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Commentary

Coronavirus Disease 2019 Calls for Predictive 
Analytics Monitoring—A New Kind of Illness 
Scoring System

John P. Davis, MD1,2; Dustin A. Wessells, BS2,3; J. Randall Moorman, MD2,4–6 

Abstract: Coronavirus disease 2019 can lead to sudden and severe 
respiratory failure that mandates endotracheal intubation, a procedure 
much more safely performed under elective rather than emergency 
conditions. Early warning of rising risk of this event could benefit both 
patients and healthcare providers by reducing the high risk of emer-
gency intubation. Current illness severity scoring systems, which 
usually update only when clinicians measure vital signs or laboratory 
values, are poorly suited for early detection of this kind of rapid clinical 
deterioration. We propose that continuous predictive analytics moni-
toring, a new approach to bedside management, is more useful. The 
principles of this new practice anchor in analysis of continuous bedside 
monitoring data, training models on diagnosis-specific paths of deterio-
ration using clinician-identified events, and continuous display of trends 
in risks rather than alerts when arbitrary thresholds are exceeded.
Key Words: coronavirus disease 2019; machine learning; predictive 
monitoring; sepsis

Wide-wasting Pest! that rages unconfin’d,
And crouds with Crimes the Record of Mankind

“The Vanity of Human Wishes”
—Dr. Samuel Johnson

The coronavirus disease 2019 (COVID-19) pandemic is a black 
swan event for the healthcare system. Overwhelmed hospi-
tals may fail to meet community needs. Strained resources 

must be targeted to provide the sickest patients with the highest 
levels of care, while diverting others to outpatient protocols. Triage 
is imperative, and doctors face nightmarish decisions of allocating 
ventilators (1). Only on the battlefield is it so important to gauge the 
illness severity and trajectory of multiple patients simultaneously.

The first question we hear clinicians asking on arrival in a 
COVID-19 unit is, “Who is the sickest patient?” They ask because 
the illness can rapidly lead to lung failure, recognized in the 
COVID-specific Surviving Sepsis Guidelines that include the need 
for monitoring of incipient respiratory failure (2). Remarkably, 
there is but a single Best Practice Statement: “In adults with 
COVID-19 receiving non-invasive positive-pressure ventilation 
or high-flow nasal cannula, we recommend close monitoring for 
worsening of respiratory status, and early intubation in a con-
trolled setting if worsening occurs.”

In the heart of this pandemic, what does “close monitoring for 
worsening of respiratory status” mean? Can we look to familiar 
illness severity scores for help?

In 1981, Knaus et al (3) introduced the Acute Physiology and 
Chronic Health Evaluation (APACHE) score and, with it, the 
durably appealing idea that a single number could inform on how 
sick an ICU patient was. The score grew with the times, evolving 
from pencil and paper, a tedious look at the first 24 hours, and 
weights decided upon by experts to a computerized, automated 
product founded on statistical analyses of many patients. Indeed, 
1985’s APACHE-II (4) was more accurate than the Sequential 
Organ Failure Assessment score (5), Confusion, bUn, RR (respi-
ratory rate), BP (blood pressure), age>65 score (6), and National 
Early Warning Score (7, 8) in assessing COVID-19 patients in the 
ICU of the Tongji Hospital in China (9, 10).

These scores, however, were not devised for illnesses like 
COVID-19 that can lead to rapidly accelerating lung failure. Most 
use only measurements made on the first day (11). Their depen-
dence on values that are measured only when a clinician thinks 
to, like vital signs or laboratory tests, makes them sluggish with 
respect to the pace of the disease. They allow the illness a headstart 2020
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TABLE 1. Illness Severity Scoring Systems

Name
Clinical  
Target

Sample  
Size Years Inputs Strategy Range Impact

Original 
Citation(s)

Acute Physiology 
and Chronic 
Health Evaluation

Death in ICU I: 805
II: 5,815
III: 17,440
IV: 110,558

1981– 
2003

L, VS, D, C,  
and GCS

O, R I: 0–130
II: 0–71
III: 0–299
IV: 0–286

No trials (3, 4, 12, 13)

Systemic 
inflammatory 
response 
syndrome

Death 0 1992 VS and L O 0–4 RCT: negative 
(14, 15)

(16)

Sequential 
Organ Failure 
Assessment

Multiple organ 
failure

0 1996 VS, L, M,  
and GCS

O 0–24 No trials (5)

Risk of Infection to 
Severe Sepsis and 
Shock Score

Infection to 
severe 
sepsis/shock

1,531 1997– 
1998

VS, L, C,  
and S

R 0–49 No trials (17)

Oxford BioSignals/
Visensia

None 150 2001– 
2003

VSa + 0–10 RCT (18) and 
A/B (19) 
studies: no 
impact on 
mortality

(20)

Insight Sepsis 1,394 2001– 
2007

VS and age + Not given RCT (21) and A/B 
(22): mortality 
reduction 
and fewer 
readmissions

(23)

Targeted Real-time 
Early Warning 
Score

Septic shock  
in ICU

13,014 2001– 
2007

VSb, L, D, 
and C

+ 0–1 No trials (24)

Long short-term 
memory

Septic shock  
in ICU

50,373 2001– 
2012

VSb, L, D, 
and C

+ Not given No trials (25)

Heart rate 
characteristics 
index

Sepsis 316 2003 VSa and WF R 0–6-foldX RCT (26):  
mortality 
reduction

(33)

Etiometry Inadequate 
oxygen 
delivery

0 2015 VSa + 0–100 No trials (28)

Rothman index Death next  
12 mo

22,265 2004 VS, L, and N + –91 to 100 No trials (29)

Early warning score ICU transfer 19,116 2007– 
2010

VSa, L, N, C, 
D, and M

R, + 0–1 RCT: (30)  
negative

(30)

(e)CART Cardiac arrest 
in hospital

CART: 
47,427 
eCART: 
269,999

2008– 
2013

VS and L R, + 0–1,000 No trials (31, 32)

National Early 
Warning Score

Acute-illness 
severity

0 2012 VS, M, and alert, 
verbal, pain, 
unresponsive

O 0–20 RCT (33): 
negative

(7, 8)

Artificial intelligence 
sepsis expert

Sepsis 27,527 2013– 
2015

VSa, L, D, 
C, organ 
system 
scoring, 
and M

+ 0–1 No trials (34)

(Continued )
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that can be impossible to catch up to. Whatever advantage they 
offer in the calibrated synthesis of many kinds of information, 
they lose with their pace or lack of it.

There are other misalignments. As shown in Table 1, the tar-
gets that current scores are trained to detect are diffuse and include 
death (in the hospital [44] or for any cause up to a year later [29]), 
cardiac arrest (31), sepsis (34), septic shock in the ICU (24), hem-
orrhage (38, 45), and readmission (44). Their inputs are often 
intermittent, slowly moving, or static predictors. Their weighting 
of values and ranges is sometimes based on expert opinion from 
the pre-COVID-19 era. Their scoring ranges are often nonintuitive. 
Their impacts have often been untested even in non-COVID-19 
settings. We note that trials that used triggered alerts rather than 
continuous displays have had, at best, mixed results (18, 19, 35, 46–
48). These were APACHE-like tools and statistical models based on 
measured values taken when clinicians thought they needed them.

We live, though, in the era of Artificial Intelligence and Big Data, 
and the promise of clinical decision support for bedside clinicians 
based on automated mathematical analysis of streaming data is 
known to us all. In addition, continuous cardiorespiratory monitor-
ing is readily available in every ICU and many acute care ward set-
tings. We have the appealing opportunity to analyze mathematically 
the voluminous continuous cardiorespiratory monitoring data to 
detect early signs of patient deterioration. The effort to collect, store, 
and analyze the 150 MB of data per patient per day seems worth the 
result—a real-time continuous assessment of patient status. In the 
rapidly moving world of COVID-19 patients, this makes more clini-
cal sense than awaiting the results of nurse visits and blood draws.

In the exercise of predictive analytics monitoring, we seek 
pathophysiological signatures of illness (38, 49, 50). In the canoni-
cal example of respiratory sinus arrhythmia (51), the well-known 
coupling of the heart rate and the respiratory rate by the vagus 
nerve has long been taken as an index of health. In this context, 
the signature of health is slowing of the heart rate during expira-
tion and speeding during inspiration, and the signature of illness 
is their absence. Godin et al found reduced heart rate variability 

in volunteers injected with endotoxin (52) and  concluded that 
systemic inflammation uncoupled the heart and lungs, and pre-
sumably uncoupled others, leading to multiple organ dysfunc-
tion syndrome (53). A comprehensive modern view is that many 
organs are coupled in physiologic networks (54, 55) that can be 
modulated during sleep and illness.

Signatures differ from illness to illness, from hospital unit to 
hospital unit, and across the spectrum of age. In septic neonatal 
ICU (NICU) premature infants, for example, we identified the 
unique signature of abnormal heart rate characteristics (reduced 
variability and transient decelerations) hours prior to clinical 
presentation (56). A heart rate characteristic index (27) based on 
novel mathematical analytics (49, 57–59) led to a continuous dis-
play of the fold-increase in the risk of neonatal sepsis in the next 
24 hours (26, 50, 60). In the largest randomized trial in neonatol-
ogy, the display led to a more than 20% relative reduction in death 
in nine NICUs (26), a durable effect (61) mostly attributable to a 
reduction in deaths from sepsis (62).

Although this illness signature holds for several neonatal ill-
nesses, the same is not true for adults (38). For example, the physi-
ologic signature of acute respiratory acute failure differed from 
that of hemorrhage in adult ICUs. In addition, although these 
two illness signatures were similar in our medical and surgical 
ICUs, the signatures of sepsis in the two units differed—in the 
surgery ICU, sepsis presented more like respiratory failure, and 
in the medical ICU, more like circulatory shock. A display that 
we devised for other ICUs and wards—Continuous Monitoring 
of Event Trajectories—which reports two risks, an x,y plot of the 
3-hour trajectory of the fold-increase in risk of a respiratory event 
as a function of the fold-increase in risk of a cardiovascular one, 
led to a 50% reduction of the rate of septic shock in a surgical and 
trauma ICU (37, 63).

On one of our hospital floors, the finding was the same—signa-
tures of the most common reasons for patient deterioration lead-
ing to ICU transfer differed greatly from one another, and no single 
predictive model sufficed (64). For example, a model trained on all 

Continuous 
Monitoring of 
Event Trajectories

Sepsis, death, 
hemorrhage, 
intubation, 
and transfer 
to ICU

60,986 2013– 
2020

VSa, L,  
and WF

R 0–6-foldX A/B: (37)
Reduced septic 

shock

(37–42)

Ambient Clinical 
Aware

Severe sepsis 587 2015 VS, L, M + 0–1 No trials (43)

Google Death in 
hospital, 
length of 
stay, and 
readmissions

126,000 2018 VS, L, D, C, N, 
and M

+  No trials (44)

(e)CART = electronic Cardiac Arrest Risk Triage, + = other mathematical methods, A/B = before and after comparison, C = comorbidities, D = demographics, FoldX 
= fold-increase in risk compared with average, GCS = Glasgow Coma Scale, L = labs, M = medications, N = nursing notes, O = opinion, R = regression, RCT = 
randomized clinical trial, S = organ system scoring, VS = vital signs, WF = waveforms (continuous data inputs).
aVS when recorded by nurses: q s.
bVS when recorded by nurses: q 1 min.

TABLE 1. (Continued ). Illness Severity Scoring Systems

Name
Clinical  
Target

Sample  
Size Years Inputs Strategy Range Impact

Original 
Citation(s)
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the ICU transfer events did not outperform the strategy of using 
multiple models, each of which was tuned to clinical deterioration 
scenarios specific to a hospital ward.

How should we monitor COVID-19 patients? Since the illness 
has physiologic features similar to other forms of viral sepsis (65) 
and acute respiratory distress syndrome (ARDS) (66), we might 
use predictive analytics monitoring models trained on patients 
who, on individual chart review, had sepsis using Surviving Sepsis 
Campaign criteria, or respiratory failure leading to emergent 
intubation as documented by procedure notes from attending 

anesthesiologists (38, 39). We note the recent finding that cytokine 
levels in patients with COVID-19 plus ARDS are lower than those 
in patients with sepsis plus ARDS (67), consistent with the clinical 
picture of primary respiratory deterioration. We propose that it 
may be better to follow lung function than to follow the markers 
of systemic inflammation in the blood.

Following lung function, like looking for signatures of ill-
ness, in our view requires continuous recording of organ func-
tion: the more highly resolved, the better. Pinsky et al recently 
demonstrated the additional information of noninvasive and 

TABLE 2. Requirements and Realizations of Clinical Decision Support Using Predictive  
Analytics Monitoring

Requirement Realization

Authoritative sources

  (78)

    Black boxes are unacceptable Guidelines for reporting studies (80–82)

    Time is a scarce resource No user keystrokes required

    Complexity and lack of usability thwart use Simple, intuitive displays

    Relevance and insight are essential Made by clinicians for clinicians

    Delivery of knowledge and information must be respectful Suggestions about patients that clinicians might wish to see next; no 
mandates for action

    Scientific foundation must be strong Models that are trained on events identified by clinicians

  (79)

    Provide measurable value in addressing a recognized  
problem area or area for improvement

Reduced mortality in premature infants (26) and reduced septic shock in 
adults (37)

    Leverage multiple data types to bring the most current and 
relevant evidence to bear on clinical decisions

Use of all data inputs: labs, vital signs, and cardiorespiratory monitoring 
(40, 70)

    Produce actionable insights from multiple data sources Indications of respiratory vs cardiovascular vs other forms of instability

    Deliver information to the user that allows the user to  
make final practice decisions

Indication of instability, not a diagnostic test

    Demonstrate good usability, including clear displays Simple, intuitive displays

    Are testable in small settings with scalability (26, 37)

    Support quality and value improvement initiatives (60, 63)

Clinical users

  (63)

    Understand the science Publications on the algorithm development and validation (Table 1)

    Trust the inputs Data preprocessing to remove noise

    Integrate into the EHR Treat as a vital sign

    Optimize clinical pathways Change from reactive to proactive approaches

  (60)

    Reduce complexity Provide guidelines for engaging with predictive analytics monitoring

    Enhance compatibility Align tasks with clinician experience

    Foster trialability Promote observation and association

    Increase observability Respected leaders serve as examples

    Demonstrate relative advantage Case examples
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invasive heart rate and waveform data in early detection of 
hemorrhage in pigs (68, 69), affirming clinical studies (45, 70).  
Heart rate analysis is directly applicable to clinical practice—each 
heartbeat sends an easily detected signal and allows for detailed 
analysis of long time-series of interbeat intervals using new and 
old mathematics (71, 72). A wealth of techniques have been 
applied in the time domain (73), frequency domain (74), and non-
linear dynamical domain (57, 58), and many machine learning 
tools from multivariable logistic regression (75) to artificial neural 
networks (76, 77) have long been used to combine the results.

Authoritative sources (78, 79) and clinical users (60, 63) have 
outlined what is required of clinical decision support in the era 
of artificial intelligence and of predictive analytics monitoring 
(Table 2). In the table, we propose how the new continuous predic-
tive analytics monitoring systems can realize these requirements. 
Here, we add four principles that we believe to be of equally para-
mount importance to an effective monitoring system.

1)	 Predictive analytics monitoring for clinical decision support 
for rapidly moving illnesses should incorporate continuous 
cardiorespiratory monitoring in the ICU and on the floor when 
it is available, because it adds information to nurse-charted 
vital signs and laboratory tests (45, 68–70).

2)	 Predictive analytics monitoring models should be trained on spe-
cific targets, because there is no one-size-fits-all model (38, 64).

3)	 Clinical events that are used for training predictive analytics 
monitoring models should be identified by clinicians, because 
they are more accurate than computer searches of clinical data-
bases (70, 83–87).

4)	 These new kinds of clinical information require new tools and 
methods for implementation and integration (60, 63, 88).

All of these elements are directly relevant to the problem of 
COVID-19 respiratory failure. First, patients presenting for acute 
flu-like illnesses have diagnoses ranging from common viral infec-
tion to potentially catastrophic COVID-19 respiratory failure. Just 
as high-risk scores might predict severe illness and lead to admis-
sion to a hospital floor or ICU (40), low-risk scores might predict 
benign courses and identify patients who can be treated at home. 
Second, COVID-19 patients admitted to wards can benefit from 
prediction of rapid, severe pulmonary failure occurring several 
days into the illness. Third, COVID-19 patients in ICUs treated 
noninvasively might benefit if predictive monitoring shows risk, 
allowing them to avoid intubation as they begin to improve on 
their own. In addition, novel therapies like the antiviral remdesivir 
and the interleukin-6 receptor antagonist tocilizumab are precious 
resources and should be reserved for the patients predicted to be 
at most need. Predictive analytics monitoring can help identify 
them before the illness is too far advanced. Finally, the illness is 
very fast-moving, and there is an urgent need to know if patients 
respond to a course of therapy so that a failing therapy can be 
quickly stopped and new ones substituted.

To conclude, COVID-19 infection—like other subacute poten-
tially catastrophic illness—can cause rapid clinical deterioration for 
which early detection might improve outcomes. Volitional mea-
surements of vital signs and labs can come too late. Predictive ana-
lytics monitoring that incorporates continuous cardiorespiratory 

monitoring data and uses targeted analytics that detect specific 
signatures of individual illnesses fit the clinical need better. Like all 
clinical decision support, effective predictive analytics monitoring 
requires intuitive and actionable displays of patient trajectories. It 
is time to advance these modern tools to the bedside.
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