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Abstract: Background and objectives: As in adults, the survival rates and neurological outcomes after
infant Cardiopulmonary resuscitation (CPR) are closely related to the quality of resuscitation. This
study aimed to demonstrate that using a smartwatch as a haptic feedback device increases the quality
of infant CPR performed by medical professionals. Materials and methods: We designed a prospective,
randomized, case-crossover simulation study. The participants (n = 36) were randomly allocated to
two groups: control first group and smartwatch first group. Each CPR session consisted of 2 min
of chest compressions (CCs) using the two-finger technique (TFT), 2 min of rest, and 2 min of CCs
using the two-thumb encircling hands technique (TTHT). Results: The primary outcome was the
variation in the “proportion of optimal chest compression duration” and “compression rate” between
the smartwatch-assisted and non-smartwatch-assisted groups. The secondary outcome was the
variation in the “compression depth” between two groups. The proportion of optimal CC duration
was significantly higher in the smartwatch-assisted group than in the non-smartwatch-assisted group.
The absolute difference from 220 was much smaller in the smartwatch-assisted group (218.02) than in
the non-smartwatch-assisted group (226.59) (p-Value = 0.018). Conclusion: This study demonstrated
the haptic feedback system using a smartwatch improves the quality of infant CPR by maintaining
proper speed and depth regardless of the compression method used.

Keywords: wearable electronic devices; cardiopulmonary resuscitation; heart arrest; infant; simula-
tion training; feedback

1. Introduction

While the incidence of pediatric out-of-cardiac-arrest (OHCA) is low, that of infant
OHCA is 10-fold higher, approaching the incidence in adults [1]. In addition, the survival
rates for infants receiving cardiopulmonary resuscitation (CPR) are reported to be twice
as poor as those for other pediatric age groups [1]. Previous studies have shown that
neither the incidence nor the survival rates of pediatric OHCA have improved over the
last decades [2]. As in adults, the survival rates and neurological outcomes after infant
CPR are closely related to the quality of resuscitation [3–5]. Minimizing chest compression
interruptions and allowing full chest recoil after each compression are the basic processes
of the high-quality CPR [6,7].

According to the 2018 American Heart Association (AHA) guidelines for infant CPR,
the compression depth should be at least one-third of the diameter of the front and back of
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the chest, which is approximately 1.5 inches (4 cm) [8]. The recommended compression
rate is between 100 and 120 times per minute [9–11]. However, as stated in the guidelines,
it is not easy to maintain good-quality chest compression (CC) in the field [12]. Therefore,
various types of feedback devices have been developed to improve the quality of chest
CCs [13–15].

Most of the devices are visual and auditory devices that indicated the depth, speed,
and appropriateness of CCs [12]. However, the audio-visual feedback devices are difficult
for users to focus on and use in crowded and noisy CPR environments [16]. In addition,
these devices often need to be attached to the chest wall of patients and are designed
for adults, so their use in infant CPR is limited as the CCs are carried out with two
fingers [17]. Currently, wearable devices have been developed for healthcare workers,
providing feedback through a smartwatch [18]. Haptic devices using vibrations from a
smartwatch can be applied more effectively than audio-visual feedback devices in the
field [17,19,20].

Although previous studies have shown that a smartwatch with real-time feedback can
improve CPR quality, most were limited to adult CPR [21]. Furthermore, previous studies
on infant CPR have focused on haptic feedback and medical students [17]. This study
aimed to determine the effectiveness of smartwatch feedback in the delivery of high-quality
infant CPR by medical professionals.

2. Materials and Methods
2.1. Study Design

This was a prospective, randomized, case-crossover simulation study that aimed to
demonstrate the effect of a smartwatch-type haptic device on the quality of CC in infant
CPR. We conducted a randomized, controlled mannequin-simulation study of a single
rescuer hands-only CPR at the ED of Samsung Medical Center from 1 to 31 December 2019.
The study was approved by the institutional review board of Samsung Medical Center (No.
2019-07-042-007) on 2 December 2019. All procedures were carried out in accordance with
the Declaration of Helsinki.

2.2. Study Participants

Based on previous studies on adult CPR with haptic devices, we calculated our sample
size. A size of 36 participants per group was calculated using the McNemar test for two
paired proportions, with 0.025 significance and 0.80 power. The proportion of discordant
pairs was assumed to be 50%; based on that, the proportion of optimal duration of CCs
using a smartwatch was 95% and that of CCs without using a smartwatch was 45%. We
hypothesized that there is no difference in the optimal duration between the two-finger
technique (TFT) and the two-thumb encircling hands technique (TTHT).

Participants were recruited via recruitment information on the employee notice board.
Medical professionals such as doctors, nurses, and emergency medical technicians (EMTs)
who were either Pediatric Advanced Life Support (PALS), Basic Life Support (BLS), or
Advanced Cardiovascular Life Support (ACLS) certified or had previous experience with
infant CPR were eligible for participation. Volunteers were excluded if they had cardiovas-
cular or musculoskeletal disease. Informed consent was attained from all the participants.

2.3. Study Protocol

All study participants were provided an introduction to the study protocol and the
optimal cardiac compression for CPR suggested by the AHA guidelines that lasted for
10 min. At the first visit, the participants were randomly allocated to two groups: control
first group (Group A, n = 18) and the smartwatch first group (Group B, n = 18). Each session
consisted of 2 min of CCs using TFT, 2 min of rest, and 2 min of CCs using the TTHT. All
participants performed hands-only CPR according to the AHA guideline.

Group A performed two sets of CC (2 min each) without the feedback of the smart-
watch at the first visit. CC sets comprised 2 min of TFT and 2 min of TTHT. The smartwatch
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first group (Group B) performed CCs while wearing a smartwatch with the preinstalled
app at the first visit. The participants were then crossed over to the other group and
performed CCs after a washout period of more than 6 h. The study process is illustrated in
Figure 1. A rate of 100–120 CCs/min was considered the optimal rate. The total number
of CCs was measured during the 2 min, and 0.5 to 0.6 s per one CC was considered the
optimal duration.

Figure 1. CONSORT flow diagram of the study. TFT, two-finger technique; TTHT, two-thumb
encircling hands technique; min, minute.

2.4. Description of the Devices

“Laerdal® Resusci baby” was used to gather and store the CC performance data
in a laptop. Chest compressions are performed on the ‘Resusci baby’ mannequin and
the number and depth of chest compressions performed by the subject are set to be
recorded in the program linked to the mannequin. The “Samsung® Galaxy Gear S3”
smartwatch (Samsung Electronics Inc., Seoul, Republic of Korea) with a haptic metronome
application (on the Galaxy Store app called Wearable Metronome) was used in this study.
This smartwatch was to be worn around the wrist and was set to provide constant vibrations
at the rate of 110/min (Figure 2).

Figure 2. The smartwatch application is set to 110 BPM. BPM, beats per minute.

2.5. Measures

We gathered demographic information such as age, sex, job, and infant CPR experi-
ence from each subject. For outcome measures, the number of CCs during 2 min, chest
compression duration, and compression depth per stroke were collected. Thirty-second
intervals were defined as quartiles in a sequence: first quartile (1Q), second quartile (2Q),
third quartile (3Q), and fourth quartile (4Q).
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2.6. Outcomes

The primary outcome was the variation in the “proportion of optimal chest com-
pression duration” and “compression rate”. We compared the compression rate between
the two groups. The secondary outcome was the variation in the “compression depth”
between two groups. Subgroup analyses were further conducted to investigate the effect
of smartwatch guidance for each compression technique, i.e., TFT and TTHT, and for every
30-s quartile.

2.7. Data Analysis

The demographic characteristics of each group were analyzed. Continuous variables
with normal distribution were presented as mean (standard deviation (SD)) and those with
non-normal distribution, as medians with interquartile rages (IQRs). Categorical variables
were presented as counts and percentages. Two-sample t-test was used to analyze the data
of two continuous variables with normal distribution, and Mann-Whitney U test was used
to analyze the data of variables that were not normally distributed. Chi-square test was
used to compare the frequencies of categorical variables between two groups.

We used the generalized estimation equation (GEE) models and odds ratio (ORs) with
95% confidence intervals to analyze repeatedly measured variables during multiple time
points. In the GEE models, the measured variables were the CC duration and depth. The
use of smartwatch and the type of compression technique were included as explanatory
variables, and the interaction effect was also analyzed along with their primary effects.
Subgroup analyses were further carried out for each technique. Statistical significance
was set at 95% level (p-Value of <0.05). Statistical analysis was performed using Statistical
Analysis System (SAS) version 9.4 (SAS Institute, Cary, NC, USA) and R 3.5.1 (R Foundation
for Statistical Computing).

3. Results

In this study, 36 participants were recruited and randomly allocated to two groups. Of
them, 28 were physicians, 6 were paramedics, and 2 were nurses. None of the participants
dropped out. Table 1 shows the demographic characteristics of the study population. The
smartwatch first group showed less experience of CC within 1 month (smartwatch first
group: 2.0 (0.0–5.0) vs. 4.0 (3.0–5.0), p = 0.032); otherwise, there were no significant differ-
ences between the two groups in terms of age, sex, job, work experience, and experience of
CC within 5 years.

Table 1. Baseline characteristics between smartwatch first group and control first group.

Smartwatch
First Group

(n = 18)

Control
First Group

(n = 18)
p-Value

Age, median (IQR) 28.5 (25.0–30.0) 27.5 (25.0–31.0) 0.622
Sex, n (%) 1

Male 6 (33.3%) 7 (38.9%)
Female 12 (66.7%) 11 (61.1%)

Job, n (%) 0.298
Doctor 12 (66.6%) 16 (88.8%)
EMT 5 (27.8%) 1 (5.6%)

Nurse 1 (5.6%) 1 (5.6%)
Work experience, n (%) 1

Up to 3 years 9 (50.0%) 8 (44.4%)
More than 3 years 9 (50.0%) 10 (55.6%)

Experience of cardiac compression within 5 years (IQR) 30.0 (10.0–50.0) 30.0 (20.0–50.0) 0.662
Experience of cardiac compression within 1 month (IQR) 2.0 (0.0–5.0) 4.0 (3.0–5.0] 0.032

Values are presented as median with IQR or number (proportion).
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3.1. Result for CC Performance

The CC performance results are shown in Table 2. The proportion of optimal CC dura-
tion was significantly different between the smartwatch-assisted CCs and non-smartwatch-
assisted CCs. Both groups achieved satisfactory mean CC duration of 0.5–0.6 s (smartwatch-
assisted CCs (550.8 ± 54.8 msec) vs. non-smartwatch-assisted CCs (529.9 ± 68.4 msec),
p-Value < 0.001). However, the proportion of optimal CC duration was higher in the
smartwatch-assisted CCs (smartwatch-assisted CCs (11,081/71.1%) vs. non-smartwatch-
assisted CCs (9,630/59.4%), p-Value < 0.001).

Table 2. Proportion of optimal CC duration between smartwatch-assisted and non-smartwatch-
assisted groups.

Smartwatch
-Assisted CCs

Non-Smartwatch
-Assisted CCs p-Value

Total number of chest compression 15,585 16,212
Proportion of optimal chest compression (%) 11,081 (71.1%) 9630 (59.4%) <0.001

Chest compression duration (msec) 550.8 ± 54.8 529.9 ± 68.4 <0.001
CC, chest compression; msec, millisecond. The values are presented as mean ± standard deviation or number (%).

The results of subgroup analysis for compression duration between the groups are
shown in Table 3. The average duration of smartwatch-assisted CCs was about 18 ms longer
than that of non-smartwatch-assisted CCs, with statistical significance (p < 0.001). The
estimates for 2Q, 3Q, and 4Q were, respectively, 9.39 (95% CI, 4.69–14.09), 12.95 (6.78–19.13),
and 13.69 (7.44–19.93) seconds longer than the estimate for Q1, with statistical significance
(p < 0.001). We conducted interaction analyses between with or without smartwatch-
assisted CCs and four interquartiles. The results showed that the effect of smartwatch-
assisted CCs was insignificantly different along the four interquartiles. Smartwatch-assisted
CCs showed generally increasing quality from 1Q to 4Q. In another subgroup analysis
between TFT and TTHT, the CC duration did not show a significant difference.

Table 3. Subgroup analysis for compression duration between smartwatch-assisted and non-smartwatch-assisted groups.

Parameter Level (vs. Ref.) Estimate Standard
Error 95% Confidence Limits Z p-Value

Group Smartwatch-assisted CCs
vs. Non-smartwatch-assisted CCs 18.15 4.79 8.75 27.54 3.78 <0.001

Quartile
2Q vs. 1Q 9.39 2.40 4.69 14.09 3.92

<0.0013Q vs. 1Q 12.95 3.15 6.78 19.13 4.11
4Q vs. 1Q 13.69 3.19 7.44 19.93 4.3

Method TTHT vs. TFT −0.32 4.53 −9.19 8.55 −0.07 0.943

Group*
quartile

Smartwatch-assisted CCs vs.
Non-smartwatch-assisted CCs

2Q vs. 1Q 0.86 2.40 −3.85 5.57 0.36
0.2663Q vs. 1Q 3.99 3.50 −2.86 10.84 1.14

4Q vs. 1Q 6.16 3.44 −0.58 12.89 1.79

TFT, two-finger technique; TTHT, two-thumb encircling hands technique; Q, quartile; 1Q, first quartile; 2Q, second quartile; 3Q, third quar-
tile; 4Q, Fourth quartile.

We compared the compression rate between the smartwatch-assisted CCs and non-
smartwatch-assisted CCs. The total number of CCs was counted for 2 min. We set the
average value of 110/min as the adequate speed for the smartwatch metronome and
220 CCs in 2 min as the appropriate rate. Table 4 shows that the compression rate of
the smartwatch-assisted group was 8.56 times lower than that of the non-smartwatch-
assisted group, with statistical significance (p = 0.018). In the subgroup analysis between
TFT and TTHT, the compression rate did not show a significant difference. The absolute
difference from 220 was much smaller for the smartwatch assisted CCs (1.98) than for
non-smartwatch-assisted CCs (6.59). The results are shown in Table 5.
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Table 4. Comparison of compression rate between smartwatch-assisted and non-smartwatch-assisted groups and TFT vs.
TTHT group.

Parameter Level (vs. Ref.) Estimate Standard Error 95% Confidence Limits Z p-Value

Group Smartwatch-assisted CCs vs.
Non-smartwatch-assisted CCs −8.56 3.63 −15.68 −1.45 −2.36 0.018

Method TTHT vs. TFT 4.03 2.11 −0.11 8.16 1.91 0.057

CC, chest compression; TFT, two-finger technique; TTHT, two-thumb encircling hands technique.

Table 5. Absolute difference in compression rate from set value (220 times).

Average Compressions Smartwatch
-Assisted CCs

Non-Smartwatch
-Assisted CCs Overall

TFT 216.01 224.57 220.29
TTHT 220.04 228.60 224.32

Overall 218.02 226.59 222.31
Absolute difference from 220 1.98 6.59

CC, chest compression; TFT, two-finger technique; TTHT, two-thumb encircling hands technique. Values are
presented as mean.

3.2. Results for Compression Depth

The mean CC depth was not significantly different between the smartwatch-assisted
and non-smartwatch-assisted groups. The subgroup analysis showed that the adjusted
odds ratios (AORs) for 2Q, 3Q, and 4Q in comparison with 1Q for the compression depth
were 0.58 (95% CI, 0.43–0.79), 0.49 (0.34–0.72), and 0.40 (0.27–0.59), respectively (Table 6).
The interaction analysis shows the AOR of the smartwatch-assisted CCs and its positive
impact. The AORs for 2Q, 3Q, and 4Q in comparison with 1Q were 1.49 (95% CI, 1.03–2.14),
1.80 (1.13–2.87), and 2.16 (1.33–3.52), respectively (Table 6). The appropriateness of the
compression depth had gradually increased from 1Q to 4Q in smartwatch-assisted CCs
(Figure 3).

Table 6. Subgroup analysis for compression depth between smartwatch-assisted and non-smartwatch-assisted groups.

Parameter Level (vs. Ref.) Estimate Standard
Error 95% Confidence Limits Z p-Value Odds

Ratio 95% CI of OR

Group Smartwatch-assisted CCs vs.
Non-smartwatch assisted CCs −0.44 0.27 −0.96 0.08 −1.67 0.096 0.64 0.38 1.08

Quartile
2Q vs. 1Q −0.54 0.16 −0.85 −0.24 −3.48

<0.001
0.58 0.43 0.79

3Q vs. 1Q −0.71 0.19 −1.09 −0.34 −3.71 0.49 0.34 0.72
4Q vs. 1Q −0.91 0.20 −1.30 −0.52 −4.56 0.40 0.27 0.59

Method TTHT vs. TFT 2.14 0.33 1.49 2.78 6.49 <0.001 8.49 4.45 16.19

Group*
Quartile

Smartwatch-assisted CCs vs.
Non-smartwatch-assisted

CCs

2Q vs. 1Q 0.39 0.19 0.03 0.76 2.13
0.015

1.49 1.03 2.14
3Q vs. 1Q 0.59 0.24 0.12 1.05 2.47 1.80 1.13 2.87
4Q vs. 1Q 0.77 0.25 0.28 1.26 3.11 2.16 1.33 3.52

TFT, two-finger technique; TTHT, two-thumb encircling hands technique; Q, quartile; 1Q, first quartile; 2Q, second quartile; 3Q, third
quartile; 4Q, fourth quartile.

Figure 3. Comparison of the timeline graphs of compression depth between smart watch-assisted
CCs and non-smartwatch-assisted CCs. CC, chest compression.
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In another subgroup analysis, the TTHT group achieved the adequate compression
depth 8.5 times better than the TFT group (p-Value < 0.001). The AOR was 8.49 (95% CI,
4.45–16.19) for the TTHT in comparison with the TFT. The TTHT produced stronger and
more consistent CCs than the TFT without the compromising the quality of compressions.

4. Discussion

This study showed that the haptic feedback system using a smartwatch improves the
quality of infant CPR by maintaining proper speed and depth regardless of the compression
methods. The proportion of optimal CC duration was higher and the absolute difference
from the adequate compression rate was much smaller in the smartwatch-assisted group
than in the non-smartwatch-assisted group. The participants were able to maintain the
CCs at a constant duration over time when assisted by a smartwatch. Although the mean
CC depth was not significantly different between the groups, subgroup analysis showed
that the CC depth of the smartwatch-assisted group was appropriate over time.

The prompt feedback on the duration of CCs may result in an add-on effect of enhanc-
ing the CCs [22]. Previous studies have shown that inappropriate compression rates may
lead to poor quality of compressions [23]. During cardiac compression, if the compression
rate is misjudged, it may be difficult to maintain continuous CC rates, eventually leading
to a decrease in compression depth [22]. The survival rate and neurological outcomes after
infant CPR are closely related to the quality of resuscitation [2]. Hence, smartwatches can
be used by medical professionals to enhance the efficiency of infant CPR.

Recently, the development of wearable electronic devices is attracting attention given
the advances in health care. Furthermore, these devices can help overcome the differ-
ences in medical resource quality between low-income and high-income countries [24].
Previously, audio-visual feedback devices have been used during CPR, which were not
effective in noisy environments, had spatial constraints, and were expensive [12,14,16,25].
However, now we can improve the quality of infant CPR with a handy smartwatch that
is not limited by spatial constraints, is cost-effective, and is easy to use. Smartwatch feed-
back provides generally consistent CC duration and depth without being affected by the
compression method.

Previous studies have been often been limited to adult CPR [21,26] because it is
difficult to apply existing devices to infants and the incidence of infant CPR is low. The
other factor is that in infant CPR, there are two types of CC methods involving the use
of two fingers, whereas in adult CPR, both hands are used [12]. It has been reported that
real-time feedback can improve the quality of CC even with increased fatigue during infant
CPR [15]. We proved that smartwatch feedback provides generally consistent CC duration
and depth during compression statistically. Therefore, the haptic feedback system using a
smartwatch may help maintain high-quality CC despite increased fatigue.

While previous studies focused on medical students, our study involved medical
professionals [17]. In fact, medical professionals engage more often in adult CPR than
in infant CPR given its low incidence, so these haptic feedback devices could be helpful
in clinical settings [1]. We can expect the smartwatch feedback to be effective when the
educational effect declines [27].

We examined the effects of the use of smartwatch on the two controversial methods
(TFT vs. TTHT) in our subgroup analysis. Previous studies have reported that chest
compression using two fingers increases fatigue and reduces compression quality [28].
Between TFT and TTHT, the optimal CC duration and rate did not show a significant dif-
ference. However, the TTHT group achieved adequate compression depth about 8.5 times
better than the TFT group (p-Value < 0.001). Thus, the TTHT provided stronger and more
consistent CCs than the TFT without compromising the quality of compression.

This study has several limitations. First, this was a simulation study that used a man-
nequin, so the results have limited applicability to real clinical settings. We assumed that
haptic feedback using vibrations from a smartwatch can be effective in noisy environments.
However, in real clinical practice, there may be factors that cause interference with the
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compressors’ performance in crowded environments [12]. Research with haptic devices at
actual medical sites should be considered in future. Second, the intensity of the vibration
from the smartwatch cannot be modified and varies according to producers. Participants
may feel vibration intensity differently due to individual perceptions and CC motion [21].
If the vibration intensity is too weak or strong, it can affect the quality of compression.
Therefore, further studies are required to optimize the intensity of vibration via smart-
watches for individual users. Third, because the actual resuscitation situation is often
noisy and urgent, it can affect the time to wear the smartwatch and operate the application,
and these aspects were not assessed in this current study. Further studies are needed to
identify factors that affect the time to operate the feedback system. Fourth, it would be less
uncomfortable to wear a smartwatch during infant CPR due to two fingers being used,
whereas both hands are used in adult CPR. However, depending on the individual, it
may be uncomfortable to wear a smartwatch and perform chest compressions. Using a
flexible and wearable form of haptic device or thin, soft rubber-band smartwatch can be an
alternative to the inconvenience of wearing a hard smartwatch during CPR [29]. Therefore,
further studies are required to assess how comfortable it is to individuals performing CPR
with a smartwatch.

5. Conclusions

In conclusion, using a smartwatch as a feedback device ensures the delivery of high-
quality CPR to infants by medical professionals. In this simulation study, we showed that
smartwatch feedback improves the adequacy of the CC duration and depth regardless of
the compression method used.
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