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Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and sub-

cellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function ge-

nome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of

photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue de-

pleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% ac-

curacy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein

abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells

is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease

when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new meth-

odology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is gen-

erally applicable to other tissues and diseases.

[Supplemental material is available for this article.]

Owing to the rapid development of high-throughput technolo-
gies, the pace of omics sciences has been greatly accelerated.
Direct proteomic characterization of final gene products is consid-
ered one of the most informative and invaluable tools that con-
firms and complements other omics data (Aebersold and Mann
2003). In addition to the entire cell, proteomic profiling has
been conducted for specific cell organelles and compartments
providing important information of protein subcellular localiza-
tion (Andersen et al. 2003). Compared to the traditional immuno-
histochemistry methods in which a limited number of targets
are examined, mass spectrometry (MS)-based proteomics is high
throughput and less biased (Sadowski et al. 2006).

Vertebrate photoreceptor cells of the retina are specialized
sensory neurons that consist of four primary structural compart-
ments: the outer segment (OS), the inner segment (IS), cell body,
and synaptic terminal (Mustafi et al. 2009). The OS is filled with
stacks of photosensitive membrane discs that are essential for cap-
turing and sensing light. The IS contains mitochondria, endoplas-
mic reticulum, and Golgi, and is the compartment where proteins
are synthesized and sorted. The OS is joined to the IS by a connect-
ing cilium (CC) that allows protein transportation between the
two compartments (Fig. 1A).

Consistent with its function in light sensing, the visual
pigment proteins and other phototransduction components are
localized to the OS. In addition, proteins with diverse func-
tions such as vesicle trafficking (Insinna et al. 2010) and micro-

tubule cytoskeleton (Mühlhans et al. 2011) have also been
detected. Strikingly, the protein products of many retinal disease
genes are enriched in the OS, indicating the crucial role that
OS proteins play in visual functions. Given the central role of
the OS in photoreceptor function and its relevance to retinal dis-
ease, it is highly desirable to obtain a comprehensive list of OS
proteins.

Two proteomic studies have been conducted on the OS, and
around 2000 proteins have been identified (Liu et al. 2007;
Kwok et al. 2008). Since then, both the sensitivity and specificity
of mass spectrometry technology have been dramatically im-
proved (Mallick and Kuster 2010; Jimenez and Verheul 2014).
Furthermore, current technology allows more accurate label-free
proteomic quantification. Given the relatively low detection
rate, it is likely that a significant number of proteins in the OS
were not detected by previous studies.

In this study, we performed a comprehensive proteomic anal-
ysis on purified OS from themouse retina. In addition, by compar-
ing the OS and the remaining retina (RR), the protein OS
enrichment score was derived and can be used to predict protein
subcellular localization. Finally, by integrating gene expression
and the protein OS enrichment score, a list of highly probable ret-
inal disease genes was identified.
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Results

OS and RR proteome profiling

Figure 1A shows a schematic diagram of the structure of photore-
ceptor cells. The OS is connected to the IS through CC, which is
anchored to the basal body. During OS preparation, the OS, CC,
and basal body are all separated from the photoreceptor cell
body via mechanical shearing. Figure 1B shows by immunofluo-
rescence and light microscopy that the intact rod photoreceptor
OS as well as the CC are isolated and marked by RHO and IFT20
staining. The RR is the portion of the retina left after OS separation
and was also collected for comparative analysis. The proteomes
were extracted from both the OS and the RR and resolved by
SDS-PAGE (Fig. 1C). A dense band ∼39 kDa, which corresponds
to the molecular weight of RHO inmouse, is consistently detected
in the OS fraction while not clearly recognizable from the RR.

Proteomes from both the OS and the RR were profiled byMS.
A total of 3607 proteins (corresponding to 4435 isoforms) were

identified in the OS fraction. Most of
these proteins were conserved in human
with 3442 corresponding homologs
(Supplemental Tables S1, S2). To test
the quality of our data set, three biologi-
cal replicates were conducted. As shown
in Figure 1D, the expression level of pro-
teins correlated very well between multi-
ple experiments, particularly for proteins
with a normalized abundance greater
than 1. The average Pearson correlation
between replicates was 0.85. As expected,
RHO along with other well-studied OS
proteins, such as the guanine nucleotide
binding protein GNAT1, were detected at
high abundance in our data set.

In the RR, 3879 proteins (corre-
sponding to 4779 isoforms) were
identified, among which 3733 human
homologs were mapped. The RR data
set was of a similarly high quality to
that of the OS proteome. As shown in
Figure 1E, the Pearson correlation be-
tween different replicates of the RR prote-
omewas 0.75. Proteins known to localize
to the IS were detected. For example, spli-
ceosomal proteins PRPF3, PRPF4, PRPF6,
PRPF8, and PRPF31, which are known to
be involved in pre-mRNA splicing in the
IS, were all identified in the RR data set.

Quality assessment of the OS proteome

The high correlation among different bi-
ological replicates as well as the success-
ful cell marker staining suggested the
high quality of our data sets. In addition,
to systematically evaluate the quality of
our data, we further compared the iden-
tified protein list with previous simi-
lar studies. Earlier proteomic studies
were performed on the OS of bovine
(Kwok et al. 2008) and adult mouse
(Supplemental Table S3; Liu et al. 2007).

In the bovine OS proteomic study (Kwok et al. 2008), 516 bovine
proteins were identified, and 483 of them were conserved in hu-
man with corresponding homologs. In comparison, our OS prote-
ome covered ∼90% (432/483) of the proteins that were identified
in the bovine OS proteome. In the previous adult mouse OS study
(Liu et al. 2007), 1962mouse proteins were identified thatmapped
to 1935 human homologs, the majority (81%) of which over-
lapped with our study. Notably, Figure 2 shows that of 331 pro-
teins that were identified in both bovine (Kwok et al. 2008) and
mouse (Liu et al. 2007) OS data sets, only two proteins were not
found in our OS list. Therefore, our data set is largely concordant
with previous similar studies.

Novel OS proteins were identified

Mostly due to improvements in MS technology, our OS proteome
displays a higher sensitivity at detecting proteins with low abun-
dance. As a result, 1771 proteins not found in the previously pub-
lished studies have been identified in our study.We compared the

Figure 1. High-quality proteomic data of the OS and the RR were obtained. (A) Schematic diagram of
the structure of a rod photoreceptor cell and a cone photoreceptor cell in mouse retina. (B, left)
Immunofluorescence of isolated OS preparation stained with antibodies of RHO (green) and IFT20
(red); (right) microscopic analysis of an isolated rod OS. (C ) OS protein complex (left) and RR protein
complex (right) were electrophoresed. The sizes of the molecular weight markers are indicated in
M. (D) Scatter plot of normalized protein abundance for OS proteins between different replicates. The
average Pearson correlation between all replicates is 0.85. (E) Scatter plot of normalized protein abun-
dance for RR proteins between different replicates. The Pearson correlation between two replicates is
0.75.
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spectral counts of proteins that overlapped with previous studies
and those of the proteins newly identified in this study. For the
proteins identified in both our study and previous studies, the av-
erage spectral count was 180, whereas for proteins that are only
identified in our study, the average spectral count was 59. Figure
2C shows that the distribution of the newly identified proteins
tends to be more enriched in lower abundant proteins, which
directly suggests the higher sensitivity of our data. Manual inspec-
tion of these additional proteins indicated that at least some are in-
deed expected to localize to the OS according to the function. For
example, PDE6G and PDE6H are gamma subunits of cyclic GMP-
phosphodiesterase proteins, which function in the phototrans-
duction signaling cascade. Both proteins should localize to the
OS, where phototransduction takes place.

To further evaluate the newly identified proteins, gene ontol-
ogy functional analysis was conducted on the 1771 proteins

that were not reported in the previous studies. One interesting
finding is that several metabolism-related categories are signifi-
cantly enriched among the newly identified proteins, including
the electron transport chain, cellular respiration, and NADHdehy-
drogenase activity as shown in Supplemental Table S4. The results
seem to be unexpected because these biochemical processes take
place in mitochondria, which are localized to the IS. However,
a series of studies found that although the OS is devoid of mito-
chondria, the mitochondrial proteins are present in the OS discs,
and extra-mitochondrial aerobic metabolism would account for
a quantitatively adequate ATP supply needed for phototransduc-
tion (Panfoli et al. 2012, 2013). Our observations are thus consis-
tent with previous studies. Overall, our results provide a more
comprehensive list of OS proteins, including not only traditional
OS proteins but also unexpected ones, that may shed light on
new mechanisms in the OS.

Figure 2. Novel OS proteins were identified. (A) Venn diagram of OS proteome identified in previous studies and this study. (B) Venn diagram of known
retinal disease genes identified in different studies. All proteins weremapped to human homologs. (C) Distribution of log2 (Spectral Counts) for OS proteins
that overlapped with previous OS studies and new proteins identified in this study.
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The RR has a distinct protein set

The proteins specialized for the phototransduction process are
synthesized in the IS and actively trafficked to the OS. Therefore,
the proteome of the OS is expected to be significantly different
from the rest of the cell. To test this, we analyzed the proteome
of the RR and compared it to the OS proteome. Figure 3A shows
that there are 2500 proteins that were identified in both the OS
and the RR, and distinct protein sets were also observed with
1107 and 1379 proteins that were unique to the OS and the RR,
respectively. To systematically look at functional differences be-
tween the OS and RR proteins, gene ontology enrichment analysis
was performed on the proteins detected in the OS (Supplemental
Table S5) and RR (Supplemental Table S6). In the OS proteome,
the most dominant category was proteins associated with the
“establishment of localization” with a P-value of 6.50 × 10−49. In
the RR proteome, proteins that function in mRNA processing
were the most significantly enriched category with a P-value of
1.76 × 10−105. This illustrated the biological features of photore-
ceptors in that mRNA is processed and translated into proteins

in the IS, and proteins are sorted and transported to the OS to per-
form visual functions.

Protein OS enrichment score is predictive for protein localization

Given the observation that a clear distinction is observed when
comparing the OS and RR proteomes, we tested if it is possible to
predict protein localization by comparing the proteome profiling
data described above.

The protein OS enrichment score was calculated as the ratio
of likelihoods for differential expression for eachprotein and is rep-
resented by the Enrichment (OS/RR) score fromQSpec (Choi et al.
2008) as described in Methods. A positive enrichment score indi-
cates that the corresponding protein is more abundant in the OS
than the RR. The distribution of enrichment scores for all proteins
identified is shown in Figure 3B. To compare the differences of OS-
enriched and RR-enriched proteins, the proteins with the highest
20%of enrichment scores and thosewith the lowest 20%of enrich-
ment scores were compared by functional gene ontology analysis
as shown in Figure 3C and Supplemental Tables S7, S8. These

Figure 3. Protein OS enrichment score is predictive for protein localization. (A) Venn diagram of proteins identified in the OS and RR. (B) OS enrichment
score distribution of all proteins identified in the OS and RR. (C) Functional gene ontology analysis of OS-enriched and RR-enriched proteins. (D) Pie chart
showing 84% of the protein localizations predicted by the enrichment score are consistent with literature, and 16% are inconsistent.
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statistically overrepresented functional modules revealed underly-
ingmolecularmechanisms of theOS and the RR. For example, pro-
teins involved in visual function are prominent in theOS-enriched
group, especially proteins in the phototransduction pathway,
which are enriched as high as 10-fold with a P-value of 1.07 ×
10−13. In contrast, the RR enriched proteins are mainly involved
in RNA processing and nucleic acid metabolic processes.

To test if the enrichment score is informative for predicting
protein subcellular localization, we examined the protein OS
enrichment scores of a list of 124 well-documented proteins.
Supplemental Table S9 and Figure 3D show that 84% have
consistent localization information between our prediction and
literature records, indicating the enrichment score is highly infor-
mative. For the 16% inconsistent ones, it is likely due to limita-
tions in OS preparation in which proteins localized to the
subretinal space between photoreceptor and retinal pigment epi-
thelium (RPE) cells are copurified. It is also possible that the incon-
sistency of some proteins can be due to incorrect records in
literature. The immunolocalization has several limitations, such
as variable specificity, low sensitivity, and epitope masking.
Overall, from this estimation, our protein localization prediction
accuracy at least reached 84%.

Retinal disease–associated proteins are enriched in the OS

It has been reported that the OS proteome is enriched in known
human retinal disease genes. To test if this enrichment is also ob-
served in our expanded OS protein list, we checked for the pres-
ence of 215 known retinal disease genes (RetNet, https://sph.uth.

edu/retnet/) in our data set. Strikingly, 56% (121/215) of known
disease genes have been identified in our OS data set. This is a
3.8-fold enrichment over the whole human genome background
with a P-value of 2.65 × 10−49. In comparison to previous OS
proteomic studies, our new OS data set not only covered 93%
(94/101) of the disease gene proteins reported in these studies,
but also included 27 unreported ones (Fig. 2B). For example,
SDCCAG8 and INPP5E are two transition zone proteins (Otto
et al. 2010; Luo et al. 2012), and mutations in either gene can
give rise to Bardet-Biedl syndrome, including a retinal degenera-
tion phenotype. Both genes were missed in the previous reports
and were identified in our new data set.

Another interesting observation is that retinal disease
genes also have the higher OS enrichment scores. In Figure 4A,
retinal disease proteins show a significant shift to positive OS
enrichment scores compared to the background. Indeed, among
the 121 known retinal disease genes, 106 have positive enrich-
ment scores.

Novel retinal disease gene prediction

The enrichment of retinal disease proteins in theOS suggested that
the enrichment score might be able to facilitate novel disease gene
discovery. Here, we used machine learning methods to rank all
genes identified in the OS and the RR by the possibility that the
gene is linked to human retinal disease.

Compared to transcriptomic studies, current MS-based prote-
omics is less sensitive. To compensate for this, we supplemented
our predictive model training data by incorporating RNA-seq

Figure 4. Integrative method was applied to predict novel retinal disease genes. (A) The enrichment score distribution of all retinal disease and back-
ground proteins identified in the OS and RR proteomes. (B) The attribute importance, measured by ReliefF score, of all attributes used during machine
learning. (C) The prediction score distributions for background genes, known retinal disease genes, and candidate disease genes. (D) The average predic-
tion scores of background genes, known retinal disease genes, and candidate disease genes. All other genes identified in the OS and RR proteome are used
as background.
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data on themouse retina. The attributes used formachine learning
included the protein OS enrichment score, the protein abundance
in the OS and the RR, and the RNA expression level. Both naïve
Bayes and logistic regression classification methods were applied.
The sensitivity and specificity are shown in Table 1. Overall, the
logistic regression had a higher sensitivity around 0.758, whereas
the naïve Bayes had a higher specificity of about 0.833. The impact
of each attribute to the overall prediction results was calculated us-
ing the ReliefF algorithm (Kononenko 1994). Figure 4B shows the
most important attribute was the protein OS enrichment score.
The prediction scores were combined from bothmachine learning
methods and ranged from 0 to 1, indicating the probability that a
given gene is linked to human retinal disease. To evaluate the pre-
diction results, a list of 64 candidate retinal disease genes was gen-
erated. These candidate genes either showed a retinal degeneration
phenotype inmutantmice based on theMGI database (Blake et al.
2014) or have already been identified as candidate retinal disease
genes in literature or public databases (Supplemental Table S10).
In Figure 4C, the distribution of prediction scores for known reti-
nal disease genes, candidate retinal disease genes, and background
genes are clearly separated. The average prediction score is 0.74 for
retinal disease genes, 0.69 for candidate disease genes, and 0.29 for
background genes. Both known and candidate disease gene groups
showed significantly higher scores than background genes with
P-values of 1.74 × 10−41 and 2.53 × 10−18, respectively, under a
one-tail t-test (Fig. 4D).

To further investigate the utility of our prediction tool, we
performed detailed analysis of the top 50 ranked predicted retinal
disease genes (Table 2). Among them, 35 genes were previously
known retinal disease genes recorded in the RetNet database
(https://sph.uth.edu/retnet/). Interestingly, in the remaining 15
genes, one gene, B9D1, which had a prediction score of 0.95,
was recently identified as a novel gene causing Joubert syndrome,
and the patients showed retinal dystrophy phenotype (Romani
et al. 2014). Furthermore, seven genes showed retinal degenerative
phenotypes whenmutated inmice. For example, the sixth-ranked
gene, GNGT1, has a prediction score of 0.998. This gene encodes
the gamma subunit of transducin. Homozygous null mice display
gradual retinal photoreceptor degeneration with a loss of rod
photoreceptors by 6 mo of age (Lobanova et al. 2008). Another in-
teresting example is REEP6, with a prediction score of 0.97.
Although it is not included in the MGI database, this gene has
been recently identified as a key functional target of the NRL-cen-
tered transcriptional regulatory network in rod photoreceptors,
and knockdown of Reep6 in both mouse and zebrafish resulted
in death of retinal photoreceptor cells (Hao et al. 2014). Finally,
five genes have been proposed as candidate retinal disease genes
in previous literature based on studies in model organisms (Abe
et al. 1994; Xu et al. 1999; Kitamura et al. 2006; Tummala et al.
2010; Friedrich et al. 2011; Omori et al. 2011). Therefore, for the
set of 15 predicted novel disease genes, only two genes,ANKRD33B
and PLEKHB2, currently lack substantial experimental evidence
support, indicating a minimal accuracy at 87% (13/15).

Discussion

We have designed a novel cell compartment proteomic profiling
strategy that allows the systematic, accurate prediction of protein
localization and function. In total, 3607 proteins from the OS of
photoreceptors have been identified, including 1771 novel pro-
teins. In parallel, 3879 proteins have been found in the RR of the
mouse retina. The protein subcellular localizations were predicted
by comparing the OS and RR proteomic profiles, achieving an
overall accuracyof 84%. Finally,machine learningmodelswere de-
veloped by integrating protein OS enrichment scores, RNA expres-
sion levels, and protein abundance to predict a gene’s likelihood to
cause retinal disease. High specificity and sensitivity were achieved
and validated by both literature search and animal model studies.
Therefore, our study not only dramatically increased the known
proteome of photoreceptor cells, but also demonstrated a new ap-
proach and created a rich resource for subsequent functional stud-
ies and novel retinal disease gene identification.

Compared to previous studies (Liu et al. 2007; Kwok et al.
2008), our methodology was more sensitive at detecting proteins
with a low abundance, primarily due to recent improvement in
MS technology. The Q Exactive tandem mass spectrometer used
in this study allows fast acquisition of high-resolutionhigher-ener-
gy collisional dissociation (HCD) tandemmass spectra, generating
more sensitive and precise proteomic results (Michalski et al. 2011;
Gallien et al. 2012; Jones et al. 2013). Our OS proteome data set
covered >81% of the reported OS proteins and also included
1771 novel proteins that have not been identified previously in
OS proteomic studies. Among these novel OS proteins, we found
a set of metabolic proteins in the OS, which added to growing ev-
idence of a metabolic mechanism in the OS. These proteins may
also be responsible for retinal degenerative diseases. For example,
one such protein identified in ourOS data set wasNMNAT1, an en-
zyme synthesizingNAD+ and is involved in nuclearNAD+homeo-
stasis necessary for bothmetabolism and cell signaling. Mutations
in this gene have been shown to cause the severe retinal degener-
ative disease Leber congenital amaurosis, but the underlying path-
ophysiology remains unclear (Chiang et al. 2012; Falk et al. 2012;
Koenekoop et al. 2012).

Compared to previous studies, ∼10%–19% of proteins were
not identified in ourOS proteome. After investigation, the discord-
ance between studies is likely due to the following reasons. First,
the ciliary rootlet that extends into the IS can be included in the
OS fraction when isolating the OS by mechanical shearing, and
thus, the OS proteomemay contain some proteins that are mainly
localized to the IS but are captured during this process. Interesting-
ly, among 367 proteins found in the previous studies’ adult mouse
OS proteome but not in our OS list, 53% were found in our RR
protein list. For example, several translation initiation factors
(EIF2B5, EIF2S2, EIF2B4, EIF2B3, EIF5B, and EIF3M) were found
in the previous OS protein lists but only identified in our RR pro-
teome. As inferred by the structure of photoreceptor cells and
the function of these proteins, they are more likely to be localized
to the IS. The second possible reason for discordant findings is the
dynamic movement of proteins between the IS and OS. The pro-
tein composition of the IS and OS is under a constant flux with
proteins being transported to and from the OS by vesicles and
microtubules. For instance, the IFT protein complex constantly
moves between the IS and OS along the CC, and is therefore
possible to be detected in either the OS, IS, or even both at any
given time (Rosenbaum andWitman 2002; Xu et al. 2015). Lastly,
the animal models used to generate the three data sets are

Table 1. The sensitivity, specificity, andAUC (area under curve) of lo-
gistic regression and naïve Bayes methods for retinal disease gene
prediction

Method Sensitivity Specificity AUC

Logistic regression 0.7583 0.7917 0.8441
Naïve Bayes 0.7333 0.8333 0.8344
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different. The protein expression profile of an animal can vary at
different ages, and some proteins are not conserved through differ-
ent species.

The methodology presented here illustrates the usefulness of
MS-based proteomics for the elucidation of the protein compo-
nents of a certain subcellular structure. A proteomic analysis at
the subcellular level represents an analytical approach that com-
bines classical biochemical fractionation methods and tools for
the comprehensive identification of proteins in a high-throughput
way. This strategy is capable of screening for both known and un-
known proteins and can assign them to a particular subcellular
structure. Protein localization information is usually determined
either by microscopy or cell fractionation combined with protein

blotting techniques, both of which are intrinsically low through-
put and limited to known proteins. With the help of subcellular
enrichment information from proteomic data, we can accurately
provide a less biased, quantitative, and high-throughput approach
formeasuring the protein subcellular distribution. The profiling of
rod-specific and cone-specific proteins also suggested that >95%of
the photoreceptor cells in mice are rods, which is consistent with
previous knowledge froma differential interference contrast optics
study (Jeon et al. 1998).

Compared to cell-wide RNA and protein profiling, subcellular
protein profiling and protein localization offers additional critical
information about the functionality of the cell. In our study, we
have created a highly accurate retinal disease gene prediction

Table 2. Top 50 genes with the highest scores of retinal disease gene prediction

Rank Mouse gene Human homolog Prediction score Note References

1 Gnatl GNAT1 1 Known retinal disease genes
1 Rho RHO 1 Known retinal disease genes
3 Sag SAG 0.9991 Known retinal disease genes
4 Pde6g PDE6G 0.9984 Known retinal disease genes
5 Rom1 ROM1 0.9983 Known retinal disease genes
6a Gngtl GNGT1 0.998 Candidate; retinal degeneration phenotype in mice (MGI)
7 Rp1 RP1 0.9974 Known retinal disease genes
8a Pdc PDC 0.9969 Candidate; phototransduction; candidate of Usher Abe et al. (1994)
9 Pde6b PDE6B 0.9963 Known retinal disease genes
10 Prph2 PRPH2 0.9946 Known retinal disease genes
11 Cdhrl CDHR1 0.9945 Known retinal disease genes
12 Cngal CNGA1 0.9934 Known retinal disease genes
13 Pde6a PDE6A 0.9903 Known retinal disease genes
14 Rgs9 RGS9 0.9865 Known retinal disease genes
15 Slc24a1 SLC24A1 0.9851 Known retinal disease genes
16 Bbs4 BBS4 0.9815 Known retinal disease genes
17 Cep290 CEP290 0.9795 Known retinal disease genes
18 Rp1l1 RP1L1 0.9789 Known retinal disease genes
19a Gnb1 GNB1 0.9752 Candidate; candidate of retinal disease Kitamura et al. (2006)
20 Bbs9 BBS9 0.9745 Known retinal disease genes
21 Cngb1 CNGB1 0.9729 Known retinal disease genes
22a Rdh8 RDH8 0.9724 Candidate; retinal degeneration phenotype in mice (MGI)
23 Rbp3 RBP3 0.9717 Known retinal disease genes
24a Reep6 REEP6 0.9706 Knockdown mouse resulted in retinal cell death Hao et al. (2014)
25a Gucy2f GUCY2F 0.9654 Candidate; retinal degeneration phenotype in mice (MGI)
26a Atp1b2 ATP1B2 0.9632 Candidate; retinal degeneration phenotype in mice (MGI)
27 Gnat2 GNAT2 0.9618 Known retinal disease genes
28a Nxnl1 NXNL1 0.9598 Candidate; retinal degeneration phenotype in mice (MGI)
29 Kcnj13 KCNJ13 0.9585 Known retinal disease genes
30 Bbs1 BBS1 0.9579 Known retinal disease genes
31 Rgs9bp RGS9BP 0.9576 Known retinal disease genes
32 Rs1 RS1 0.9555 Known retinal disease genes
33 Bbs2 BBS2 0.9553 Known retinal disease genes
34 Impg2 IMPG2 0.9548 Known retinal disease genes
35a Atp1a3 ATP1A3 0.953 Candidate; candidate of juvenile retinoschisis Friedrich et al. (2011)
36 Ttc8 TTC8 0.9525 Known retinal disease genes
37 Bbs5 BBS5 0.9523 Known retinal disease genes
38 Rab28 RAB28 0.951 Known retinal disease genes
39 Impg1 IMPG1 0.9508 Known retinal disease genes
40a B9d1 B9D1 0.9505 Joubert syndrome with retinal dystrophy Romani et al. (2014)
41a Ccdc126 CCDC126 0.9501 Candidate; candidate of macular dystrophy Tummala et al. (2010);

Omori et al. (2011)
42 Abca4 ABCA4 0.9474 Known retinal disease genes
43 Aipl1 AIPL1 0.9464 Known retinal disease genes
44a Ankrd33b ANKRD33B 0.9452
45a Plekhb1 PLEKHB1 0.9445 Candidate; candidate of retinal dystrophy Xu et al. (1999)
46a Plekhb2 PLEKHB2 0.943
47 Unc119 UNC119 0.9425 Known retinal disease genes
48 Pde6c PDE6C 0.942 Known retinal disease genes
49a Dnajc5 DNAJC5 0.9415 Candidate; retinal degeneration phenotype in mice (MGI)
50 Opn1mw OPN1LW 0.9405 Known retinal disease genes

aPutative novel retinal disease gene.
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model by integrating protein OS enrichment information with
gene expression levels. Although using mouse retina to study hu-
man disease could have some bias, fortunately, a vast majority of
the known human retinal disease genes are also conserved in
mice, both at the sequence and functional levels. With the predic-
tion model, we were able to prioritize likely retinal disease genes,
and our top predicted genes are well supported by both a literature
search and animal model studies. Such analysis is highly valuable,
particularly considering the challenges of rare genetic disease anal-
ysis in the next generation sequencing (NGS) era. The causes of
inherited diseases can be genetically heterogeneous, and themuta-
tions identified can be extremely rare. It is therefore unlikely that
geneticists will observe the large number of patients needed to
establish a strong genotype–phenotype correlation, and it is also
not feasible to test every candidate gene with an animal model.
Because of these challenges, it is of great importance to prioritize
candidate disease genes before further validation. After a priori-
tized candidate gene list has been generated, these candidates
can be screened for mutations in an NGS-based molecularly char-
acterized patient cohort in a high-throughput fashion. Our ap-
proach is of wide general interest as it can be applied to other
diseases. For example, the stereocilia are isolatable from the hair
cells in the ear (Shepherd et al. 1989), and characterizing proteins
in stereocilia can facilitate the discovery of hearing-loss disease
genes. The integration of gene expression data with a subcellular
enrichment profile in the affected tissue can provide a rich and
valuable resource for candidate disease gene prioritization and ul-
timately lead to a better understanding of disease pathogenesis.

Methods

Experimental animals

All animals were handled according to NIH guidelines, and all ex-
perimentswere approved by the Institutional Animal Care andUse
Committee of Baylor College of Medicine. Wild-type C57BL/6J
mice were obtained from the Jackson laboratory. In the OS prote-
omic experiments, three biological replicateswere performed inde-
pendently, which included 24, 26, and 26 retinas frommice at age
postnatal day 15 (P15), respectively. We selected P15 as the opti-
mal time point since most OSs are fully developed at this time
(Zhang et al. 2011). We also performed the OS proteomic ex-
periment on 40 retinas from mice at age P13. As no major differ-
ences were found between P13 and P15, we combined the results
to increase the sensitivity of protein detection. For the RR proteo-
mic experiments, two biological replicates were performed inde-
pendently using 30 and 30 retinas, respectively.

OS isolation

Intact OSs of mouse retinas were isolated taking advantage of the
fragility of the CC as previously described with modification
(Papermaster and Dreyer 1974; Gilliam et al. 2012). Briefly, fresh
mouse retinas were dissected and collected in sample buffer con-
taining 24% (w/v) sucrose, 10 mM MOPS pH7.4, 30 mM NaCl,
60 mMKCl, and 2mMMgCl2. The OS was isolated using mechan-
ical shearing to break the CC and separated from the remaining
retinal components via centrifugation at 4000 rpm for 1 min.
Crude OS-containing solution was subjected to sucrose gradient
ultracentrifugation, and the fraction containing purified OSs was
collected. After the OS isolation, the remaining fractions were
gathered as the RR and treated in the same way for downstream
MS analysis. RHO and IFT20 were used as markers for the OS and
the cilia, respectively.

SDS/PAGE and trypsin digestion

Thirty micrograms total protein was extracted from both the OS
fraction and the RR. Extracted protein was resolved by SDS-
PAGE, and the gel was sliced into 10 bands for in-gel trypsin diges-
tion overnight as previously described (Malovannaya et al. 2010).
Peptides were extracted twice with 100% acetonitrile and dried
completely in a vacuum concentrator. MS experiments were per-
formed with a Q Exactive Hybrid Quadrupole-Orbitrap Mass
Spectrometer (Thermo Fisher) equipped with an HPLC system.

MS/MS data analysis

An in-house pipeline was used to identify peptides and map
peptides to proteins. The database used for protein identification
was the mouse reference sequence protein database (RefSeq)
from NCBI (downloaded August 2013), and duplicate entries
were combined before database searching. To enhance protein
identification, sample-specific customized protein sequence data-
bases were derived from in-house matched RNA-seq data as previ-
ously described (Ramakrishnan et al. 2009; Wang et al. 2012). The
database searching results were combined. The maximum missed
cleavage site was set to one and limited to trypsin cleavage sites.
The precursor ion mass error tolerance was set to 20 ppm, and
the fragment ion mass tolerance used was 0.5 Da. Both static and
dynamic modifications were considered. The maximum variable
PTMs per peptide was set to three. To optimize protein identifica-
tion, we applied a very stringent filter at 0.1% PSM FDR and re-
quired a minimum of two distinct peptides for each protein.

Quantitative analyses and enrichment score calculation

We used the total number of MS/MS spectra taken on peptides,
namely the absolute spectral count, as the basis for protein quan-
tification. The spectral count shows linear correlationwith protein
concentration over a wide range (Liu et al. 2004), and the absolute
spectral count quantification method is simple, practical, and has
been extensively used in previous quantitative proteomic studies
(Zhang et al. 2006; Li et al. 2010). The protein abundance was
calculated by the absolute spectral counts of the protein Sabsolute,
normalized by protein length L, and total spectra Stotal per million.
For genes with multiple isoforms, we calculated protein abun-
dance as the average abundance of all isoforms as follows:

SNormalized = Sabsolute

L× Stotal
106

( ) = Sabsolute
L× Stotal

× 106.

QSpec (Choi et al. 2008) was used to calculate differential protein
expression between OSs and the RR. The protein OS enrichment
score was calculated as log2(OS/RR) using QSpec and represented
as Enrichment (OS/RR).

Functional analysis of OS enriched and RR enriched groups

The OS-enriched and RR-enriched proteins were defined by the
protein OS enrichment score andmapped to human homologs ac-
cording to the Mouse Genome Informatics (MGI) database (Blake
et al. 2014). Functional analysis was performed using the WEB-
based GEne SeT AnaLysis Toolkit (WebGestalt) (Zhang et al.
2005; Wang et al. 2013). Functional annotations were based on
Gene Ontology, including the biological process, molecular func-
tion, and cellular component. The statistical significance of func-
tional categories was represented by an adjusted P-value with a
cutoff of 0.05, and the top ten most significant functional catego-
ries were reported.
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Literature mining for protein localization of retinal disease genes

To test the power of enrichment score for predicting protein local-
ization, we performed literature mining and manually annotated
the subcellular localization information of known retinal disease
proteins. Briefly, relevant publications for all retinal disease genes
were identified by searching literature databases. Solid evidence
was required for protein localization, meaning the information
was stated clearly in the paper or was inferred from high-quality
immunostaining figures.

Machine learning for candidate retinal disease gene prioritization

To prioritize candidate retinal disease genes, we performed
machine learning on all proteins identified in the retina
(Supplemental Fig. S1). The per-gene attributes used for predictive
model training included the normalized protein abundance in the
OS and the RR, the protein OS enrichment score, and the RNA
expression level in the mouse retina. The training sets included
equal numbers of positive and negative controls. Positive controls
were known retinal disease genes from RetNet (https://sph.uth.
edu/retnet/) (Supplemental Table S11), and negative controls
were randomly selected from genes that are known to cause other
diseases without a retinal degenerative phenotype according to
the Online Mendelian Inheritance in Man (OMIM) database
(http://omim.org/) (Supplemental Table S12). In order to get ro-
bust results, we performed 10 rounds of training with different
negative controls. Twomachine learning classification algorithms,
naïve Bayes and logistic regression, were used, and the final predic-
tion score for a gene was taken as the average of the two methods
across 10 different training sets. A fivefold cross-validation was
used to estimate the sensitivity and specificity of the predictions.
Furthermore, a list of 64 candidate retinal disease genes, which
were never included in the positive training data set, was generated
for true validation (Supplemental Table S10). These candidate
genes either show a retinal degeneration phenotype in mutant
mice based on the MGI database or have already been identified
as candidate retinal disease genes in literature.

Data access

The proteomic data from this study have been submitted to the
ProteomeXchange Consortium (Vizcaíno et al. 2014) via the
PRIDE partner repository (http://www.ebi.ac.uk/pride/archive)
under accession number PXD003441. The data are also available
on the FTP site of HGSC (ftp://ftp.hgsc.bcm.edu/chen_retina_pro-
teomics/).
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