15 using
a phospho-specific antibody. Treatment with etoposide resulted in a robust phosphorylation
of p53 on serine-15 (Fig. 1G). Stimulation with methylcholine resulted in a decrease in
serine-15 phosphorylation which correlated closely with the decrease in total p53 levels
(Fig. 1G). Hence, in these experiments we found no evidence that p53 de-phosphorylation at
serine-15 preceded p53 down-regulation. Similarly we tested the possibility that
phosphorylation at serine-392 (Fig. 1H) was changed by M3-muscarinic receptor
stimulation. However, although levels of phosphorylation did decrease, this correlated with
decreases in total p53 levels. Hence, it was again not possible to conclude whether p53 de-
phosphorylation preceded receptor mediated p53 degradation.

Oncogene. Author manuscript; available in PMC 2010 May 24.



syduasnue|A Joyiny siapun4 JIAd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Solyakov et al. Page 4

Stimulation of the M3z-muscarinic receptor protects SH-SY5Y cells against etoposide-
induced caspase activation

Consistent with previous reports (De Sarno et al., 2003; De Sarno et al., 2005) we show here
that the M3-muscarinic receptor endogenously expressed in the human neuroblastoma cell
line SH-SY5Y was able to protect cells from etoposide induced cell death. Treatment with
etoposide (251M) for 4 and 8 hours resulted in 6-8 fold increase in caspase activity which
was significantly reduced by methylcholine (90.2 + 0.1% (P<0.001, n=5) and 59.3 + 0.7%
(P<0.05, n=3), respectively (Fig 2A)). Furthermore, muscarinic receptor stimulation was
able to attenuate caspase-mediated PARP cleavage in response to etoposide treatment (Fig
2B), caspase 3 and caspase 9 processing together and cytochrome C release into the
cytoplasm (Fig 2C). We did not, however, observe any changes in caspase 8 processing nor
cleavage of the caspase 8 substrate Bid (Fig 2C).

Time course studies were conducted where Ms-muscarinic receptor stimulation was stopped
by addition of the antagonist atropine (10p.M) at various times during the 4 hour challenge
with etoposide. These studies revealed that caspase activation measured after 4 hours
treatment with etoposide was reduced by 66.7 + 0.3% (P<0.05, n=4) after a 30 min
stimulation of Ms-muscarinic receptors initiated at the start of the etoposide treatment (Fig
2D). These data suggest that a transient stimulation of M3-muscarinic receptor signalling has
is sufficient to protect SHSY5Y cells from a prolonged exposure to etoposide.

Pharmacological inhibitors to the PLC/calcium mobilisation pathway (U73122 and
dantrolene), PKC (R031-8220) and MEK (PD98059) had no affect on the ability of
methylcholine to inhibit caspase activation (supplementary Fig S2). Furthermore, a number
of other inhibitors including the CK1 inhibitor D-4476 (supplementary Fig S3A) JNK
inhibitor I (5.M), the CaM-kinase Il inhibitor KN-93 (10i.M), selective PKA inhibitors KT
5720 (1M) and H-89 (1uM) similarly had no affect on the Ms-muscarinic anti-apoptotic
response in SH-SY5H cells (supplementary Fig3B). In addition, the PI3-kinase inhibitors
LY294002 (10.M) and wortmannin (100nM) and the inhibitor of mTOR, rapamycin, were
unable to affect M3-muscarinic receptor-mediated protection of SH-SY5Y cells
(supplementary Fig S4). However, the broad spectrum protein kinase inhibitor HA1077 was
able to inhibit the action of methylcholine (supplementary Fig. S5). This has been previously
attributed to the ability of this compound to inhibit Rho-kinase (De Sarno et al., 2005).
However, the Rho-kinase specific inhibitor, Y-27632 (Chitaley et al., 2001), was unable to
affect the muscarinic response when used at a concentration of 10M (supplementary Fig
S5). This would suggest that the Rho-kinase pathway is not directly involved in the Ms-
muscarinic receptor-mediated protection mechanism but that protein phosphorylation is
important.

Ms-muscarinic receptors inhibit apoptosis in SH-SY5Y cells but do not change the level of
p53 expression

In light of the ability of the Ms-muscarinic receptor to regulate the expression levels of p53
following a challenge with etoposide in CHO-m3 cells we tested if muscarinic receptor
stimulation could change the expression levels of p53 in SH-SY5Y cells. Etoposide
treatment of SH-SY5Y cells for two, four and eight hours resulted in a substantial increase
in p53 expression that was not significantly affected by co-stimulation with methylcholine
(Fig 3A). Hence, in contrast to CHO-m3 cells, M3-muscarinic receptors do not appear to
regulate the expression levels of p53 in SH-SY5Y cells.

We next confirmed that the apoptotic response observed in SH-SY5Y cells following
etoposide treatment was mediated by elevated levels of p53. SH-SY5Y cells were
transfected with siRNA duplex directed against p53 or with scrambled control. The cells
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were then challenged with etoposide. In control cells etoposide treatment resulted in an
increase in the expression levels of p53 that correlated with an increase in caspase 3
processing and the cleavage of the caspase 3 substrate PARP (lane 2, Fig 3B). In siRNA
treated cells the induction of p53 was significantly reduced (by ~50%). In these cells caspase
3 processing and PARP cleavage were similarly reduced (lane 6, Fig 3B). These data are
consistent with p53 mediating etoposide-induced apoptosis in SH-SY5Y cells.

A large body of work from other laboratories have established that p53-mediate apoptosis is
primarily attributable to the ability of p53 to transcriptionally regulate pro-apoptotic genes
such as Puma, NOXA and Bax (Nakano and Vousden, 2001; Oda et a/., 2000; Yu et al.,
1999). In the current study a four hour treatment with etoposide did increase the
transcription of the p53 responsive genes Bax and Mdm2 (Fig. 4A). However, Western blots
of the proteins demonstrated that there was a small increase in the expression of Mdm2 and
no significant increase in the level of Bax protein (Fig 4B). Thus, despite evidence that p53
was responsible for etoposide-induced apoptosis (Fig 3B) this did not appear to be linked
with a substantial change in the expression of pro-apoptotic p53 responsive genes (Fig 4B).
Furthermore, the ability of muscarinic receptor stimulation to protect from etoposide-
induced apoptosis was not correlated with a change in the transcription of p53-reponsive
genes (Fig 4A). It seems likely, therefore, that although p53 is the mediator of apoptosis
induced by etoposide this is not through an up regulation of p53 responsive gene expression.
Consistent with this conclusion was the fact that the pharmacological inhibitor of p53-
mediated transactivation, pifithrin-a (Komarov et al., 1999) had no affect on etoposide-
mediated caspase activity (Fig 4C).

That p53 was the mediator of the increase in caspase activity following etoposide treatment
of SH-SY5Y cells was, however, evident firstly by the effects of p53 siRNA (see; Fig 3B)
and secondly by the fact that suppression of p53 activity using pifithrin-p (Strom et al.,
2006), prevented etoposide-mediated caspase activation (Fig 4D). Pifithrin-p. has been
reported to inhibit p53 translocation to the mitochondria and in this way prevent apoptosis
resulting from the direct action of p53 on the mitochondria (Strom et al., 2006). In our hands
pifithrin-p prevented the elevation of total p53 in response to DNA-damage and this
correlated with a total protection from etoposide induced apoptosis (Fig 4D-insert).

Ms-muscarinic receptors inhibit translocation of p53 to the mitochondria

Based on reports demonstrating that rapid apoptosis induced within the first few hours of
DNA-damage can be mediated by the direct action of p53 on the mitochondria (Erster et al.,
2004; Marchenko et al., 2000) we tested the possibility that the muscarinic receptor
protective response might correlate with changes in p53 translocation to the mitochondria.
We found that etoposide treatment resulted in a rapid rise in the expression levels of p53 in
the nuclear, cytosolic and mitochondrial fractions in SH-SY5Y cells (Fig 5). M3-muscarinic
receptor stimulation had no significant affect on the levels of etoposide-induced p53 levels
in the nucleus or cytoplasm but did significantly decrease the levels of p53 in the
mitochondria (Fig 5).

Msz-muscarinic receptors regulate the phosphorylation status of p53

It is well documented that the phosphorylation status of p53 is up-regulated following DNA
damage and that this modification contributes to the stabilisation and activation of p53
(Chao et al., 2000; Chehab et al., 1999; Meek, 1999; Shieh et al., 1997; Siliciano et al.,
1997; Unger et al., 1999). To test if GPCR activity could regulate the phosphorylation status
of p53 in SH-SY5Y cells, phospho-specific antibodies were used in Western blots of p53
contained in the nuclear, cytoplasmic and mitochondrial fractions. Following a 4 hour
treatment with etoposide the phosphorylation of p53 at residues 6, 9, 15, 20, 37 and 392
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increased in the nuclear, cytoplasmic and mitochondrial fractions (Fig 6A). Muscarinic
receptor stimulation did not affect the phosphorylation of p53 in nuclear fractions (Fig6A).
Similarly, mitochondrial p53 phosphorylation did not appear to be affected by muscarinic
receptor stimulation since the apparent decrease in the phosphorylation status of p53
following receptor activation observed in Fig 6A could be accounted for by the decrease in
total mitochondrial p53. However, muscarinic receptor stimulation did significantly reduce
the phosphorylation status of cytoplasmic p53 at residues 15 and 37 (Fig 6A orange boxes
and Fig 6B).

Discussion

Our study demonstrates the ability of a Gg/11-coupled GPCR to regulate caspase activation
following DNA-damage. In CHO-m3 cells, where apoptosis proceeds following a prolonged
exposure to etoposide, the muscarinic anti-apoptotic response correlates with a decrease in
p53 expression levels. In contrast, etoposide-mediated caspase activation in SH-SY5Y cells
is rapid and the muscarinic protective response does not correlate with a change in the
overall level of p53 expression but rather is associated with a decrease in the translocation of
p53 to the mitochondria. Furthermore, muscarinic receptor stimulation regulates the
phosphorylation status of p53 in the cytoplasm of SH-SY5Y cells. This study, therefore,
demonstrates the previously unknown capacity of a GPCR to regulate p53 at a number of
different levels and in a cell type dependent manner.

Decreasing p53 expression levels in CHO-m3 cells, via siRNA, results in a reduction in
etoposide-mediated caspase activation thus supporting the conclusion that etopoisde
promotes apoptosis in CHO-m3 cells by elevating p53 expression. In light of this it is likely
that the mechanism by which M3-muscarinic receptors protect CHO-m3 cells from apoptosis
is via the ability of this receptor to decrease p53 expression levels. This is important in the
context of previous studies where the anti-apoptotic response of this receptor subtype was
shown to correlate with an up-regulation of Bcl-2 protein (Tobin and Budd, 2003) a gene
that is under negative control by p53 (Miyashita et al., 1994). This provides a further
explanation for the anti-apoptotic properties of the Ms-muscarinic receptor subtype in CHO-
m3 cells which both decreases p53 levels (this study) and correspondingly increases Bcl-2
levels (Tobin and Budd, 2003). The mechanism by which the Ms-muscarinic receptor is able
to regulate p53 expression in CHO-m3 cells is, however, unknown. Previous studies have
eliminated a role for PLC/calcium signalling, the MAP kinase pathways as well as the PI3-
kinase pathway (Budd et a/., 2003; Tobin and Budd, 2003). However, a polybasic motif
contained at the C-terminal tail of the receptor has been shown to be essential for the ability
of the receptor to couple to the anti-apoptotic pathway in this cell type (Budd et a/., 2003;
Tobin and Budd, 2003). In the current study the possibility that the receptor was able to
regulate the phosphorylation of p53 at serine-15 and thereby regulate p53 stability was
investigated. However, it appears that changes in p53 serine-15 and serine-392
phosphorylation did not precede p53 down regulation. It is possible that M3-muscarinic
receptor signalling is able to regulate p53 phosphorylation in CHO-m3 cells but the
resolution of the Western blot techniques used here is not sufficiently high to detect these
changes. Clearly further studies are required to define the mechanism by which GPCRs can
regulate p53 expression.

In contrast to the situation in CHO-m3 cells, the mechanism by which M3z-muscarinic
receptors reduce caspase activity in the human neuroblastoma cell line SH-SY5Y appears
not to be centred on the control of p53 expression. In this cell line caspase activity in
response to DNA-damage is rapid and does not correlate with a change in pro-apoptotic p53
target genes. Previous studies have determined that caspase activation in SH-SY5Y cells in
response to etoposide is mediated by the action of p53 (Cui et al., 2002). Consistent with this
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we find here the p53 inhibitor, pifithrin-p, blocked the ability of etoposide to mediate
caspase activation. Pifithrin-p has been reported to prevent p53 mitochondrial translocation
(Strom et al., 2006) but in our hands this inhibitor prevents etoposide-mediated increases in
total p53 levels. Furthermore, knock down of p53 expression levels using sSiRNA
correspondingly reduced the apoptotic response to etoposide confirming that p53 was the
mediator of the apoptotic response in SH-SY5Y cells.

Importantly, pifithrin-a., an inhibitor of p53 transactivation (Komarov et al., 1999), did not
prevent etoposide-mediated caspase activation. Furthermore, although etoposide did induce
p53-mediated transcription of pro-apoptotic proteins this was not reflected in an increase in
protein expression levels seen at the short time points of incubation used (i.e. 4 hours). Thus,
although DNA-damage induces caspase activation in SH-SY5Y cells via a p53-dependent
mechanism, this does not appear to require an increase in the expression levels of p53
responsive genes. One possibility is that p53 is able to mediate its affects via a direct action
on the mitochondria. This phenomenon has been reported previously to account for
etoposide-mediated apoptosis in SH-SY5Y cells (Sayan et al., 2006) and has also been
reported in a number of other model cell lines (Chipuk and Green, 2003; Moll et al., 2005)
where it has been suggested to account for the first wave of p53-mediated apoptosis which
precedes a later sustained period of apoptosis mediated by p53 gene transcription (Erster et
al., 2004).

The importance of the fact that etoposide-mediated apoptosis in SH-SY5Y cells may be a
direct action of p53 on mitochondria is borne out in the observations that muscarinic
receptor stimulation prevents cytochrome C release into the cytoplasm, prevents caspase 3
and 9 processing and reduces the translocation of p53 to the mitochondria. In the context of
these findings it is likely that the ability of the M3-muscarinic receptor to protect SH-SY5Y
cells from etoposide-induced apoptosis is centred on the ability of the receptor to prevent the
translocation of p53 to the mitochondria.

As is the case for muscarinic receptor mediated effects on p53 in CHO-m3 cells, the
signalling pathway employed by the muscarinic receptor to regulate p53 function in SH-
SY5Y cells is unclear. Inhibitors of Rho-kinase did not provide evidence for the
involvement of this pathway since the specific Rho-kinase inhibitor Y-27632 (Chitaley et
al., 2001), did not prevent the muscarinic anti-apoptotic response. Similarly,
pharmacological inhibitors of PI-3 kinase, PLC/calcium signalling, MAP kinases, CK1,
mTOR, PKA and PKC did not identify any candidate pathways.

Cellular stress results in hyper-phosphorylation of p53 which is known to contribute to the
both stabilisation and transcriptional activity of p53 (Bode and Dong, 2004; Brooks and Gu,
2003). Consistent with this we show here that etoposide treatment resulted in increased
phosphorylation at serine residues 6, 9, 15, 20, 37 and 392 on p53. Moreover, muscarinic
receptor stimulation decreased the phosphorylation status of p53 only at positions 15 and 37
and only in p53 located in the cytoplasmic fraction. This is the first demonstration of a
GPCR regulating the phosphorylation status of p53 and may provide an explanation for the
anti-apoptotic properties of the M3-muscarinic receptor since phosphorylation at these
residues has been shown to be important for p53-mediated apoptosis (Li et al., 2006; Shieh
etal., 1997).

Both functionally and mechanistically phosphorylation at serine 15 and 37 appear to be
linked. Phosphorylation at serine 15 and 37 disrupts MDM2 binding and thereby stabilises
p53 in response to DNA damage (Bean and Stark, 2001; Shieh et al., 1997). Furthermore,
phosphorylation at these two sites contributes to increasing p53 transcriptional activity by
promoting the interaction with histone acyltransferases (CBP/p300, PCAF/p300) resulting in
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C-terminal acetylation of p53 and thereby specific DNA binding (Lambert et al., 1998;
Sakaguchi et al., 1998). /n vitro studies have determined that p53 is phosphorylated at serine
15 and 37 by the same protein kinases, DNA-dependent protein kinase (Shieh et al., 1997)
and ATR (Tibbetts et al., 1999), both of which respond to DNA damage. In recent studies it
has been suggested that phosphorylation at these sites may be regulated by the action of the
protein phosphatase, PP-1, which can promote cell survival by dephosphorylation of serine
15 and 37 (Li et al., 2006). It is therefore of considerable interest that Mz-muscarinic
receptor stimulation can regulate the level of phosphorylation of p53 at these two key
phospho-acceptor sites.

It is tempting to speculate that the phosphorylation status of cytoplasmic p53 may contribute
to the translocation of p53 to the mitochondria. Recent studies have suggested that serine 15
phosphorylation can promote p53 mitochondrial translocation and interaction with Bcl-2 and
Bcel-XL (Park et al., 2005). However, other studies have not been able to correlate
phosphorylation and acetylation of p53 with mitochondrial targeting (Nemajerova et al.,
2005). Hence, it is not currently possible to determine if the ability of the receptor to reduce
serine 15 and 37 phosphorylation of cytoplasmic p53 observed in this study is linked with
the ability of muscarinic receptor stimulation to reduce p53 translocation to the
mitochondria.

Our studies suggest the possibility that a GPCR can regulate apoptosis induced by DNA
damage through direct action on p53. We would predict that this principle can be extended
to GPCRs other than the Mz-muscarinic receptor, particularly in light of the fact that a large
number of GPCRs can regulate the apoptotic process (Budd et a/., 2003; Budd et al., 2004;
Chen et al., 1999; Dale et al., 2000; De Sarno et al., 2003; De Sarno et al., 2005; DeFea et
al., 2000; Diao et al., 2000; Fang et al., 2000; Koh et al., 1991; Murga et al., 1998; Tobin
and Budd, 2003; Vichalkovski et al., 2005; Yan et al., 1995; Zhu et al., 2001). In particular
recent studies on the lysophosphatidic acid receptor has demonstrated that this GPCR
subtype can regulate the expression levels of p53 in cancer cells (Murph et al., 2007). Since
GPCRs provide a well established pharmaceutical target it may be possible to specifically
target GPCRs on cancer cells to regulate p53-dependent processes. Depending on the GPCR
receptor subtype (and almost certainly the cancer type) we would speculate that a GPCR
agonist or antagonist could be used to augment the action of a chemotherapeutic agent. In
the example of the M3-muscarinic receptor an antagonist would have to be used to prevent
autocrine/paracrine activation of this anti-apoptotic pathway. That such autocrine loops exist
in tumours has recently been highlighted in a report where release of acetylcholine from
small cell lung cancer cells was shown to promote tumour growth through the activation of
the M3-muscarinic receptor subtype in a fashion that is inhibited by muscarinic receptor
antagonists (Song et al., 2007).

Materials and Methods

Materials

Anti-cytochrome C antibody was obtained from BD Pharmingen (BD Biosciences, Oxford,
UK). Primary antibodies against-tubulin, p53 (D0-1), NOXA and Mdm2 were purchased
from Santa Cruz Biotechnology, Inc. (Autogen Bioclear UK Ltd, Wiltshire, UK). Primary
antibodies against PUMA, PARP (cleaved fragment), caspase-9 (Asp330, cleaved
fragment), caspase-3 (cleaved fragment), and all phospho-p53 specific antibodies were
purchased from Cell Signaling Technology. Anti-mouse and anti-rabbit HRP-conjugates and
U73122 were obtained from Sigma (Sigma-Aldrich Company Ltd. Poole, Dorset, UK).
D-4476, INK inhibitor I, KT-5720, H-89, RO-318220, dantrolene, pifithrin-a, pifithrin-p
and PD98059 were purchased from Calbiochem. KN-93 from Merck and LY 294002 from
Tocris. All other chemicals and reagents were obtained from the usual commercial sources.
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Cell Culture and drug treatments

Chinese hamster ovary cells stably transfected with the human M3-muscarinic receptor were
cultured in a-MEM supplemented with 10% fetal bovine serum, 2.5 pg/ml of fungizone, 50
U/ml of penicillin, 50 pg/ml of streptomycin and 250 pg/ml G-418 sulphate. The human
neuroblastoma SH-SY5Y cells were cultured in 10cm Petri dishes or 175 cm? flasks and
maintained in MEM media (Earl’s modified), supplemented with 5% fetal bovine serum, 5%
newborn calf serum, 2 mM L-glutamine, 2.5 pg/ml of fungizone, 50 U/ml of penicillin and
50 pg/ml of streptomycin.

Apoptosis was induced by treating cells, reaching 50-60% confluency, with etoposide at the
indicated concentrations. The muscarinic agonist, methylcholine was applied for the
indicated time periods (see results section and figures) and where indicated the stimulation
was stopped by addition of atropine (10LM), a specific antagonist for muscarinic receptors.

In experiments where cyclohexamide was used cells were treated with or without etoposide
in the presence or absence of methacholine for 16 hours. Cyclohexamide (20pg/ml) was
then added for the indicated times and the reaction stopped by addition of lysis buffer
(50mM HEPES, pH 7.4, 0.15M NaCl, 2mM EDTA, 1mM DTT, 1% CHAPS) Lysates were
then used in caspase assays as described below.

Caspase-3 activity assay

Following appropriate treatment, cells were harvested in PBS-EDTA buffer, washed and cell
pellets placed on ice and lysed for 10 min in lysis buffer. Cell lysates were cleared by
centrifugation at 14,000 rpm for 3 min, 4°C, and the supernatant fraction was used for
caspase-3 activity assay. Aliquots of the cell lysate containing equal amount of proteins
(normally 200jLg per assay) were incubated in reaction mixture containing Ac-DEVD-pNA
(final concentration 200i.M) and 10mM DTT for 3 hours at 37°C. Cleavage of the Ac-
DEVD-pNA substrate was measured at 405 nm in plate reader using 96-well plates.

Cells fractionation

SH-SY5Y cells were cultured in 175 cm? flasks until ~ 70-80% confluency. Following
treatment cells were harvested in PBS-EDTA buffer, washed once with ice-cold PBS and
resuspended in ice-cold hypotonic buffer (20mM HEPES, pH 7.4, 250mM sucrose, 5mM
MgCl,, 10mM KCI, 1ImM EDTA, 1mM EGTA, 1mM DTT, 1mM PMSF and protease
inhibitor cocktail (Sigma)). Following 15 min incubation on ice the cell suspension was
passed 8 times through a 27 gauge needle and centrifuged at 750xg for 10min. The pellet
was discarded and the supernatant fraction was centrifuged again at 10,000xg for 10 min.
The final pellet was taken as mitochondrial fraction while the supernatant as cytosolic one.
Samples were resuspended in Laemmli buffer, run over 10% SDS gels and analysed by
Western blotting as above. To purify the nuclear fractions, SH-SY5Y cells were maintained
and treated in the same manner as it was done for mitochondria fractionation. The cells were
harvested, washed in ice-cold PBS and lysed on ice for 5 min in nuclear-lysis buffer (Sigma,
NUC-201 nuclei isolation kit). To purify the nuclei, the cell lysates were further centrifuged
over 1.8M sucrose cushion solution in accordance with the manual instruction. Isolated
nuclei were then analysed by Western blotting.

p53 siRNA treatment

For each treatment (whether CHO-m3 or SHSY-5Y cells), 50pmol of p53 targetting siRNA
(Ambion siRNA ID: s605) or control siRNA (Ambion, #AM4611) was transfected in to
1.5x106 cells by nucleofection (Amaxa nucleofector, Cologne, Germany) using buffer V,
program A023. 48 hours after transfection, cells were treated with etoposide and/or
methylcholine as described above.
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Real time—PCR (RT-PCR)

Total RNA was isolated using Trizol reagent (Sigma). RNA (100 ng) was reverse-
transcribed using Superscript 11 (Invitrogen) and the resulting cDNA was used for
amplification with SYBR® green mastermix (Applied Biosystems). Reactions were carried
out on an ABI PRISM® 7700 RT-PCR machine using optimized primers. Primers for RT—
PCR were designed to cross exon-exon boundaries to eliminate the detection of any
contaminating genomic DNA using Primer Express® software v2.0 (Applied Biosystems).
The sequences used were: mmu-Bax forward, TGGAGCTGCAGAGGATGATTG; mmu-
Bax reverse, GCTGCCACTCGGAAAAAGAC; mmu-Puma forward,
GGGTCCCCTGCCAGATTT,; mmu-Puma reverse, GCAGGAGTCCCATGATGATGA,
mmu-Mdm2 forward, TCTACAGGGACGCCATCGA, mmu-Mdm2 reverse,
GATCCAACCAATCACCTGAATGT,; mmu-Noxa forward,
GATTTGCGATTGGGATGCA; mmu-Noxa reverse,
GCACACTCGACTTCCAGCTACTT,; hsa-Bax forward,
TGGAGCTGCAGAGGATGATTG, hsa-Bax reverse, GCTGCCACTCGGAAAAAGAC,;
hsa-Puma forward, GGGTCCCCTGCCAGATTT,; hsa-Puma reverse,
GCAGGAGTCCCATGATGATGA, hsa-Mdm2 forward, TCTACAGGGACGCCATCGA;
hsa-Mdm2 reverse GATCCAACCAATCACCTGAATGT, hsa-Noxa forward,
GATTTGCGATTGGGATGCA,; hsa-Noxa reverse, GCACACTCGACTTCCAGCTACTT.
ACAGCTTTGAGGTTCGTGTT,; p53 forward, TCAGTCTGAGTCAGGCCC; p53 reverse.

The expression level of the gene of interest was normalized to that of TATA box binding
protein in all samples expect for analysis of p53 that was normalised to actin. Relative
quantification of gene expression was performed with the comparative cycle threshold
method (Applied Biosystems, User Bulletin no 2, 1997).

p53 status of cell lines used—SH-SY5Y cells contain wild type p53 (Paulsen et al.,
2006). The CHO-m3 cell line used was derived from CHO-K1 cells which are described to
contain a mutant of p53 at codon 211 (T211K) (Hu et al., 1999). Point mutations at this
codon are observed very rarely in primary human tumors (41 reported cases in more than
27,000 identified p53 mutations, see p53 mutation database, http://p53.free.fr/Database/
p53_database.html.) indicating that this mutation is not significant for tumour biology. A
recent study revealed that the codon 211 mutants of p53 have subtly different transactivator
properties than wild type receptor (Kakudo et al., 2005). It is, therefore, possible that the
effects of this mutation mean that high concentrations of etoposide (e.g. 250.M) are
necessary to obtain caspase activation in CHO-m3 cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank the Wellcome Trust for their support (Grants 073480 and 047600).

Abbreviations

CHO Chinese hamster ovary
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PLC phospholipase C

PKA protein kinase A

PKC protein kinase C
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Figure 1. M 3-muscarinic receptors protect CHO-m3 cells from etoposide-induced apoptosis and
attenuated the up-regulation of p53 expression

CHO cells stably expressing the human M3-muscarinic (CHO-m3) receptor were exposed to
etoposide (250LM; Eto) for 16hrs in the absence or presence of methycholine (1mM; Met)
and atropine (Atr; 10,M). Atropine was added at the same time as methylcholine. The cells
were then lysed and either (A) caspase 3 activity determined as described in materials and
methods or (B) the lysate (20pg protein) was Western blotted for p53 expression with a.-
tubulin probed as a loading control. Shown in the right hand panel is quantification of p53
expression levels. (C) CHO-m3 cells were transfected with either control or p53 specific
SiRNA duplexes (50pmols). 48 hours following transfection cells were treated with or
without etoposide (250LM; Eto) in the presence or absence of methacholine (ImM; Met) for
16 hours after which cell lysates were prepared and either processed for caspase 3 activity or
probed in Western blots for p53 expression. (D) Gene expression changes measured by RT-
PCR, of Bax, Puma, Mdm2 and Noxa genes following etoposide (250.M; Eto) treatment in
the absence and presence of methacholine (ImM; Met). (E) CHO-m3 cells were treated with

Oncogene. Author manuscript; available in PMC 2010 May 24.



syduiosnuel Joyiny sispun4 JINd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Solyakov et al.

Page 17

etoposide (250iLM; Met) for 4 or 16 hours. Methylcholine (ImM; Met) was applied
simultaneously with etoposide. The action of methylcholine was stopped after four hours by
the addition of atropine (10.M). Etoposide treatment was either stopped at the point of
atropine addition (i.e. 4 hours) or allowed to continue for a total of 16 hours. Cell lysates
were then prepared and p53 levels determined by Western blot. (F) Following etoposide
(250LM; Eto) treatment in the absence or presence of methacholine (ImM; Met) for 16
hours protein synthesis was inhibited by the addition of cyclohexamide (2ug/ml) and the
incubation continued for the times indicated. The incubations were stopped by preparation
of a cell lysate that was then probed for p53 expression in Western blots.. (G and H) CHO-
m3 cells were stimulated in the presence and absence of etoposide (250mM; Eto) with or
without methacholine (ImM; Met). At the times indicated stimulation with methylcholine
was stopped by the addition of atropine (10p.M) and the incubation with etoposide continued
for a total of 16 hours. Cells were then lysed and lysates probed in Western blots for p53 and
serine-15 phosphorylation (G) or p53 and serine-392 phosphorylation (H).

Western blots shown are typical of at least three experiments. The graphical results represent
the mean (x SE) of 6 independent experiments. *** p<0.001,**p<0.01; *p<0.05, paired
Students #test; represents significant difference from etoposide only treatment except for
figure 1C where * represents significant difference from etoposide treatment in the presence
of control siRNA...
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Figure 2. The M3-muscarinic receptor protects SH-SY5Y cellsfrom DNA-damage induced
apoptosis
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SH-SYS5Y cells were treated with etoposide (Eto, 25uM) in the presence or absence of
methylcholine (Met, 100.M) for 2-16 hours. After treatment, cells were lysed and lysates
processed either for (A) caspase-3 activity, (B) Western blotting for PARP cleavage or (C)
Western blotted for cytsolic cytochrome C, cleaved caspase 9 and cleaved caspase 3
together with Western blots for Bid and caspase 8. (D) SH-SY5Y cells were treated with
etoposide (Eto, 251M) in the presence or absence of methylcholine (Met, 100,.M) for 4
hours. During this period methylcholine stimulation was stopped by addition of the
antagonist atropine (10p.M) at the indicated times. Lysates were prepared at the end of the
experiment and caspase activity determined.

The Western blots shown are typical of at least three experiments. The graphical results
represent the mean ( SE) of at least 3 independent experiments. *** p<0.001, * p<0.05;
paired Students £test; represents significant difference from etoposide only treatment.
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Figure 3. p53-mediates the apoptotic response to etoposide in SH-SY5Y but M 3-muscarinic
receptors protect against apoptosisindependently of changesin p53 expression

(A) SH-SY5Y cells treated with etoposide (Eto, 25u.M) in the absence or presence of
methylcholine (Met, 100.M) were lysed and the lysates processed for p53 expression. (B)
SH-SY5Y cells were transfected with either SiRNA duplex targeted to p53 or control
duplex. 48 Hours later cells were treated for four hours with etoposide (Eto, 25mM) in the
presence or absence of methacholine (Met 100.M). Cell Lysates were then prepared and
probed for p53, PARP cleavage and caspase 3 processing. Shown is a typical experiment of

at least three independent experiments.
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Figure4. M 3-muscarinic receptors protect against apoptosisin SH-SY5Y cellsindependently
p53-mediated transactivation

(A) Gene expression changes measured by RT-PCR, of Bax, Puma, Mdm2 and Noxa genes
in SHSY-5Y cells treated for four hours with etoposide (Eto, 25uM) in the absence or
presence of methylcholine (Met, 100.M). (B) Cells treated with etoposide and
methycholine were lysed and the lysates probed for the expression of p53 responsive gene
products Mdm2, Bax, Puma and Noxa. (C) Where indicated, pifithrin-a (20p.M), an
inhibitor for p53 transactivation, or (D) pifithrin-p (20,LM), an inhibitor of p53, were added
to cells 30 minutes before etoposide and methylcholine and maintained for the duration of
the experiment (4 hours). Cells were then lysed and lysates used in caspase assays. The
Western blots shown were typical of at least three independent experiments. Graphical
results represent the mean (= SE) of 3 independent experiments.
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Figure5. M 3-muscarinic receptor sregulate p53 translocation to the mitochondria

SH-SY5Y cells were treated for 4 hours with etoposide (Eto, 25uM) in the presence or
absence of methylcholine (Met, 100.M). Following treatment, cells were placed on ice and
immediately used for fractionation into nuclear, cytosolic and mitochondrial fractions (see;
materials and methods). Isolated fractions were used for western blotting using; (A) anti-p53
antibodies. Antibodies against PCNA, a-tubulin and HSP-60 were used as markers for
nuclear, cytosolic and mitochondrial fractions, respectively. (B) Quantification of the data
shown in (A). Western blots shown are representative of at least three independent
experiments. Graphical results represent the mean (+ SE) of the experiments illustrated in
the Western blots. *** p<0.001; paired Students #test; represents significant difference from
etoposide only treatment.
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Figure 6. M 3-muscarinic receptor sregulate the phosphorylation status of p53 located in the
cytoplasm

(A) SH-SY5Y cells were treated for 4 hours with etoposide (Eto, 25LM) in the presence or
absence of methylcholine (Met, 100uM). Following treatment, cells were placed on ice and
immediately used for fractionation into nuclear, cytosolic and mitochondrial fractions (see;
materials and methods). Isolated fractions were used in Western blots and probed for the
phosphorylation of p53 at serines 6, 9, 15, 20, 37 and 392. Antibodies against PCNA, a.-
tubulin and HSP-60 were used as markers for nuclear, cytosolic and mitochondrial fractions,
respectively. (B) Quantification of the cytosolic p53 and cytosolic p53 phosphorylated at
serine-15, 37 and 392 — from data shown in (A). Western blots shown are representative of
at least three independent experiments. Graphical results represent the mean (x SE) of the
experiments illustrated in the Western blots. ** p<0.01, *** p<0.001; paired Students £test;
represents significant difference from etoposide only treatment. Orange boxes highlight the
results for phosphorylation of cytoplasmic p53 on serine-15 and serine-37.
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