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Abstract

Iron is recognized as an important micronutrient that limits microbial plankton productivity over vast regions of the oceans.
We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural
seawater media supplemented with a siderophore to chelate iron. Microarray data indicated transcription of the periplasmic
iron binding protein sfuC increased by 16-fold, and iron transporter subunits, iron-sulfur center assembly genes, and the
putative ferroxidase rubrerythrin transcripts increased to a lesser extent. Quantitative peptide mass spectrometry revealed
that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome. Thus, we
propose sfuC as a marker gene for indicating iron limitation in marine metatranscriptomic and metaproteomic ecological
surveys. The marked proteome reduction was not directly correlated to changes in the transcriptome, implicating post-
transcriptional regulatory mechanisms as modulators of protein expression. Two RNA-binding proteins, CspE and CspL,
correlated well with iron availability, suggesting that they may contribute to the observed differences between the
transcriptome and proteome. We propose a model in which the RNA-binding activity of CspE and CspL selectively enables
protein synthesis of the iron acquisition protein SfuC during transient growth-limiting episodes of iron scarcity.
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Introduction

The importance of iron as a nutrient in the oceans was first

recognized by Martin [1] and later experiments verified that iron

limits primary production over broad regions of the marine

environment [2–4]. A variety of biological processes such as

photosynthesis, N2 fixation, methanogenesis, respiration, oxygen

transport, gene regulation, and DNA synthesis all depend on iron-

containing proteins [5]. In pelagic surface waters, planktonic

communities must cope with iron concentrations that average just

70 picomolar [6]. The inhibitory effect that this has on growth was

most clearly illustrated by a series of iron fertilization experiments

in which iron was added to large swaths of the ocean, resulting in a

marked increase in nutrient utilization [2,3,7].

Bacteria commonly have specialized systems for responding to

iron limitation. Genes for iron uptake and utilization are primarily

regulated by the Fur protein [8,9]. When complexed with Fe(II)

cations, Fur binds the ‘‘Fur box’’ recognition sequence, which is

made of several GATAAT hexamers [10–14]. In some bacteria,

this single transcription factor can directly repress or activate more

than 100 genes in response to iron scarcity [9]. Irr is a similar

transcription factor that couples intracellular heme levels to

expression of many different iron-related pathways [15–21]. Small

RNAs [22–25] and mRNA-binding proteins [26,27] can also

regulate nonessential iron-utilizing proteins at the post-transcrip-

tional level by selectively targeting their transcripts for degrada-

tion. To improve their chances of encountering Fe(III), many

bacteria secrete siderophores [28–30]. These chelating agents help

dissolve the poorly soluble particles and sequester them in a form

that is unusable by competing microorganisms. Due to the

spontaneous reactivity of iron ions, cells often encapsulate these

atoms inside containers made of ferritin proteins to better

modulate redox reactions [31,32].

Candidatus Pelagibacter ubique was selected as an iron limitation

model for two reasons. First, this alphaproteobacterium is

regularly the most numerically abundant microorganism in

surveys of marine microbial diversity. Second, its proteome of

just 1,354 genes is possibly the simplest of any free-living

heterotrophic organism [33]. Ca. Pelagibacter ubique’s genome

encodes Fur and Irr, but not ferritin or siderophore-related

proteins, raising questions about how or if this bacterium can cope

with iron stress. Investigating how this organism’s relatively small
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genetic repertoire produces thriving populations in the variable

ocean environment has been impeded by the lack of a genetic

system able to create knockouts or other genetic modifications.

Thus, observing how the entire transcriptome or proteome

changes in response to growth conditions has become a primary

approach for elucidating metabolic and regulatory schemes [34–

36]. A comparison of cultures in exponential and stationary phase

did not reveal a major remodeling of the proteome nor evidence of

a global regulatory mechanism [34], suggesting that this organism

may continue to benefit from temporary nutrient availability

regardless of overall cellular activity. That study, along with a

follow-up using a metaproteomics approach on environmental

samples [35], found Ca. Pelagibacter ubique’s proteome to be

consistently composed of an unusually high proportion of

transport-related proteins.

Arguably the most important characteristic of organisms is their

ability to express the right proteins in the right amounts at the

right times. The interplay between stimuli, sensors, and regulators

precisely optimizes the combination of mRNA transcripts and

protein products present in the cell. Several known and putative

transcriptional regulators have been identified in the Ca.

Pelagibacter ubique genome, as well as cis-acting riboswitches

capable of modulating mRNA translation based on the concen-

tration of particular metabolites. This method of decoupling

production of mRNA from protein synthesis has been found on

glycine metabolism genes in Ca. Pelagibacter ubique [37] and

sequence motif searches [38] found additional candidate ribos-

witches for s-adenylmethionine [39,40] and thiamine pyrophos-

phate [40,41]. Meyer and colleagues also identified homologs to

ribosomal proteins capable of regulating their own translation, as

well as regions in the genome with riboswitch-like characteristics

but lacking homologous annotated motifs. One of these putative

structural RNA regions is located immediately upstream of the

sfuA–C operon, which encodes an iron-acquisition system. Post-

transcriptional regulation schemes allow the cell to conserve amino

acids while still rapidly providing ephemeral enzymes. The success

of these characteristics are evidenced by direct observation; Ca.

Pelagibacter ubique is the most abundant heterotroph in the

oceans, accounting for one-third of surface water bacteria [42,43]

and consuming up to half of some dissolved organic matter

compounds [44].

Combining transcriptomic and proteomic data offers a

perspective on cellular activity that cannot be obtained from

either method individually. Numerous studies have shown that

changes in the transcriptome poorly correlate with changes to the

proteome, except for very highly expressed genes [45–48].

Although much of the disparity between these two types of

datasets has been attributed to measurement inaccuracy [49] and

differences in protein degradation rates [50], some studies have

revealed systematic post-transcriptional regulatory schemes. For

instance, in the eukaryotic protozoan Plasmodium falciparum,

mRNAs were often upregulated an entire life phase before the

one in which the encoded protein was needed [51]. Additionally,

translation in Escherichia coli was found to be partially regulated by

mRNA secondary structure [52]. Therefore, it is evident that the

transcriptome does not necessarily represent the current state of

the proteome, but is rather a mixture of transcripts being actively

translated and others that are standing by, awaiting activation by

post-transcriptional regulatory mechanisms. This study integrates

both transcriptomic and proteomic analyses in order to attain a

more complete understanding of the cellular response to iron

limitation in Ca. Pelagibacter ubique. The results strongly suggest

that transcription and translation are not always tightly coupled in

this bacterium.

Results

Reaction to the Siderophore
Two iron-sequestering siderophores were tested on cultures of

Ca. Pelagibacter ubique to determine their feasibility for creating

iron-limiting conditions. Ferrichrome (Sigma #F8014) and

deferoxamine mesylate salt (Sigma #D9533) were both found to

arrest batch culture growth within 1/3 of a doubling – an

inhibition which could be reversed by addition of iron (Figure 1A).

Sufficient bioavailable iron was present in the natural seawater

media collected from the Oregon coast to enable cultures to grow

when supplemented with 10 nM siderophore, but not when

supplemented with 100 nM siderophore.

Microarrays
Six 20 L carboys inoculated with Ca. Pelagibacter ubique were

grown to near-maximum density, then randomly selected for

treatment with either ferrichrome or ferrichrome plus excess iron

(Figure 1B). To measure the amount of messenger RNA

transcripts present in cells, mRNA from each carboy was

hybridized to separate microarray chips containing probes for all

Ca. Pelagibacter ubique genes. Microarray data was deposited in

the NCBI GEO database under accession number GSE20962. Of

the three time points where mRNA abundance was measured, the

greatest difference in expression of known iron-related genes was

observed 24 hours after the siderophore amendment. Table 1 lists

the 23 transcripts that were expressed at least 50 percent higher in

the iron-limited culture relative to the control. Two-thirds of the

genes in this list come from two operons: the first containing iron-

sulfur center assembly proteins including sufA–E and the second

made up of iron uptake proteins such as sfuA–C. The four other

genes with a known function are: rubrerythrin, an iron-binding

protein that is postulated to act as a ferroxidase for converting

Fe(II) to Fe(III), hslU and hslV which together form a protease

complex, and dimethylglycine dehydrogenase – an enzyme that is

necessary for converting betaine to glycine.

A modified radial coordinate visualization plot (Figure 2) of the

microarray data shows four distinct clusters of genes: exponential

growth, stationary phase, early iron stress, and late iron stress. As

detailed in Supplementary Table S1, the early iron stress cluster is

dominated by genes from three genomic loci: the sfu iron uptake

operon, the suf iron-sulfur center assembly operon, and the

functionally unclear loci SAR11_1157, SAR11_1158, SAR11_1163,

and SAR11_1164. The late iron stress cluster also contains different

genes that are located in or adjacent to the sfu and suf operons, but is

better characterized by lexA, recA, and mucA – three genes involved in

the SOS response. The iron response regulators fur and irr cluster with

stationary phase genes, indicating that the abundances of these two

transcripts are more affected by stationary phase than by iron

limitation.

Proteomics
Cellular protein fractions from each treatment were isolated and

digested before being separated with liquid chromatography and

injected into a tandem mass spectrometer. An Accurate Mass and

Time Tag library, developed previously [34], was used to make

quantitative comparisons of the abundance of individual peptides

between samples. This dataset is available at http://omics.pnl.

gov/. Of the 216 proteins detected with high certainty in this

study, 18 were observed to be at least 50% more abundant in the

iron-limited cultures: four on day 18, and 17 on day 28 (Table 2).

The proteins SfuC, CspL, and GroES were higher in the iron-

limited cultures at both timepoints. The iron-binding SfuC is

unique in that it was the only one of these 18 proteins to increase

Iron Limitation in P. ubique
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in both protein and mRNA abundance by at least 50%. CspL was

originally annotated as a DNA-binding protein, however, similar

proteins have been found to modulate the accessibility of mRNA

binding sites by selectively melting secondary RNA structures [53].

The third protein, GroES, forms a complex with GroEL to

mediate protein folding. Because the required GroEL subunit was

much less abundant in iron-limited cultures, and since the three

largest GroES peptide spectra (out of 9) were less pronounced in

the iron-limited cultures, GroES may be a false positive. Mass

spectrometry measurements did not reveal a signficant change in

Fur or Irr abundance between treatments or timepoints.

Iron-limitation had a marked impact on the overall proteome.

Two days after addition of an iron-chelator, 181 of the 216

proteins were significantly (P#0.05) less abundant in the iron-

limited cultures relative to the control cultures. Using the same

criteria, only 32 of the 216 proteins were found to significantly

decrease in the control cultures between days 18 and 28 as Ca.

Pelagibacter ubique cells entered stationary phase due to an

unknown, non-iron, limitation.

Comparing Changes in mRNA and Protein Abundances
Aside from the highly expressed iron-binding protein SfuC, the

abundances of individual proteins appeared to be independent of

the amount of mRNA encoding them (Figure 3).

Discussion

We are studying keystone microbial plankton species such as Ca.

Pelagibacter ubique in culture to provide a basis for interpreting

data emerging from molecular ecology studies. In an era of rapid

environmental change, metagenomics, and allied technologies

such as metaproteomics and metatranscriptomics, are being used

to monitor the structure and health of natural ecosystems and to

identify ecological processes that impact biogeochemistry. Inter-

pretations of these data depend on understanding how complex

cellular systems respond to environmental factors. We focused on

a microorganism, Ca. Pelagibacter ubique, that produces the

largest signal in most environmental studies of marine macromol-

ecules, and a process, iron limitation, that impacts marine ecology

on very large geographical scales.

Upregulation of sfuC during iron limitation
The only gene to clearly increase in both mRNA and protein

abundance during iron limitation was sfuC. This protein localizes to

the periplasmic space and binds dissolved Fe(III) with high affinity.

The SfuC-Fe complex associates with the ATPase (SfuA) and

permease (SfuB) components of the tripartite ABC transporter

complex to actively transport iron into the cell. The fact that sfuA and

sfuB were not observed to increase in protein abundance is not wholly

unexpected – SfuA–SfuB complexes only interact with iron-bound

SfuC proteins, which are a very small fraction of the total SfuC pool

in an iron-limited environment. Additionally, integral membrane

proteins such as SfuB are particularly challenging to recover in

proteomic studies because they are not readily soluble. This likely

contributed to the complete absence of SfuB peptides in all mass

spectrometry studies of Ca. Pelagibacter ubique to date.

The identification of sfuC expression as a readily quantifiable

iron limitation marker is particularly useful for ecological surveys.

Figure 1. Growth of Candidatus Pelagibacter ubique cells was arrested by iron-sequestering siderophores. (A) Cell densities observed during
a pilot experiment to test the effect of the two siderophores ferrichrome and deferoxamine mesylate salt at varying concentrations on the growth of
Candidatus Pelagibacter ubique HTCC1062. The first arrow indicates the introduction of siderophore/iron as described by the legend. The second arrow
indicates the delayed 1 mM iron additions parenthetically noted in the legend. (B) Cultures for harvesting were grown in six 20 L carboys. The first arrow
indicates the introduction of siderophore/iron as described by the legend. Proteins and mRNA were analyzed on the dates indicated by the unfilled arrows:
microarray samples were taken from cultures on days 17, 18, and 28; proteomic samples were taken on days 18 and 28.
doi:10.1371/journal.pone.0010487.g001
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As its name suggests, Ca. Pelagibacter ubique’s genome,

transcriptome, and proteome regularly dominate bacterial surveys

throughout the pelagic environment. Future oceanographic studies

seeking evidence of iron availability limiting bacterioplankton

growth may use metatranscriptomic or metaproteomic analyses to

assess the expression of sfuC in the local Ca. Pelagibacter ubique

population.

Transcriptome distinct from proteome
Protein abundance was generally uncorrelated with changes in

mRNA abundance, suggesting that post-transcriptional mecha-

nisms might be acting at the RNA level to suppress translation. As

reviewed in the introduction, previous studies have shown that

disparities between a cell’s transcriptome and proteome are the

norm rather than the exception. However, the observation that

iron-related genes such as sufA–E increased in mRNA but not

protein indicates that expression of these proteins are controlled at

both the level of transcription and at the level of translation.

Cold-shock proteins correlated with iron stress
CspL was significantly more abundant in iron-limited cultures

(Figure 4), leading us to closely examine the biological activity of

this protein as well as the inversely expressed homolog CspE. The

first discovered member of the cold-shock protein (CSP) family, E.

coli’s CspA, is highly upregulated under cold stress; it is believed to

associate with and melt double-stranded RNA complexes as a

mechanism to prevent spurious stem loop structures from

interfering with transcription and translation [54–59]. Despite

their homology to CspA, many CSP variants are not cold-

inducible, but rather are involved in regulating cellular processes

[54,60–62] and can even target their activity to specific RNA

sequences [63]. A growing body of literature has described

mRNAs which modulate their own expression via temperature-

(RNA thermometer) or ligand-sensitive (riboswitch) secondary

structures [64,65]. Due to the episodic nature of iron deposition

into ocean surface waters [66] and the resulting selective pressure

favoring rapid response systems for this limiting nutrient [67], we

speculate that Ca. Pelagibacter ubique CspE and/or CspL affects a

reversible inhibition of translation by facilitating an mRNA

secondary structure unfavorable for ribosome processing, thereby

maintaining the transcriptome in a state of cell growth readiness

during times of stress such as iron limitation.

This is the first report describing the general suppression of

translation across the entire transcriptome of the cell. In this case,

the apparent adaptive significance of protein synthesis suppression

is related to urgent cellular requirements to acquire an essential

nutrient. The model we propose to explain this phenomenon

incorporates activity previously observed in cold-shock proteins,

however, the essence of our model assigns cold-shock proteins a

new systemic role in Ca. Pelagibacter ubique cells with the

apparent result of focusing protein synthesis on transporters that

target a missing essential nutrient. The validation of this model is

Table 1. All 23 Ca. Pelagibacter ubique mRNA transcripts that were at least 50 percent more abundant in the iron-limited cultures
compared to the control cultures, 24 hours after addition of an iron-chelator.

Locus ID Gene Description Ratioa P Valueb Cluster

SAR11_0144 Conserved hypothetical protein 1.54 0.001 Early

SAR11_0333 N hslV ATP-dependent protease: peptidase 1.63 0.000 Stat.

SAR11_0334 N hslU ATP-dependent protease: ATP-binding 1.59 0.035

SAR11_0399 rbr Rubrerythrin, hyp. ferroxidase (Fe2+RFe3+) 1.57 0.025

SAR11_0738 N sufA Transcriptional regulator 1.76 0.062 Stat.

SAR11_0739 N sufB Cysteine desulfurase activator complex 2.00 0.009 Early

SAR11_0740 N sufC FeS assembly ATPase 1.80 0.017 Early

SAR11_0741 N sufD FeS assembly protein 2.29 0.019 Early

SAR11_0742 N csdB Selenocysteine lyase chain A 2.44 0.046 Early

SAR11_0743 N sufE Putative NifU-like protein 2.24 0.004 Late

SAR11_0744 N paaD Phenylacetic acid degradation protein 2.00 0.001 Early

SAR11_0745 N hesB HesB protein 1.95 0.000 Early

SAR11_0785 Conserved hypothetical protein (DUF952) 1.52 0.051 Late

SAR11_1233 N Domain of unknown function (DUF931) 3.36 0.001 Early

SAR11_1235 N azlC AzlC protein 2.14 0.016 Early

SAR11_1236 N sfuA Iron(III) ABC transporter: ATP-binding 4.99 0.000 Early

SAR11_1237 N sfuB Iron(III) ABC transporter: permease 10.36 0.000 Early

SAR11_1238 N sfuC Iron(III) ABC transporter: periplasmic 16.00 0.003 Early

SAR11_1239 N Unknown protein 2.47 0.006 Late

SAR11_1240 N aceA Isocitrate lyase 1.58 0.091 Late

SAR11_1242 N Transcription regulator 1.60 0.054 Late

SAR11_1253 dmgdh Dimethylglycine dehydrogenase 1.54 0.054 Late

SAR11_1279 Unknown membrane protein 1.56 0.056

Seventy-eight percent of these genes are found in Figure 2’s early and late iron stress clusters. Bullet points in the first column indicate contiguous loci.
aAverage fluorescence of three replicates, (iron limited culture/iron replete culture).
bResult of a two-tailed Student’s t-test comparing the three biological replicates for each treatment.
doi:10.1371/journal.pone.0010487.t001
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beyond the scope of this study. Future work may more precisely

identify interactions between cold-shock proteins with specific

RNA motifs.

Summary
Census information has left little doubt that Ca. Pelagibacter

ubique plays its role in biological oceanography on a vast scale. To

understand this role, we turned inward, investigating the

mechanisms used by these cells to respond to a common form of

nutritional stress. One motivation for this study can be described

with a term borrowed from satellite remote sensing: the term

‘‘ground truth’’ was coined to describe the validation, by direct

measurements, of remotely sensed observations. Metatranscrip-

tomic and metaproteomic measurements are being widely adopted

by microbial ecologists anticipating that these approaches will

reveal the metabolic status of cells in microbial communities,

providing information that can be extrapolated to interpret

broader levels of ecosystem function. Essential to this vision is an

understanding of how cells respond to environmental variables.

Our findings indicate that the periplasmic iron binding protein

sfuC is uniquely suitable for assessing the iron limitation status of

Ca. Pelagibacter ubique cells. We anticipate that ecologists will use

this data for interpreting the nutritional status of Ca. Pelagibacter

ubique cells in nature.

This study, one of the few to simultaneously examine both

transcriptional and translational responses in a bacteria cell,

uncovered evidence suggesting that cspL might play a role in the

cellular response to iron limitation. We offer the model that this

protein controls translation in response to environmental condi-

tions for a specific subset of genes present in the transcriptome. We

hypothesize that this activity might serve an emergency function,

limiting the synthesis of proteins to those that are critical for

survival. This finding is consistent with previous reports of post-

transcriptional regulation of the iron stress response in which a

protein was found to facilitate the degradation of specific mRNAs

which encoded nonessential iron-consuming pathways [26,27].

Not only is Ca. Pelagibacter ubique one of the most successful

cells known, it is also one of the simplest, giving it value as a model

for understanding bacterial cell responses. Indeed, numerous new

structural RNAs, some widely distributed among bacteria, have

been discovered and described in Ca. Pelagibacter ubique [37,38].

It is perhaps hubris to imagine that the concept of systems biology

might one day be extended from the machinery of cells to the

machinery of microbial ecosystems at work on the scale of oceans.

But, if that vision has a chance, it will be by combining studies that

cross scales and disciplines to understand the keystone species of

the oceans.

Materials and Methods

Growth Media and Harvesting
Seawater was collected on 6/14/08 at the Newport Hydroline

station NH5 (44u39.19N, 124u10.69W) from a depth of 10 m. The

water was then filtered through a 0.2 mM filter, autoclaved, and

sparged with CO2 for 24 hours followed by air for 24–48 hours as

previously described [68,69]. Immediately prior to inoculation

with Ca. Pelagibacter ubique HTCC1062, the media was

amended with 50 mM pyruvate, 50 mM glucose, 10 mM nitrogen,

1 mM methionine, 1 mM glycine, 1 mM phosphate, and vitamins.

Cells were grown at 20uC (flasks) or 16uC (carboys) with

intermittent light and sparging with air. On day 16, three 20 L

control cultures were amended with 100 nM ferrichrome and

Figure 2. Genes transcribed during iron limitation were different from stationary phase genes. The four clusters indicate up-regulation
of similar condition-specific mRNA. Symbols for each microarray sample (open circles) were manually positioned on a circle according to each
sample’s iron availability and growth rate. Genes were ‘‘attracted’’ to the samples in which they were most abundant. Larger points indicate genes
with larger condition-to-condition variation; a key for the 10 largest points in each cluster is provided. The complete list of gene locations for this
graph can be found in Supplementary Table S1.
doi:10.1371/journal.pone.0010487.g002
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1 mM FeCl3, and three 20 L treatment cultures were amended

with 100 nM ferrichrome only. On day 18, 8 L from each carboy

was harvested. On day 28, the remaining ,10L from each was

harvested. Prior to each harvest, and on day 17, three 40 mL

samples of culture were removed from each culture for micro-

arrays. Water from the three replicate cultures were then

combined and growth was arrested using 0.01g chloramphenical

and 0.1 mL protease inhibitor cocktail II (CalBiochem #539132)

per liter of culture. Tangential flow filtration, followed by

centrifugation produced cell pellets for the mass-spectrometry

analysis. All samples were kept at 280uC until analysis.

Messenger RNA Preparation
Ca. Pelagibacter ubique cells used in microarray experiments

were grown in batch cultures as described above. Cells (40 ml for

each biological replicate) were collected via centrifugation, and

RNA was extracted using RNeasy Mini kits (Qiagen), followed by

amplification with MessageAmp-II Bacteria RNA amplification kit

(Ambion). The resulting aRNA was then screened for length and

quality using a Bioanalyzer 2100 (Agilent) and quantified utilizing

a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific).

5.5 mg of biotinylated aRNA from each sample was then

fractionated and hybridized (45uC) overnight to custom Ca.

Pelagibacter ubique Affymetrix GeneChip arrays that contained

probes for strains HTCC1002, HTCC1062 and HTCC7211

(Pubiquea520471f) using Affymetrix GeneChip Fluidics Station

450, and Affymetrix GeneChip Hybridization Oven 640. Arrays

were then washed as per the manufacturer’s instructions and the

resulting images were analyzed using an Affymetrix GeneChip

Scanner 3000. Fluorescence measurements were normalized over

all 18 microarray chips.

Microarray Clustering
A modified radial coordinate visualization plot was used for

illustrating mRNA expression in a manner that accentuated

condition-specific preferential transcription. In Figure 2, dimen-

sional anchors (DA) representing each of the six microarray

samples were positioned manually around the circumference of a

circle such that iron-limited samples are on the left, samples with

excess iron are on the right, and the vertical placement

corresponds to the culture’s transition from exponential growth

(bottom) to stationary phase (top). Each gene is represented by a

single point, positioned according to the relative abundances

between every sample pair, and sized according to the largest

observed change in expression level. PTg is the point for gene g,

with attributes x, y, and s describing its x-axis position, y-axis

position, and size, respectively. Si,g is the log base-10 average

fluorescence for gene g in sample i. DAi is sample i’s dimensional

anchor positioned at (DAi,x, DAi,y) on the graph.

PTg,s~ max S1::6,g

� �
{ min S1::6,g

� �

PTg,x~
X

1ƒivjƒ6

DAi,x{DAj,x

� �
| Si,g{Sj,g

� �
=PTg,s

� �

Table 2. All 17 Ca. Pelagibacter ubique proteins that were at least 50 percent more abundant in the iron-limited cultures
compared to the iron replete cultures, two and 12 days after addition of an iron chelator.

Day Locus ID Gene Description Ratioa P Valueb

18 SAR11_1238 sfuC Iron(III) ABC transporter: periplasmic 11.41 0.000

18 SAR11_1274 cspL DNA-binding cold shock protein 6.20 0.000

18 SAR11_0161 groES Protein-folding chaperonin 2.01 0.028

18 SAR11_1062 dapA Dihydrodipicolinate synthase 1.53 0.849

28 SAR11_1238 sfuC Iron(III) ABC transporter: periplasmic 26.96 0.000

28 SAR11_1161 sbcC ATPase involved in DNA repair 4.59 0.011

28 SAR11_0161 groES Protein-folding chaperonin 3.59 0.008

28 SAR11_0601 ftsH Metalloprotease 3.28 0.001

28 SAR11_1124 rplL 50S ribosomal protein L31 3.16 0.006

28 SAR11_0430 aceF Dihydrolipoamide S-acetyltransferase 3.02 0.094

28 SAR11_0171 Rhodanese-related sulfurtransferase 2.74 0.002

28 SAR11_0791 Ring-cleaving dioxygenase 2.42 0.336

28 SAR11_1274 cspL DNA-binding cold shock protein 2.27 0.437

28 SAR11_0235 pdhD Dihydrolipoyl dehydrogenase 2.26 0.035

28 SAR11_0401 Conserved hypothetical protein 2.21 0.003

28 SAR11_0054 pilA Pilin protein 2.16 0.020

28 SAR11_0727 accB Acetyl-CoA carboxylase 2.03 0.301

28 SAR11_0987 ppiB Peptidylprolyl isomerase 1.99 0.291

28 SAR11_0793 Unknown protein 1.74 0.128

28 SAR11_0599 Hypothetical protein 1.70 0.623

28 SAR11_0708 acpP Acyl carrier protein 1.55 0.198

Genes in bold were more abundant in the iron-limited cultures at both timepoints.
aAverage spectra height of at least three peptides, (iron limited culture/iron replete culture).
bCombined one-tailed Student’s t-test comparing the three technical replicates for each treatment.
doi:10.1371/journal.pone.0010487.t002
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This type of graph is ideal for revealing if a given gene’s transcript

abundance is changing as a result of iron limitation or as a result of the

stationary phase transcriptome remodeling induced by iron limitation.

Global TFE Protein Preparation
Four samples were prepared using the TFE (2,2,2-Trifluor-

oethanol) digestion method. The cell pellets were reconstituted in

100 mM NH4HCO3, pH 8.4 buffer and transferred to a

siliconized 0.6 mL microcentrifuge tube. 0.1 mm Zirconia/Silica

Beads were added to the top of the tube and bead beat at

maximum speed for 3 minutes and immediately placed on ice. A

hole was poked in the base of the 0.6 mL siliconized eppendorf

tube and placed in a 1.5 mL siliconized eppendorf tube. The

sample was then centrifuged for 5 minutes at 14,000 rpm at 4uC.

The cell lysis was mixed to a homogenized state and the volume

was determined using a pipette. The sample concentration was

determined with a Coomassie protein assay and read on a

microplate reader. TFE was added to a concentration of 50%.

The sample was then homogenized by sonication for one minute

Figure 3. Protein abundances were largely decoupled from transcript abundances. The change in protein abundance versus the change in
mRNA abundance was plotted for all Ca. Pelagibacter ubique genes that showed a significant (P, = 0.05) change in either measurement. Each color
represents a different comparison between treatments or timepoints, with R2 values of 0.11, 0.08, 0.09, and 0.02 respective to the legend’s ordering.
Large ellipses indicate clusters of the same colored points. Histograms on the low end of each axis further define the distribution of points. Points
represented by a diamond are discussed at length in the text.
doi:10.1371/journal.pone.0010487.g003

Figure 4. Translation of Ca. Pelagibacter ubique’s cold shock
and iron-binding genes are influenced by iron availability. The
abundance of two Ca. Pelagibacter ubique cold shock proteins, CspE
and CspL, and the iron-binding protein SfuC, appear to be correlated
with iron availability (p-value of .02, .08, and 3e-79, respectively).
doi:10.1371/journal.pone.0010487.g004
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in an ice bath followed by incubation at 60uC for two hours with

gentle shaking (300 rpm). Proteins were reduced by adding DTT

to a final concentration of 2 mM, sonicated for one minute in an

ice bath and incubated at 37uC for one hour with gentle shaking.

Samples were then diluted 5-fold with 100 mM NH4HCO3 to

reduce the salt concentration, and CaCl2 was added to a final

concentration of 1 mM. The sample was digested for 3 hours with

Trypsin (Promega, Madison WI) at 37uC at a concentration of 1

unit trypsin/50 units protein. After trypsin incubation, a BCA

protein assay was performed on the sample to determine the final

concentration and vialed for mass spectrometer analysis.

Capillary LC-MS Analysis
The custom HPLC system was configured using 65-mL Isco Model

65D syringe pumps (Isco, Inc., Lincoln, NE), 2-position Valco valves

(Valco Instruments Co., Houston, TX), and a PAL autosampler (Leap

Technologies, Carrboro, NC), allowing for fully automated sample

analysis across four separate HPLC columns. Reversed-phase

capillary HPLC columns were manufactured in-house by slurry

packing 3-mm Jupiter C18 stationary phase (Phenomenex, Torrence,

CA) into a 70-cm length of 360 mm o.d.675 mm i.d. fused silica

capillary tubing (Polymicro Technologies Inc., Phoenix, AZ) that

incorporated a 0.5-mm retaining screen in a 1/16’’ custom laser-bored

75 mm i.d. union (screen and union – Valco Instruments Co.,

Houston, TX; laser bore - Lenox Laser, Glen Arm, MD). Mobile

phases consisted of 0.2% acetic acid and 0.05% TFA in water (A) and

0.1% TFA in 90% acetonitrile/10% water (B). The mobile phase

flowed through an in-line Degassex DG4400 degasser (Phenomenex,

Torrance, CA). The HPLC system was equilibrated at 10 k psi with

100% mobile phase A. Fifty minutes after sample injection the mobile

phase was switched to 100% B, which created a near-exponential

gradient as mobile phase B displaced A in a 2.5 mL active mixer. A

30-cm length of 360 mm o.d.615 mm i.d. fused silica tubing was used

to split ,20 mL/min of flow before it reached the injection valve (5 mL

sample loop). The split flow controlled the gradient speed under

conditions of constant pressure operation (10 k psi). Flow through the

capillary HPLC column when equilibrated to 100% mobile phase A

was ,400 nL/min.

MS analysis was performed using a ThermoFinnigan LTQ-

Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA)

with electrospray ionization (ESI). The HPLC columns were

coupled to the mass spectrometer by using an in-house

manufactured interface. Chemically etched electrospray emitters,

150 um o.d.620 um i.d, were used [70]. The heated capillary

temperature and spray voltage were 200uC and 2.2 kV,

respectively. Data was acquired for 100 min, beginning 65 min

after sample injection (15 min into gradient). Orbitrap spectra

(AGC 16106) were collected from 400–2000 m/z at a resolution

of 100k followed by data dependant ion trap MS/MS spectra

(AGC 16104) of the six most abundant ions using a collision

energy of 35%. A dynamic exclusion time of 60 sec was used to

discriminate against previously analyzed ions. Three technical

replicates were run on the mass spectrometer for each cell pellet.

Quantitative Proteomics
Quantitative estimates of peptide abundances, calculated from

the area under the isotopic profile, were obtained by using a

previously developed accurate mass and time (AMT) tag library

[34] to search the mass spectra generated by the 12 runs for the

four samples. After deisotoping and calculating monoisotopic

mass, mass spectrometric features were matched to database

peptides with a mass tolerance window of +/26ppm and an

elution time window of +/20.1% after alignment in both

dimensions. Peptide abundances were reported for those which

had observations in at least 2 of the 3 technical replicates. Linear

regression normalization was used to normalize each set of

technical replicates as described elsewhere [71]. Briefly, the

abundance of peptide x in sample i was transformed into minus

versus average space using the following formulas:

mi~log2 xi=�xxð Þ

ai~log2 xi|�xxð Þ=2

Next, the transformed value was corrected based on a linear

regression:

m’i~mi{m�i

where mi* is the value for mi calculated from the m vs a regression

equation. Lastly, the computed values were deconvoluted to yield

the normalized abundances:

x’i~2 m’iz2aið Þ=2

Peptides were excluded from further analysis if the standard

deviation exceeded the average measurement value among the

three technical replicates for a sample. A final filter was applied to

exclude the lowest third of peptides for a given protein, when

sorted by the peptides’ maximum PeptideProphet F-Score.

Protein abundance was calculated only if a protein had three or

more peptides which passed the above filters. Calculating the

difference in protein abundance between two samples was a three

step process. First, the three replicate peptide abundance

measurements were averaged together. Next, the peptide average

from sample 1 was divided by the peptide average from sample 2,

then log10 transformed. Finally, all log10 peptide ratios from the

same protein were averaged together.

To represent the likelihood that a protein was equally abundant

in both samples, the multiple peptide measurements were combined

into a single statistic as previously described [72]. Briefly, p-values

for individual peptides were calculated using a one-tailed Student’s

t-test on the technical replicates’ x9 values. A two-tailed Student’s t-

test was not used because p-values reflecting a large increase would

be indistinguishable from p-values reflecting a large decrease.

Instead, peptides which changed in the opposite direction from the

protein average were assigned a p-value of 1 for their one-tailed

Student’s t-test. All peptide p-values for a single protein were then

combined into a single chi-square statistic using Fisher’s method:

x2~{2|
X

ln Pið Þ

Supporting Information

Table S1 Coordinates of All Genes Plotted in Figure 2.

Found at: doi:10.1371/journal.pone.0010487.s001 (0.25 MB

XLS)
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