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Diauxie, or the sequential consumption of carbohydrates in bac-
teria such as Escherichia coli, has been hypothesized to be an
evolutionary strategy which allows the organism to maximize its
instantaneous specific growth—giving the bacterium a competi-
tive advantage. Currently, the computational techniques used in
industrial biotechnology fall short of explaining the intracellular
dynamics underlying diauxic behavior. In particular, the under-
standing of the proteome dynamics in diauxie can be improved.
We developed a robust iterative dynamic method based on
expression- and thermodynamically enabled flux models to sim-
ulate the kinetic evolution of carbohydrate consumption and
cellular growth. With minimal modeling assumptions, we cou-
ple kinetic uptakes, gene expression, and metabolic networks,
at the genome scale, to produce dynamic simulations of cell cul-
tures. The method successfully predicts the preferential uptake
of glucose over lactose in E. coli cultures grown on a mixture
of carbohydrates, a manifestation of diauxie. The simulated cel-
lular states also show the reprogramming in the content of the
proteome in response to fluctuations in the availability of car-
bon sources, and it captures the associated time lag during the
diauxie phenotype. Our models suggest that the diauxic behavior
of cells is the result of the evolutionary objective of maximiza-
tion of the specific growth of the cell. We propose that genetic
regulatory networks, such as the lac operon in E. coli, are the
biological implementation of a robust control system to ensure
optimal growth.
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In his pioneering work on the growth of bacterial cultures, the
French biologist Jacques Monod (1) observed that the growth

of Escherichia coli in a mixture of carbohydrates followed two dis-
tinct exponential curves separated by a plateau—a phenomenon
he called diauxie. Hypothesized to allow optimal growth of the
culture (2), this cellular behavior corresponds to the sequential
consumption of sugars: one sugar is preferentially consumed,
and the second is only consumed after depletion of the first.
Although current optimality-based computational models can
predict diauxie, these lack a detailed description of the protein
dynamics during the phenomenon (3). Diauxie is an evolved,
complex behavior, and its occurrence is controlled by the regula-
tion network of the lac operon in E. coli (4, 5). The emergence
of such a control mechanism is the product of evolutionary pres-
sure, and being able to fully elucidate its raison d’être in terms
of cell physiology is an important milestone to understand and
better engineer the intracellular dynamics of bacterial growth.
There is thus a need for a formulation describing diauxie at the
proteome level.

Genome-scale models of metabolism (GEMs) combine
constraint-based modeling and optimization techniques to study
cell cultures (6–8). A key method for studying GEMs is flux
balance analysis (FBA) (9), which formulates a linear optimiza-
tion problem that employs stochiometric constraints through the
mass conservation of metabolites given their synthesis and degra-
dation reactions. Under the typical steady-state and growth rate

maximization assumptions, FBA models predict the simultane-
ous consumption of two or more carbon sources to achieve
the maximum possible growth (3). However, this contradicts
Monod’s observation of distinct, sequential phases of carbon
consumption and suggests that diauxie does not come from
stoichiometric constraints.

To account for diauxie beyond stoichiometric modeling, we
looked into other biological features. Because a cell has a
physiological constraint on the total amount of enzymes it can
house, which we will call a proteome allocation constraint, it is
likely that the cell will preferentially distribute its limited cat-
alytic capacity toward pathways that utilize the most efficient
substrate/enzyme combination (2, 10, 11). Therefore, models
that account for proteome limitation in cells may be able to
account for diauxie. Toward this end, the role of protein lim-
itation in diauxie was demonstrated by Beg et al. (12) with
their formulation of flux balance analysis with molecular crowd-
ing (FBAwMC). Their method correctly predicts the uptake
order of five different carbon sources in a batch reactor, using
a proteome allocation constraint. In a push toward more global
models, models of metabolism and expression (ME models)
(13, 14) include proteome allocation but also gene expression
mechanisms, a modeling paradigm that is ideal for studying
diauxie at the proteome level. ME models also fully describe
the requirements of enzyme synthesis, degradation, and dilu-
tion effects, as well as messenger RNA (mRNA) and enzyme
concentrations.
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Since diauxie is also a time-dependent phenomenon, we chose
to complement ME models with a dynamic modeling approach.
Dynamic flux balance analysis (dFBA) (15) is a generalization of
FBA for modeling cell cultures in time-dependent environments.
In its original static optimization approach formulation, the time
is discretized into time steps, and an FBA problem is solved at
each step. At each iteration, kinetic laws and the FBA solution
are used to update the boundary fluxes, extracellular concentra-
tions, and cell concentration, based on the amount of substrate
consumed, by-products secreted, and biomass produced by the
cells. We expected that the combination of a dFBA and ME
models would yield a formulation that can describe diauxie at
the proteome level.

However, we identified three major challenges in the con-
ception of dynamic ME models. First, while dFBA studies of
metabolic networks can be solved by common linear solvers,
ME models are nonlinear by nature and significantly more com-
plex. The species and reactions introduced and considerations
of the interactions between enzyme expression and metabolism
result in nonlinear problems that are often one to two orders
of magnitude bigger in terms of constraints and variables than
the corresponding linear (d-)FBA problem. The increase in com-
plexity is compounded when iteratively solving an optimization
problem. As a result, combining ME models and dynamic studies
brings along difficulties that arise from the high computational
cost of solving multiple times, with different conditions, these
large, nonlinear problems. Second, the use of iterative meth-
ods presents the additional challenge of alternative solutions,
which can span several physiologies. It is thus necessary to find,
for each time step, a suitable representative solution that will
be used to integrate the system. This also poses the problem of
finding a set of initial conditions for the system. Third, the cur-
rent state-of-the-art models present limitations at the proteome
level. Lloyd et al. (16) developed an efficient ME model for E.
coli, and Yang et al. (17) used it to formulate a dynamic anal-
ysis framework (dynamic ME) similar to dFBA. However, the
assumptions introduced to alleviate the computational complex-
ity of their model limit some aspects of the modeling capabilities
of their method. To improve the capacity of our models to
generalize, we sought a formulation relying on less stringent
assumptions, which allowed us to capture more biological fea-
tures. We provide in SI Appendix, Note S1 a detailed list of items
in which dETFL (dynamic Expression and Thermodynamics-
enabled Flux models) differs from dynamic ME and a list of
elements we believe our method addresses better. In particular,
dynamic ME forces a strict coupling between enzyme concen-
trations and fluxes. However, a change in the growth conditions
will trigger a change in the proteome allocation to adapt to a
new metabolic state or lag phase. During that time, it is expected
that some previously active enzymes will not be able to carry
flux in the new conditions. Therefore, enzyme flux and con-
centration will decouple, unless the enzyme composition of the
proteome changes at the same rate as the environment. As a
result, this previous method cannot simulate lag phase during
glucose depletion and proteome reallocation. dETFL does not
use such coupling between enzyme concentrations and reac-
tion rates, which allowed the prediction of a lag phase in our
simulations.

Both dynamic models and models including gene expres-
sion mechanisms are important components in the development
of successful predictive biology (18). We propose a dynamic
method that tackles the challenges mentioned above and mod-
els diauxie at the proteome level. To this effect, we used our
recently published framework for ME models, ETFL (19). The
formulation of ETFL permits the inclusion of thermodynamics
constraints in expression models, as well as the ability to describe
the growth-dependent allocation of resources. ETFL is faster
than previous ME model formulations thanks to the use of stan-

dard mixed integer linear programming (MILP) solvers (19). We
herein leverage ETFL for dynamic analysis, in a method called
dETFL. It includes a method based on Chebyshev centering to
robustly select a representative solution from the feasible space
at each time step. The representative solution captures phe-
notypic and genotypic differences between cells precultured in
different media. The ETFL method, on which dETFL is built,
does not need dedicated quadprecision solvers, unlike previous
ME model formulations (13, 14, 16, 17, 20). It also does not use
strict equality coupling between flux rates and enzyme concen-
tration, unlike the previous state-of-the-art ME model methods
(16, 17). This strict coupling was instrumental in improving the
solving performance of these formulations at the cost of reduc-
ing the predictive capacity of the methods, in particular with
respect to the prediction of the lag phase (discussion is in SI
Appendix, Note S1). Instead, (d-)ETFL relies on a combination
of scaling methods and MILP formulation, which allows models
to be solved efficiently. As a result, whole-proteome reconfigura-
tion during sugar consumption can be simulated with reasonable
solving times, which enabled the modeling of the lag phase in
diauxie.

Herein, we model the emergence and dynamics of diauxie aris-
ing at the proteome level. We first propose a small conceptual
model of a cell, with a limited in proteome, and demonstrate
its ability to predict diauxie under a minimal set of assump-
tions. Using the dETFL method, we subsequently show these
assumptions hold in E. coli and reproduce experimental results
of bacterial growth. Finally, we apply the dETFL framework
to the growth of E. coli in a glucose/lactose mixture in a batch
reactor and demonstrate that it robustly predicts diauxie. In par-
ticular, we capture the preferential consumption of glucose over
lactose, the emergence of a time delay when the cell changes
substrate, the proteome origin of this delay, and differential
behavior depending on preculture conditions. This dynamic for-
mulation of ME models is able simulate at the genome-scale
evolution of the proteome in diauxic conditions, including the
time lag it induces and the effect of preculture conditions.
Overall, dETFL offers a method to robustly survey intracellular
dynamics of cellular physiology under changing environmental
conditions.

Results
Conceptual Model for the Emergence of the Diauxie Phenotype from
Proteome Limitation. We designed a simplified conceptual model
to illustrate diauxie from proteome limitations, as described in
Fig. 1A. The model includes both glucose and lactose as sub-
strates, and it is a simplified version of the E. coli metabolism
based on four considerations.
Consideration 1: The biomass carbon yield on glucose is slightly
higher than that of lactose (21).
Consideration 2: Glucose and lactose are taken up and converge
to a common intermediate metabolite, glucose 6-phosphate
(G6P). Glucose is transformed into G6P by a glucokinase. The
lactose pathway (Leloir pathway) splits the lactose, a disaccha-
ride, into its glucose and galactose subunits. The galactose is then
converted to G6P by a series of enzymes.
Consideration 3: The Leloir pathway requires one enzyme to
split the lactose into glucose and galactose, four enzymes to
convert galactose into glucose-1-phosphate (22, 23), and one to
convert glucose-1-phosphate into G6P; this bring the total to six
enzymes needed for the synthesis of two G6P, which is equivalent
to three enzymes per G6P.
Consideration 4: The molecular mass of the each of the enzymes
in the lactose pathway is around 60 to 90 kDa (24), which
is heavier than the 33-kDa glucokinase (Uniprot identification
A7ZPJ8).

Based on these considerations, we devised a conceptual model
of glucose and lactose metabolism for E. coli. The model
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Fig. 1. (A) Conceptual model used for the preliminary analysis, where “glc” stands for glucose and “lcts” stands for lactose. The catalytic efficiencies of the
enzymes are assumed to be the same. Three enzymes are assumed to be necessary to produce the intermediate metabolite G6P from lactose, and only one
enzyme is required from glucose. (B) Optimization problem used to represent the model. v are fluxes, E are enzyme concentrations, E0 are reference values,
MW are molecular weights, ρ is the mass fraction of the cell occupied by the enzymes we consider, Ėmax is the maximal variation of enzyme concentration
over time, and dt is the integration interval. (C) Enzyme content over time for the conceptual model growing on a mixed substrates. (D) Changes in sugar
content of the batch reactor over time.

accounts for the consumption of the two substrates, which both
synthesize an intermediate metabolite that is then used to make
biomass. We thus made five modeling assumptions.
Assumption 1. Glucose has a slightly higher carbon yield than
lactose—based on Consideration 1.
Assumption 2. The glucose metabolism leading to the interme-
diate G6P is summarized in a single step, modeled by a single
enzyme—based on Consideration 2. The same is done for the lac-
tose metabolism, resulting in two modeling enzymes summarizing
these two pathways.
Assumption 3. The molecular weights of the enzymes are the same,
and three times more enzymes are required for lactose metabolism
than for glucose metabolism—based on Consideration 3.
Assumption 4. The catalytic activities of the two enzymes synthesiz-
ing G6P are similar.
Assumption 5. The variation of enzyme concentrations reaches a
maximum at each time step.
Assumption 6. The total enzyme amount in the cell is limited.

The mathematical formulation of the problem (Fig. 1B)
involves one mass balance, one conservation equation of the
total enzymes, two inequalities that constrain the metabolism for
glucose and lactose as a function of the corresponding enzymes
concentrations, and two enzyme variation constraints.

Due to total enzyme conservation, the two maximum activity
constraints are not independent. This constraint is similar to that
found in other approaches accounting for proteome allocation
such as FBAwMC (12).

The conceptual model is able to predict diauxic behavior in
our system. The model shows the preferential consumption of
glucose over lactose (Fig. 1D), controlled by a switch in the
proteome composition over time (Fig. 1C). The diauxic phe-
nomenon is due to the fact that the system will invest all of
the (limited) enzyme resources into the metabolism of glucose,
which is both the highest yielding substrate (Consideration 1 and
Assumption 1) and the one with the fewest enzyme require-
ments (Consideration 3 and Assumption 3). As the glucose is
depleted, the uptake flux is reduced, and the system gradually
allocates part of its proteome for enzymes needed for lactose

metabolism. This gradual proteome reallocation corresponds to
the observed lag phase in an experimental system. While this con-
ceptual model lacks catabolite repression mechanisms, it can still
describe diauxie phenomenon from only the proteome capacity
constraint.

The lack of proteome limitation and enzyme catalytic con-
straints is why the original FBA approach fails to predict diauxie,
which leads to the simultaneous utilization of both sugar sub-
strates. However, another important constraint to accurately
describe the lag phase is the limitations on the rate of change
in enzyme concentrations, without which the proteome switch
would occur instantaneously (SI Appendix, Fig. S1). Indeed,
physiologically, a cell needs time to adapt its proteome. However,
steady-state methods lack a memory process, and subsequent
optimization as conditions change will just yield unrelated phys-
iologies. The constraints on the rate of change of enzyme con-
centrations represent the catalytic limitation of the cell to break
down old enzymes and synthesize new ones better adapted to the
new conditions. They add a memory to the optimization process,
constraining the new physiology depending on the previous state
of the cell.

The conceptual model also allows for the study of the con-
ditions under which the system switches to lactose as a carbon
source and the identification of parameters responsible for this
behavior. If we note, for glucose and lactose, respectively, the
specific growth rates on each substrate vglc

biomass, v
lcts
biomass, the carbon

yields Yglc,Ylcts, and the catalytic rate constants kglc
cat, k

lcts
cat of

enzymes at concentrations Eglc,Elcts, then the preferred carbon
source will change to lactose if and only if

vglc
biomass < v lcts

biomass, [1]

Yglc · vmax
glc <Ylcts · vmax

lcts , [2]

Yglc · kglc
cat ·E

max
glc <Ylcts · k lcts

cat ·Emax
lcts . [3]

If the amount of available enzymes is represented by ρ, as a
fraction of the total cell mass (in grams per grams of dried cells
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[g.gDW−1]), and assuming different molecular weights MW E ,
the proteome limitation constraint will be written

MW Eglc ·Eglc +3MW Elcts ·Elcts = ρ. [4]

The maximal achievable values for the enzyme concentra-
tions will be Emax

glc = ρ/MW Eglc and Emax
lcts = ρ/ (3MW Elcts).

Replacing these values in Eq. 3 directly gives the condition

Yglc

Ylcts
<

k lcts
cat

kglc
cat

·
MW Eglc

3 ·MW Elcts

. [5]

In our conceptual model, MW Eglc =MW Elcts , and we can
simplify Eq. 5:

3 · Yglc

Ylcts
<

k lcts
cat

kglc
cat

. [6]

This expression identifies the boundary in the parameter space
that separates the preferential use of glucose vs. lactose.

In this section, we showed that a constraint symbolizing pro-
teome limitation was sufficient to induce a diauxic behavior of
the cell, thus validating the hypothesis that catalytic limitation is
at the origin of diauxie (2, 10, 11). These calculations can be gen-
eralized for a more realistic model by accounting for the molecu-
lar weight of the enzymes and setting an adequate proteome frac-
tion allocated to carbon metabolism. In particular, Wang et al.
(11) propose an in-depth analysis of the optimal protein alloca-
tion for a broad range of carbon sources, connected to the central
carbon metabolism at different levels. In practice, in our model,
the catalytic efficiencies of the glycolytic enzymes are also higher
than those of the Leloir pathway (Assumption 3 and SI Appendix,
Table S1), and the Leloir pathway enzymes are heavier (Consid-
eration 4 and Assumption 4), which favors glucose consumption
even more. Additionally, we did not consider the synthesis cost
of the enzymes used to carry the fluxes in each pathway. Taking
such property into account would also strengthen the pref-
erence toward glucose, as fewer enzymes are needed for its
metabolism.

Diauxie in Genome-Scale ME Models with Thermodynamic Con-
straints. Going beyond a conceptual model, we next used dETFL
to model diauxie in an ME model of E. coli. dETFL is built
on top of the existing ETFL formulation (summarized in SI
Appendix, Note S1) using additional rate-of-change constraints
(detailed in Materials and Methods) and the robust selection of
reference solution at each time step using a method based on
the Chebyshev center of polytopes (detailed in Materials and
Methods). This method allowed us to study metabolic switches
in response to a changing environment, under the aspect for
intracellular enzyme and mRNA concentrations. To do this, we
studied how ME models can describe diauxie in experiments
where E. coli is grown in two different conditions. First, we inves-
tigated the growth of E. coli on glucose. In this experiment, the
cells exhibit overflow metabolism, or the secretion of acetate,
even under aerobic conditions. Experimentally, the bacterium
reutilizes the secreted acetate after glucose depletion, a form
of diauxic behavior. This type of study was also used as the
first proof of concept for dFBA (15). Thus, we first validated
the dETFL model by demonstrating its ability to model a first
diauxic phenotype: overflow metabolism and acetate secretion in
the presence of excess glucose, followed by acetate reutilization
on glucose depletion. Second, we reproduced Jacques Monod’s
experiment of the diauxic growth of E. coli in an oxygenated
batch reactor (1) with a limited carbon supply made of a mix-
ture of glucose and lactose. We aimed at reproducing the results
shown in the conceptual model on a model of a real organ-
ism and characterizing the intracellular dynamics underlying the
glucose/lactose diauxic behavior.

To conduct these studies, we used the E. coli model published
by Salvy and Hatzimanikatis (19) that is based on the genome-
scale model by Orth et al. (25) (iJO1366) and was assembled
using ETFL. This model is significantly bigger than the concep-
tual model studied in the previous section, with 5,295 species,
8,061 reactions, and 578 enzymes. A summary of the model is
available in Table 1.

For the integration of the dynamic method, it is important to
choose a time step that respects the quasisteady-state assump-
tions on which the FBA and ETFL frameworks depend (19). We
used a time step of 0.05 h=3min for the numerical integration,
as this is around 10 times smaller than a typical doubling time
for E. coli and efficiently balances the integration approximation
and solving time.
Diauxic growth on glucose and acetate. We compared the accu-
racy of our computational modeling of diauxie with experimental
findings. Specifically, we studied the diauxic growth of E. coli
on glucose in batch reactors using experimental data published
in Varma and Palsson (6) and Enjalbert et al. (26). Previously,
Varma and Palsson (6) used their data to validate a stoichiomet-
ric model of E. coli in quasisteady state, whereas the data from
Enjalbert et al. (26) were used to validate a population-based
approach of dFBA by Succurro et al. (27).

To reproduce the results of these two batch growth exper-
iments, we applied constraints to the uptake of glucose and
oxygen in the dETFL model (Materials and Methods). The ini-
tial uptake rate of glucose is set to 15 mmol·gDW−1·h−1. This
value is characteristic of a typical physiology for E. coli growing
on glucose with excess oxygen (6, 15, 25, 27).

We also set the initial concentrations of cells, glucose, and
acetate to values matching the experimental data. Oxygen trans-
fer was considered free (no kinetic law on uptake) in a first
approximation, as done by Succurro et al. (27).

Our simulations agreed with the published experimental data.
The temporal evolution of the glucose and acetate concen-
trations in the simulated batch reactor agreed with both the
Varma and Palsson (6) and the Enjalbert et al. (26) datasets,

Table 1. Properties of the vETFL model generated from iJO1366

Property Value

Growth upper bound µ 3.5h−1

No. of bins N 128
Resolution µ

N 0.027h−1

No. of constraints 69,323
No. of variables 50,010
No. of species 5,295
Metabolites 1,806

Enzymes 578
Peptides 1,433
mRNAs 1,433
tRNAs 21 ×2
rRNAs 3

No. of reactions 8,061
Metabolic 1,840
Transport 733
Exchange flux 330
Transcription 1,433
Translation 1,433
Complexation 578
Degradation 2,011

No. of metabolites ∆f G
′o 1,737

No. of reactions ∆rG
′o 1,787

Metabolites ∆f G
′o, % 93.9

Reactions ∆rG
′o, % 69.5

rRNA, ribosomal RNA; tRNA, tranfer RNA.
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as shown in Fig. 2 A and B, respectively. The cell concentra-
tion and specific growth rate also follow a similar trend (Fig. 2
C and D). Both of the simulations predict a first phase where
the bacteria grow steadily on glucose, which is sustained until
glucose is depleted in the medium. During that time, acetate is
steadily secreted by the cell, due to the overflow metabolism.
When extracellular glucose is depleted, the residual acetate is
consumed by the cell. We observe a sharp drop in the cell
growth rate, and the simulation ends when no acetate is left in
the medium.

We achieved these simulated curves with no fitting. The results
are the predictions of dETFL—given only the starting point of
the simulation and then, time shifting the curves based on the
time of glucose depletion to account for experimental lag phases.
The discrepancy between the simulation and the experiment
data points can be attributed to several factors. First, several
simulation parameters, including the maximal uptake rates for
glucose, oxygen, and acetate and the acetate maximal secretion
rates, are reported with a 50% variability between the Varma
and Palsson (6) and Succurro et al. (27) studies. We chose a
common set of parameters that showed good qualitative agree-
ment with both datasets. Changing these parameters can alter
the quantitative behavior of the model, but the models always
show the same two phases. Second, variability in the experimen-
tal setup, including the E. coli strain, can also account for the
difference in the reported glucose uptake rate by their respec-
tive authors. ME models and ETFL in particular can account
for the strain variability if the genetic differences (gene knock-
outs, enzyme activities, enzyme overexpression) are known.
Finally, Biselli et al. (28) recently showed that biomass compo-
sition and (non–)growth-associated maintenance are parameters
that depend on preculture conditions, for which no data were
available.

Overall, these results show that the dETFL framework for
ME models is able to reproduce experimental measurements

of glucose uptake, acetate secretion, and biomass production in
glucose–acetate diauxic growth. Our findings validate the dETFL
framework as a modeling method to study the batch growth
of single organisms or communities on multiple substrates and
suggest its utility for investigating diauxie in mixed substrate
media.
Diauxic growth on glucose and lactose. Diauxic experiments
show that, on a mixed medium of glucose/lactose, E. coli will
preferentially consume glucose first and then lactose (29, 30).
Modeling the diauxic growth of E. coli with dETFL should
capture the lag phases and proteomic reconfiguration that are
caused by the shift to a new carbon source. Therefore, this is an
ideal system to challenge the ability of ME models to describe
the dynamic reorganization of the bacterial proteome. dFBA
will always predict simultaneous uptake of both carbon sources
since it includes no term associated with the proteomic cost
of their uptake. In contrast, ME models describe the synthesis
of enzymes and their contribution to the overall proteome. As
a result, ME models capture the competitive allocation of the
proteome to the transport of different carbon sources.

For reference, the pathways related to the glucose and lac-
tose metabolism to G6P are summarized in Fig. 3. The figure
highlights the multiple additional steps involved in the lac-
tose pathway to form G6P, compared with the shorter glucose
pathway.

To initialize the model for the simulation of diauxic growth, we
first simulate the preculturing in glucose by running the model
with the same standard physiology as before, with an uptake
rate of 15 mmol·gDW−1·h−1 for glucose and no lactose initially
present. The model is subsequently run with these initial condi-
tions on a mixture of glucose and lactose at the physiologically
relevant concentrations of 1 and 2 mmol·L−1, respectively.
The cell concentration is set at 0.05 g·L−1. After this initial-
ization step, we ran the simulation according to the method
detailed before.

A B

C D

Fig. 2. Comparison of simulated and experimental data of glucose depletion over time [Varma and Palsson (6) and Enjalbert et al. (26)]. Simulated data are
represented by solid lines; experimental data are represented by crosses. (A) Temporal evolution of the simulated extracellular concentrations of glucose
and acetate (solid lines) vs. experimental data [Varma and Palsson (6) dataset; crosses]. (B) Temporal evolution of the simulated (solid lines) extracellular
concentrations of glucose and acetate (solid lines) vs. experimental data [Enjalbert et al. (26) dataset; crosses]. (C) Cell concentration (solid line) and growth
rate (dashed line) over time: simulation and Varma and Palsson (6) dataset (crosses). (D) Cell concentration (solid line) and growth rate (dashed line) over
time: simulation and Enjalbert et al. (26) dataset (crosses). ∗Experimental values were in optical density (OD) and were linearly scaled to represent cell
concentrations.

Salvy and Hatzimanikatis
Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular
metabolism

PNAS | 5 of 11
https://doi.org/10.1073/pnas.2013836118

https://doi.org/10.1073/pnas.2013836118


Fig. 3. Possible uptake routes for glucose (blue) and lactose (orange) toward G6P. The splitting of lactose by LACZ can be done either intracellularly or in
the periplasm. Routes toward the main central carbon metabolism are in gray. The figure was made using Escher (31).

The time evolution of the extracellular metabolite concentra-
tions, cellular exchange fluxes, specific growth rate, and total
biomass of the culture exhibit four phases (Fig. 4). We observe
a first phase similar to the previous experiment, where glucose is
taken up at a rapid rate until its depletion, with the simultane-
ous production of acetate through overflow metabolism (Fig. 4
A and B). During this phase, the growth rate is steady and

high (Fig. 4C). Relative to glucose, lactose is taken up at lower
rates (Fig. 4A). In the second phase, the specific growth rate
decreases sharply, while the proteome reallocates its enzymes
for lactose metabolism. We also observe a drop in acetate secre-
tion during the proteome switch and short period of acetate
reconsumption. This is the lag phase, where acetate is used
as a carbon source, while the proteome is reconfigured to

A B

C D

Fig. 4. Diauxic simulation with glucose-only preculture. (A) Temporal evolution of the extracellular concentrations of glucose (blue), lactose (orange),
and acetate (green). (B) Exchange rates of the cell. Positive exchange rates mean production, and negative exchange rates mean consumption. (C) Cell
concentration (solid line) and growth rate (dashed line) of the culture over time. (D) Mass of enzymes allocated to the transformation of glucose (blue) and
lactose (orange) in G6P. The dashed gray line shows the levels of β-galactosidase (LACZ) enzyme (in the Leloir pathway).
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metabolize lactose. Indeed, since glucose has been depleted
and few lactose-metabolizing enzymes are available, acetate is
the next best-available carbon source for the cell to operate.
Direct acetate consumption is possible because acetate trans-
port is mostly diffusive in E. coli (32) and involves pathways
that were already active in the cell. The proteome reconfigura-
tion shows a reduction of the total mass of enzymes that convert
glucose into G6P and an increase in the total mass of enzymes
responsible for the conversion of lactose to G6P (Fig. 4D). The
third phase is characterized by a peak in lactose uptake and cell
growth, followed by a decline as lactose becomes scarce. In the
fourth phase, when lactose becomes scarce, the residual acetate
is being taken up instead of secreted. Since it happens after lac-
tose uptake falls below a low threshold, it indicates that lactose
consumption is preferred to that of acetate. More details on
the time-dependent enzyme concentrations of the glucose and
Leloir pathways can be found in SI Appendix, Figs. S2 and S3,
respectively.

We next sought to assess the robustness of our diauxie predic-
tion and to determine whether the delayed utilization of lactose
was an artifact of the initial conditions used in the simulation.
We conducted a simulation that included a preculture wherein
the E. coli model initially only had access to lactose, with an
uptake rate of 5 mmol·gDW−1·h−1. Following this preculture,
we ran the simulation with identical initial conditions to previous
experiments in terms of glucose, lactose, and cell concentrations.

Over the course of this simulation, we observed the same four
phases: 1) preferred glucose consumption, 2) proteome switch
with acetate uptake, 3) lactose consumption, and 4) acetate reuti-
lization. Initially, glucose is taken up at a significantly smaller
rate than that of the glucose preculture. The glucose uptake
rate then gradually increases until glucose depletion (Fig. 5 A

and B). Comparatively, the lactose uptake rate stays low, while
the glucose uptake rate increases during the first phase of the
experiment. The evolution of the growth rate is similar to that
of the previous experiment (Fig. 5C). Although the model was
precultured in lactose, the total amount of enzymes transform-
ing lactose decreases while glucose is available (Fig. 5D). We
observe a delay, close to the cell doubling time, for initiating
the utilization of glucose compared with the glucose preculture
experiment. We attribute this delay to proteome switch from
a proteome optimized for lactose consumption to a proteome
optimized for glucose consumption in this phase. In the second
phase, after glucose depletion, we also observe acetate reuti-
lization, while the enzymes needed for lactose conversion to
G6P are resynthesized. In the third phase, the proteome shifts
again to accommodate lactose consumption. As a result, the
lactose uptake rate increases. In the final phase, acetate reuti-
lization initiates again under scarce conditions. More details on
the time-dependent enzyme concentrations of the glucose and
Leloir pathways can be found in SI Appendix, Figs. S4 and S5,
respectively.

These simulations show strong qualitative agreement with the
experimental data for both the glucose and the lactose precul-
tured conditions. In particular, Kremling et al. (30) showed a sim-
ilar evolution of extracellular concentrations with a two-phase
consumption of sugars. Although their work reports diauxic
growth of a different E. coli strain, we report in SI Appendix, Fig.
S6 the comparison between our simulated E. coli K-12 and their
experimental measurements, which shows strong qualitative
agreement. Additionally, we observe a dip in the specific growth
rate, close to a generation time, when the substrate being con-
sumed changes. This additional time needed to reach a new
maximal growth rate is what is observed empirically as a lag

A B

C D

Fig. 5. Diauxic simulation with lactose-only preculture. (A) Temporal evolution of the extracellular concentrations of glucose (blue), lactose (orange),
and acetate (green). (B) Exchange rates of the cell. Positive exchange rates mean production, and negative exchange rates mean consumption. (C) Cell
concentration (solid line) and growth rate (dashed line) of the culture over time. (D) Mass of enzymes allocated to the transformation of glucose (blue) and
lactose (orange) in G6P. The dashed gray line shows the levels of β-galactosidase (LACZ) enzyme (in the lactose pathway).

Salvy and Hatzimanikatis
Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular
metabolism

PNAS | 7 of 11
https://doi.org/10.1073/pnas.2013836118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013836118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013836118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013836118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013836118/-/DCSupplemental
https://doi.org/10.1073/pnas.2013836118


phase. Here, we see it can be interpreted as the proteome switch
time, the result of the cost of rearranging the proteome alloca-
tion to adapt to new culture conditions. This lag phase is not
predicted by the previous state of the art in dynamic ME mod-
els, dynamic ME (17). These simulations also demonstrated that
intracellular LACZ enzyme levels increase when lactose is the
sole substrate left and decrease when glucose is consumed—even
after a lactose preculture (Figs. 4D and 5D). These agreements
were achieved without adjusting any of the parameters or set-
tings of the original ME model. However, a key element for the
consistency between the model simulations and the cellular state
is a robust accounting of the intracellular states (mRNA species,
enzymes, and fluxes) between consecutive time steps. This has
been made possible by the use of the Chebyshev centering of the
cellular states in the dETFL formulation as detailed in Materials
and Methods.

Our results strongly suggest that diauxie in E. coli is an opti-
mal growth behavior. Our conceptual study suggests it is the
consequence of the maximization of the cell-specific growth rate
under the constraint of a limited proteome. This optimal behav-
ior of privileging glucose consumption over lactose does not
come from the preculturing step but instead, from the optimality
of the system itself under the constraint of proteome alloca-
tion for sugar consumption. We performed additional studies
and demonstrated that this behavior is not due to differences
in enzyme catalytic efficiencies between the two pathways, as
switching the kcat values does not change the trend (SI Appendix,
Fig. S7). Finally, we showed that the lag time observed in exper-
iments is determined by the proteome reallocation and quan-
titatively predicted changes in the amount of enzyme for each
pathway.

Discussion
We devised both a conceptual model and a dynamic ME model
that reproduce a diauxic behavior in E. coli, a phenomenon that
cannot be captured with current state-of-the-art models. From
simulation, we determined that the preferential consumption of
glucose over lactose in E. coli is a combined effect of its lim-
ited proteome size, enzyme properties, and substrate yield. Our
model demonstrates, at the proteome level, the mechanisms of
the proteome switch between conditions and provides a method
to resolve the intracellular dynamics of bacterial growth. In
agreement with experimental observations, our model predicts
a diauxic behavior on a medium of mixed sugars.

In our simulations, we observed lag phases concurrent with
proteome switching. The co-occurrence of the proteome real-
location and acetate reutilization suggests secreted acetate can
work as an energy reserve and help the cell adapt to chang-
ing environmental conditions. The dETFL model was also able
to capture different dynamic trajectories in cell fates that were
dependent on the preculture conditions.

The preferential consumption of one carbon source vs. the
other is the result of an optimal trajectory of the system under
the constraints of mass balance, resource allocation, and ther-
modynamics. These constraints are directly connected to the
chemistry of the metabolic pathways in bacteria. Our conceptual
model suggests that the diauxic phenomenon might be controlled
through the engineering of three aspects: 1) the specific activ-
ity of enzymes (kcat), 2) the molecular weight of the enzymes,
and 3) the number of steps involved in the substrate metabolism.
The molecular weight and activity of enzymes can be altered
through protein engineering, and alternative chemistries from
heterologous pathways provide avenues for modifying substrate
metabolism (33).

While dETFL does not account for catabolite repression, it
can quantitatively describe the behavior of a cell operating under
the influence of the lac operon. Our results imply that the genetic
circuits responsible for catabolite repression are evolved as a

controller to implement robust dynamic control of the optimal
growth. In this regard, the catabolite repression through the
lac operon observed in wild-type E. coli can be considered as
a control system that ensures optimal growth of the organism.
Under the selective pressure of evolution, the system might have
evolved the lac operon to preferentially metabolize glucose in
mixtures of sugars as it guaranteed an evolutionary advantage
(faster growth) compared with substrate coutilization (5).

As an approach, dETFL avoids the pitfalls of simplifying
modeling assumptions used in the current state-of-the-art com-
putational models of metabolism and gene expression. Because
of this, dETFL is a dynamic ME model formulation that can
model lag phase and gradual proteome reconfiguration. How-
ever, despite these innovative findings, there are still drawbacks
to dynamic constraint-based models that need refinement. For
example, finding a good representative solution at each time
step is extremely important. Here, we used the Chebyshev ball
approach, as it is a single linear problem that is computation-
ally simpler than other methods such as variability analysis or
sampling. While we have reduced the computational burden of
ME models enough to efficiently perform iterative solving, there
are opportunities to further alleviate the computational cost of
simulations. Directions to explore include fixing the integer vari-
ables of subproblems to reduce the nonpolynomial hardness of
the model and using quadratic programming, for instance, to per-
form an ellipsoid approximation of the enzyme solution space.
Additionally, systematically reduced models, where less impor-
tant parts of metabolic machinery are omitted, can also be used
to reduce the complexity of the simulations (34, 35). With a
reduced computational cost of simulations, exciting research tar-
gets are also within reach, such as the dynamic effects of gene
knockouts or drug-induced changes in cell physiology.

The computational formulations developed herein also offer
opportunities to test other hypotheses that explain diauxie. Suc-
curro et al. (27) postulated the existence of two subpopulations
of E. coli where one obligately consumes glucose, while the other
consumes acetate. Although the study of communities including
thermodynamics-enabled ME models is, for now, a computational
challenge, cross-testing the hypothesis we present in this paper
with a similar community-based context would certainly yield
important insights on the respective role of proteome limitation
and substrate competition in the emergence of diauxic behavior.

The inhibitory effect of glucose on certain parts of the
metabolism is multiple, and includes catabolite repression, tran-
sient repression, and inducer exclusion (36). Moreover, more
complex regulation mechanisms are found in natural environ-
ments. For example, it has been shown that, on its natural marine
substate, the bacterium Pseudoalteromonas haloplanktis evolved
regulation mechanisms allowing simultaneous diauxie and sub-
strate coutilization (37). Such high-order behavior might also
have its origin in an optimal growth program, and finding the
biochemical constraints responsible for it would yield valuable
insight on the optimal growth of organisms on complex media.
In general, elucidating the emergence of regulation mechanisms
in the context of evolutionary pressure will considerably increase
our understanding and ability to engineer regulation systems,
which are ubiquitous in biology from wild-type E. coli to cancer
cells. dETFL is an important step forward in this direction. Its
use to uncover the optimality principles guiding the emergence
of cellular regulatory control systems is key to a better under-
standing and ultimately, mastery of metabolic engineering, be
it applied to industrial hosts or the development of cell-based
therapies.

Materials and Methods
Rate of Change of Fluxes. One of the important points in the original for-
mulation of dFBA is that the rate at which intracellular fluxes change is
constrained. In the dFBA formulation, one imposed constraint is
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v(x, t + ∆t)− v(x, t)≤ v̇max ·∆t, [7]

where v̇max ·∆t is defined as the maximum change of flux between two
time points. However, the relationship between flux and enzyme concentra-
tion, as well as the dynamic mass balance, can be expressed in the following
way (19):

v(x, t)≤ kcatE, [8]

dE

dt
= vsyn− vdeg− vdil, [9]

with all of the rates strictly positive. From this, it directly follows that

v̇max
= kcatĖ

max, [10]

−vdeg− vdil≤ Ėmax≤ vsyn, [11]

where we can rewrite Ėmax in two components, one strictly positive and
the other strictly negative: Ėmax = Ėmax

+ − Ėmax
− . Using expression relation-

ships from ETFL, it is hence possible to bound the maximal rate change of
fluxes in a fashion that is compatible with linear programming:

Ėmax
− ≤vdeg

+ vdil, [12]

Ėmax
+ ≤vsyn

. [13]

These two constraints represent the limitation in the decrease (dilution
and degradation) and increase (synthesis) of the enzyme concentration,
respectively. We can rewrite these in terms of dETFL variables:

0≤ E
ti+1
j − E

ti
j ≤ vsyn

j ·∆t, [dEPj]

0≤ E
ti
j − E

ti+1
j ≤

(
vdeg

j + vdil
j

)
·∆t. [dENj]

Variability in the Estimation of Macromolecule Concentrations. A key element
in ETFL is that macromolecule concentrations are an explicit variable in the
optimization problem. In dETFL, these concentrations are important because
they will constrain the feasible space for the calculation of next time step.

The formulation of ETFL relies on the approximation of the growth rate
of the organism by a piecewise-constant function in the dilution term of
the mass balances of macromolecules. This, in turn, allows the linearization
of the bilinear term in the mass balances. However, this approximation has
an error, which is given by the resolution η of the discretization. Given µ
the maximum growth rate of the model and N the number of discretization
points, the resolution of ETFL is given by η= µ

N . We can easily obtain the
resolution of the estimation of a macromolecule concentration from this
quantity.

The mass balance of a macromolecule X at concentration [X] under
steady-state assumption is written in ETFL:

d [X]

dt
= vsyn− vdeg− vdil, [14]

= vsyn− kdeg · [X]−µ · [X], [15]

= 0, [16]

where vsyn, vdeg, and vdil are the synthesis, degradation, and dilution rates,
respectively, of the macromolecule; mu is the growth rate; and kdeg is the
degradation rate constant of the macromolecule. In ETFL, µ is approximated
by µ̂= pη, with p∈{0..N}. η is the resolution of this approximation, which
means at all times:

µ∈
[
µ̂−

η

2
, µ̂−

η

2

]
. [17]

From Eq. 15, and the relationship given in ref. 17, we can rewrite

[X] =
vsyn

kdeg +µ
[18]

vsyn

kdeg + µ̂+ η
2

≤ [X]≤
vsyn

kdeg + µ̂− η
2

. [19]

We use this expression to represent the uncertainty on the macro-
molecules concentrations at the previous time step, which is then used to
constraint the current time step.

Backward Euler Integration Scheme. At each time step, we operate an inte-
gration of the model between two time points. To this effect, using a robust
integration scheme is necessary to guarantee a solution quality that is as
good as possible. We chose to use a backward (implicit) Euler integration
scheme given its ability to handle stiff problems (38). Usually, a drawback
of implicit schemes is that they require us to solve an implicit equation to
define the state of the system at each time step. In contrast, explicit meth-
ods simply require us to apply a defined set of calculations (e.g., a linearized
state function) to the current state. In our case, however, there is little
cost associated with using an implicit method rather than the explicit Euler
method since we already need to solve a whole MILP problem to compute
the solution to the dETFL problem at each time step.

In this context, we can rewrite Eqs. dEPj and dENj in their Euler form:

0≤ Ej (ti+1)− Ej (ti)≤ vsyn
j (ti+1)·∆t, [dEPj]

0≤ Ej (ti)− Ej (ti+1)≤
(

vdeg
j (ti+1)+ vdil

j (ti+1)
)
·∆t, [dENj]

where Ej is the concentration of a given enzyme at the previous time step

and Ej (ti+1), vdeg
j (ti+1), vdeg

j (ti+1), and vdil
j (ti+1)are variables of the dETFL

problem in the next time step. Ej (ti) is a variable constrained around the
value of the previous solution, as explained in the previous section.

Chebyshev Center. One important issue when dealing with both (mixed
integer) linear optimization and iterative solving is the multiplicity of solu-
tions. Indeed, the optimality principle in LP only guarantees a unique global
optimum value for the objective but not a unique optimal solution for
the variables. In fact, at each time point, there is most often a (piece-
wise) continuum of solutions (including flux values, macromolecule concen-
trations . . .) that can satisfy a maximal growth rate while describing differ-
ent physiologies. For example, two optimal states, using different pathways
with a similar enzyme cost, will yield different proteomes and associated
fluxes. In addition, due to the constraints applied on the rate of change
of macromolecule concentrations, in each subsequent time point, the pro-
teome, transcriptome, and flux values will be dependent on all of the
previous solutions. Because of these two factors, each realization of the
integration procedure might yield different results.

An additional issue is that simplex-based solvers tend to give sparse and
extremal results (corners of the explored simplex), which do not represent
accurately the full extent of the considered solution space. Several meth-
ods can alleviate these issues, all based on finding a good representative of
the solution space. One first solution is to use as observation the mean of
the variability analysis, rather than a single optimal solution. This, however,
requires O(2n) optimizations to be carried out. Another way would be to
sample the feasible space, but the sheer size of dETFL models makes sam-
pling impractical. SI Appendix, Fig. S8 shows a two-dimensional example
of the difference between these three approaches. The method we chose
is to try to find the maximally inscribed sphere in the solution space. The
center of this sphere, called the Chebyshev center, can be found by opti-
mizing a single linear problem if the solution space is a polytope (39).
It is the case in dETFL, as the problem is defined with linear inequality
constraints.

In the case of a polyhedron defined by inequalities of the form a>i x≤
bi , x∈Rn

+, finding the Chebyshev center of the solution space amounts to
solving the following optimization problem:

maximize
r,x

r

subject to a>i x + ‖ai‖2 r≤ bi

. [20]

This is similar to adding a common slack to all inequalities and maximiz-
ing its size, which maximizes the distance of the solution to the inequality
constraints. However, not all variables and constraints need to be considered
in the definition and inscribing of this sphere. In particular, we are inter-
ested in a representative solution for macromolecule concentrations, which
only play a role in a limited set of constraints. To this effect, we define Ic

and Jc as the set of inequality constraints and variables, respectively, with
respect to which the Chebyshev center will be calculated. Let us also denote
E the set of equality constraints of the problem; ai , ci the left-hand side of
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the inequality and equality constraints, respectively; and bi , di their right-
hand side, respectively. From there, we can define the modified centering
problem:

maximize
r,x

r

subject to µ=µ*,

a>i x + ‖1Jc ◦ ai‖2 r≤ bi , ∀i∈Ic

a>i x≤ bi , ∀i /∈Ic

c>k x=dk, ∀k∈E ,

[21]

where µ* is the maximal growth rate calculated at this time step, r is the
radius of the Chebyshev ball, x is the column vector of all of the other vari-
ables of the ETFL problem, 1Jc has for jth element zero if j∈Jc and else
one, and ◦ denotes the elementwise product between two vectors. Thus,
‖1Jc ◦ ai‖2 is the norm of the projection of the constraint vector onto Jc.
We show an example illustration in three dimensions in SI Appendix, Fig. S9.

For enzymes, for example, it is akin to making the model produce more
enzymes than necessary to carry the fluxes while respecting the total pro-
teome constraint. By maximizing the radius of the sphere inscribed in the
solution space, at maximal growth rate, we are effectively choosing a repre-
sentative solution of the maximal growth rate feasible space. We then use
this solution as a reference point for the next computation step.

We chose the Chebyshev center as a representative solution for its advan-
tages in computational complexity, as well as its low-bias physiological
implications. Indeed, the Chebyshev center can be interpreted as the solu-
tion that produces a similar amount of excess enzyme for all enzymes.
The choice of such a low-bias objective was also important to show the
spontaneous emergence of diauxie under the most limited set of assump-
tions. It is also possible to choose a reference solution with more bias, as
can be the case when qualitative biological knowledge is available. Meth-
ods that allow this include lexicographic optimization and minimization of
adjustment methods, as described in Salvy and Hatzimanikatis (19).

All simulations in this paper perform Chebyshev centering on enzyme
variables at each time step.

Initial Conditions. Since dETFL is an iterative method, it is necessary to set
an initial reference point (initial conditions) from which the dynamic anal-
ysis will integrate over time. The initial solution is set up as follows: 1) set
typical uptake fluxes for carbon sources and oxygen, 2) perform a growth
maximization using ETFL, 3) fix the growth to the optimum, and 4) find the
Chebyshev center of the solution space.

The solution reported by the latter optimization problem is then used as
a starting solution for the dETFL analysis.

Extracellular Concentrations. At each time step, extracellular concentrations
are updated following a standard Euler scheme, similarly to what is done in
Mahadevan et al. (15). The extracellular concentrations of glucose, lactose,
and acetate follow a system of ordinary differential equations:

d [Glc]

dt
= vglc ·X, [22]

d [Ac]

dt
= vac ·X, [23]

d [Lcts]

dt
= vlcts ·X. [24]

We linearize this system into the following forward Euler scheme:

[Glc]t+1 = [Glc]t + vglc ·X ·∆t, [25]

[Ac]t+1 = [Ac]t + vac ·X ·∆t, [26]

[Lcts]t+1 = [Lcts]t + vlcts ·X ·∆t. [27]

We use these linearized equations to update the extracellular medium
after the solution to each time step has been computed.

Model. The model used is the vETFL model of iJO1366, presented in the orig-
inal ETFL publication (19). Fifteen additional enzymes were added to the
model to properly account for the protein cost of transporting glucose, lac-
tose, and galactose from periplasm to the cytoplasm. A simplified metabolic
map of the glucose, lactose, and galactose pathways to G6P is shown
in Fig. 3.

Kinetic Information. The Michaelis–Menten parameter Kglc
M = 0.015 mM for

glucose was taken from the original dFBA paper (15). The Klcts
M = 1.3 mM

for lactose was obtained from a study by Olsen and Brooker (40) on the
specificity of lactose permeases. Details on the added enzymes are available
in SI Appendix, Table S1. The Michaelis–Menten parameter Vglc

max = 15 mM
was used similarly to previous work (15).

Because of uncertainty in the values found in the literature, V lcts
max was

directly computed from the catalytic rate constants of enzymes consum-
ing periplasmic lactose (LACZpp, LCTStpp, LCTS3ipp). Since ETFL gives access
to enzyme concentrations, we can rewrite the expression of V lcts

max using
catalytic rate constants kj

cat:

Vmax
lcts =

∑
j∈L

kj
cat ·
[
Ej
]
, [28]

where L is the set of periplasmic enzymes consuming lactose. Taking this
into account allows us to replace the parameter V lcts

max by an explicit internal
variable.

Acetate transport is assumed to be mostly diffusive (32); its secretion rate
was bounded at 5 mmol·gDW−1·h−1 and its uptake to 3 mmol·gDW−1·h−1.
Oxygen is assumed to be nonlimiting and is given a maximal uptake rate of
15 mmol·gDW−1·h−1. These values are of the same order of magnitude as
in previous studies (6, 15, 27).

Implementation. The code has been implemented as a plug-in to pyTFA
(41), a Python implementation of the thermodynamics-based flux anal-
ysis method, and ETFL (19), an implementation of ME models account-
ing for expression, resource allocation, and thermodynamics. It uses
COBRApy (42) and Optlang (43) as a back end to ensure compat-
ibility with several open-source (GLPK, scipy) as well as commercial
(CPLEX, Gurobi) solvers. The code is freely available under the APACHE
2.0 license at https://github.com/EPFL-LCSB/etfl and https://gitlab.com/EPFL-
LCSB/etfl under the folder ./work/detfl.

Data Availability. Code data have been deposited in GitHub (https://github.
com/EPFL-LCSB/etfl).
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27. A. Succurro, D. Segre, O. Ebenhöh, Emergent subpopulation behavior uncovered with
a community dynamic metabolic model of Escherichia coli diauxic growth. mSystems
4, e00230–18 (2019).

28. E. Biselli, S. J. Schink, U. Gerland, Slower growth of Escherichia coli leads to longer
survival in carbon starvation due to a decrease in the maintenance rate. Mol. Syst.
Biol. 16, e9478 (2020).

29. W. F. Loomis, B. Magasanik, Glucose-lactose diauxie in Escherichia coli. J. Bacteriol. 93,
1397–1401 (1967).

30. A. Kremling et al., The organization of metabolic reaction networks. III. Application
for diauxic growth on glucose and lactose. Metab. Eng. 3, 362–379 (2001).

31. Z. A. King et al., Escher: A web application for building, sharing, and embedding
data-rich visualizations of biological pathways. PLoS Comput. Biol. 11, e1004321
(2015).

32. D. D. Axe, J. E. Bailey, Transport of lactate and acetate through the energized
cytoplasmic membrane of Escherichia coli. Biotechnol. Bioeng. 47, 8–19 (1995).

33. N. Hadadi, V. Hatzimanikatis, Design of computational retrobiosynthesis tools for
the design of de novo synthetic pathways. Curr. Opin. Chem. Biol. 28, 99–104
(2015).

34. M. Ataman, D. F. H. Gardiol, G. Fengos, V. Hatzimanikatis, Redgem: Systematic reduc-
tion and analysis of genome-scale metabolic reconstructions for development of
consistent core metabolic models. PLoS Comput. Biol. 13, e1005444 (2017).

35. M. Ataman, V. Hatzimanikatis, lumpgem: Systematic generation of subnetworks and
elementally balanced lumped reactions for the biosynthesis of target metabolites.
PLoS Comput. Biol. 13, e1005513 (2017).

36. B. Magasanik, Glucose effects: Inducer exclusion and repression. The Lactose Operon
1, 189–219 (1970).

37. E. Perrin et al., Diauxie and co-utilization of carbon sources can coexist during
bacterial growth in nutritionally complex environments. Nat. Commun. 11, 3135
(2020).

38. J. C. Butcher, N. Goodwin, Numerical Methods for Ordinary Differential Equations
(Wiley Online Library, 2008), vol. 2.

39. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
40. S. G. Olsen, R. J. Brooker, Analysis of the structural specificity of the lactose permease

toward sugars. J. Biol. Chem. 264, 15982–15987 (1989).
41. P. Salvy et al., PyTFA and matTFA: A python package and a matlab toolbox for

thermodynamics-based flux analysis. Bioinformatics 35, 167–169 (2018).
42. A. Ebrahim, J. A. Lerman, B. O. Palsson, D. R. Hyduke, Cobrapy: Constraints-based

reconstruction and analysis for python. BMC Syst. Biol. 7, 74 (2013).
43. K. Jensen, J. Cardoso, N. Sonnenschein, Optlang: An algebraic modeling language for

mathematical optimization. J. Open Source Software 2, 139 (2016).

Salvy and Hatzimanikatis
Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular
metabolism

PNAS | 11 of 11
https://doi.org/10.1073/pnas.2013836118

https://doi.org/10.1073/pnas.2013836118

