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INTRODUCTION: Parkinson’s disease is a de-
bilitating neurological condition affectingmore
than 1% of the global population aged 60 and
above. The primary medication used to treat
Parkinson’s disease is levodopa (L-dopa). To be
effective, L-dopa must enter the brain and be
converted to the neurotransmitter dopamine
by the human enzyme aromatic amino acid
decarboxylase (AADC). However, the gastro-
intestinal tract is also a major site for L-dopa
decarboxylation, and thismetabolism is prob-
lematic because dopamine generated in the
periphery cannot cross the blood-brain barrier
and causes unwanted side effects. Thus, L-dopa
is coadministered with drugs that block pe-
ripheral metabolism, including the AADC in-
hibitor carbidopa. Evenwith these drugs, up to
56% of L-dopa fails to reach the brain.Moreover,
the efficacy and side effects of L-dopa treatment
are extremely heterogeneous across Parkinson’s
patients, and this variability cannotbe completely
explained by differences in host metabolism.

RATIONALE: Previous studies in humans and
animalmodels have demonstrated that the gut
microbiota can metabolize L-dopa. The major

proposed pathway involves an initial decar-
boxylation of L-dopa to dopamine, followed
by conversion of dopamine to m-tyramine
by means of a distinctly microbial dehydro-
xylation reaction. Although these metabolic
activities were shown to occur in complex gut
microbiota samples, the specific organisms,
gene, and enzymes responsible were unknown.
The effects of host-targeted inhibitors such as
carbidopa on gut microbial L-dopa metabolism
were also unclear. As a first step toward under-
standing the gut microbiota’s effect on Parkin-
son’s disease therapy, we sought to elucidate
the molecular basis for gut microbial L-dopa
and dopamine metabolism.

RESULTS: Hypothesizing that L-dopa decar-
boxylation would require a pyridoxal phosphate
(PLP)–dependent enzyme, we searched gut bac-
terial genomes for candidates and identified
a conserved tyrosine decarboxylase (TyrDC) in
Enterococcus faecalis. Genetic and biochemical
experiments revealed that TyrDC simulta-
neously decarboxylates both L-dopa and its
preferred substrate, tyrosine. Next, we used
enrichment culturing to isolate a dopamine-

dehydroxylating strain of Eggerthella lenta, a
species previously implicated in drug metab-
olism. Transcriptomics linked this activity to a
molybdenum cofactor–dependent dopamine
dehydroxylase (Dadh) enzyme. Unexpectedly,
the presence of this enzyme in gut bacterial
genomes did not correlate with dopamine
metabolism; instead, we identified a single-
nucleotide polymorphism (SNP) in the dadh
gene that predicts activity. The abundance of

E. faecalis, tyrDC, and the
individual SNPs of dadh
correlated with L-dopa and
dopamine metabolism in
complex gut microbiotas
from Parkinson’s patients,
indicating that these orga-

nisms, genes, enzymes, and even nucleotides
are relevant in this setting.
We then tested whether the host-targeted

AADC inhibitor carbidopa affected L-dopa de-
carboxylation byE. faecalis TyrDC. Carbidopa
displayed greatly reduced potency toward
bacteria and was completely ineffective in
complex gut microbiotas from Parkinson’s
patients, suggesting that this drug likely does
not prevent microbial L-dopa metabolism
in vivo. To identify a selective inhibitor of gut
bacterial L-dopa decarboxylation, we leveraged
ourmolecular understanding of gutmicrobial
L-dopa metabolism. Given TyrDC’s preference
for tyrosine, we examined tyrosine mimics and
found that (S)-a-fluoromethyltyrosine (AFMT)
prevented L-dopa decarboxylation by TyrDC
and E. faecalis as well as complex gut micro-
biota samples from Parkinson’s patients. Coad-
ministering AFMT with L-dopa and carbidopa
tomice colonizedwithE. faecalis also increased
the peak serum concentration of L-dopa. This
observation is consistent with inhibition of gut
microbial L-dopa metabolism in vivo.

CONCLUSION: We have characterized an
interspecies pathway for gut bacterial L-dopa
metabolism and demonstrated its relevance
in human gut microbiotas. Variations in these
microbial activities could possibly contribute
to the heterogeneous responses to L-dopa ob-
served among patients, including decreased
efficacy and harmful side effects. Our find-
ings will enable efforts to elucidate the gut
microbiota’s contribution to treatment out-
comes and highlight the promise of devel-
oping therapies that target both host and gut
microbial drug metabolism.▪
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The human gut microbiota metabolizes the Parkinson’s disease medication Levodopa
(L-dopa), potentially reducing drug availability and causing side effects. However,
the organisms, genes, and enzymes responsible for this activity in patients and their
susceptibility to inhibition by host-targeted drugs are unknown. Here, we describe
an interspecies pathway for gut bacterial L-dopa metabolism. Conversion of L-dopa to
dopamine by a pyridoxal phosphate-dependent tyrosine decarboxylase from Enterococcus
faecalis is followed by transformation of dopamine to m-tyramine by a molybdenum-
dependent dehydroxylase from Eggerthella lenta. These enzymes predict drug metabolism
in complex human gut microbiotas. Although a drug that targets host aromatic amino
acid decarboxylase does not prevent gut microbial L-dopa decarboxylation, we identified
a compound that inhibits this activity in Parkinson’s patient microbiotas and increases
L-dopa bioavailability in mice.

A
growing body of evidence links the trillions
of microbes that inhabit the human gastro-
intestinal tract (the human gut microbiota)
to neurological conditions, including the
debilitating neurodegenerative disorder

Parkinson’s disease (1, 2). Gut microbes from
Parkinson’s patients exacerbate motor deficits
when transplanted into germ-freemousemodels
of disease (2). This effect is reversed with anti-
biotic treatment, suggesting a causal role for gut
microbes in neurodegeneration. Multiple studies
have revealed differences in gut microbiota com-
position in Parkinson’s disease patients compared
with healthy controls that may correlate with
disease severity (3–9). However, the influence
of the human gut microbiota on the treatment
of Parkinson’s and other neurodegenerative
diseases remains poorly understood.
The primary treatment for Parkinson’s disease

is Levodopa (L-dopa) (10), which is prescribed to
managemotor symptoms that result fromdopa-
minergic neuron loss in the substantia nigra.
After crossing the blood-brain barrier, L-dopa is
decarboxylated by aromatic amino acid decar-
boxylase (AADC) to give dopamine, the active

therapeutic agent. However, dopamine generated
in the periphery byAADC cannot cross the blood-
brain barrier, and only 1 to 5% of L-dopa reaches
the brain, owing to extensive presystemicmetabo-
lism in the gut by enzymes such as AADC (11–13).
Peripheral production of dopamine also causes
gastrointestinal side effects, can lead to ortho-
static hypotension through activation of vascu-
lar dopamine receptors, andmay induce cardiac
arrhythmias (14, 15). To decrease peripheral me-
tabolism, L-dopa is coadministered with AADC
inhibitors such as carbidopa. Despite this, 56% of
L-dopa is metabolized peripherally (16), and pa-
tients display highly variable responses to the
drug, including loss of efficacy over time (17).
Multiple lines of evidence suggest that gut

microbial interactions with L-dopa influence
treatment outcomes (18). Administering broad-
spectrum antibiotics improves L-dopa therapy,
suggesting that gut bacteria interfere with drug
efficacy (19, 20). The gut microbiota can also
metabolize L-dopa, potentially reducing its bio-
availability and leading to side effects (21–24).
The major proposed pathway involves an initial
decarboxylation of L-dopa to dopamine followed
by a distinctly microbial dehydroxylation re-
action that converts this neurotransmitter to
m-tyramine by selectively removing the para hy-
droxyl group of the catechol ring (Fig. 1A) (25, 26).
When we began our work, the gut microbial
species, genes, and enzymes involved in these
transformationswere unknownbecause previous
studies examinedundefined anduncharacterized
consortia. The clinical relevance of this path-
way was also unclear given the potential effects
of coadministered inhibitors of host periph-

eral L-dopa metabolism on these gut microbial
activities.

The human gut bacterium Enterococcus
faecalis decarboxylates L-dopa

We sought to elucidate the genetic and bio-
chemical bases for gut microbial L-dopa metab-
olismandunderstandhowcoadministeredAADC
inhibitors affect this pathway. Using a genome-
mining approach, we first identified strains that
encode candidate L-dopa decarboxylating en-
zymes. Aromatic amino acid decarboxylation is
typically performed by enzymes using pyridoxal-
5′-phosphate (PLP), an organic cofactor that
provides an electron sink (27). Recently, a PLP-
dependent tyrosine decarboxylase (TyrDC) from
the food-associated strain Lactobacillus brevis
CGMCC 1.2028 was shown to have promiscuous
activity toward L-dopa in vitro (28). To locate
TyrDC homologs in human gut bacteria, we per-
formed aBLASTP (ProteinBasic Local Alignment
Search Tool) search against the complete set of
Human Microbiome Project (HMP) reference
genomes available through the National Center
for Biotechnology Information (NCBI). Themajor-
ity of hits were found in the neighboring genus
Enterococcus, with some hits within lactobacilli
andProteobacteria (Fig. 1B, fig. S1, anddata file S1).
We selected 10 representative gut strains that
contain TyrDC homologs (29 to 100% amino
acid ID) and examined their ability to decarbox-
ylate L-dopa in anaerobic culture. Although both
Enterococcus faecalis and Enterococcus faecium
displayed activity, only E. faecalis showed com-
plete decarboxylation across all strains tested
(Fig. 1C). All E. faecalis strains tested share the
highly conserved four-gene tyrDC operon (fig. S2),
and we found tyrDC in 98.4% of the E. faecalis
assemblies deposited in NCBI with a median
amino acid identity of 99.8 (range 97.0 to 100).
This high degree of sequence conservation and
prevalence is consistent with tyrosine decar-
boxylation being a common phenotypic trait of
E. faecalis (29). We therefore chose this preva-
lent, genetically tractable gut organismas amodel
for characterizing L-dopa decarboxylation (30).
Although lyophilizedE. faecalis cells decarbox-

ylate L-dopa (31) and the tyrDC operon’s role in
tyrosine decarboxylation in E. faecalis is well-
characterized (32), the connection between tyrDC
and L-dopa decarboxylation was unknown. We
used genetics and in vitro biochemistry experi-
ments to confirm that TyrDC is necessary and
sufficient for L-dopa decarboxylation byE. faecalis.
E. faecalisMMH594 mutants carrying a 2-kb Tet-
cassette disrupting tyrDC could not decarboxylate
L-dopa (Fig. 1D and fig. S3) and displayed no
growth defects comparedwithwild type (fig. S4).
In vitro characterization of TyrDC revealed a five-
fold higher catalytic efficiency toward L-tyrosine
compared with L-dopa, suggesting that drug me-
tabolism arises from promiscuous enzyme activ-
ity (Fig. 1E, fig. S5, and table S1). This selectivity
contrasts sharply with that of AADC, which dis-
plays very low activity toward L-tyrosine (33).
Although TyrDC from E. faecaliswas previously
showntodecarboxylate tyrosine andphenylalanine
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(34–37), its ability to accept L-dopa had not been
demonstrated. A recent, independent report also
corroborates this finding (38).
We next tested whether tyrosine, which is the

preferred substrate for TyrDC and is present in
the small intestine, could interfere with L-dopa
decarboxylation by E. faecalis (39, 40). In com-
petition experiments, purified TyrDC (fig. S6)
and anaerobicE. faecalis cultures decarboxylated
L-dopa and tyrosine simultaneously (500 mM
tyrosine, approximating the resting small intes-
tinal concentration) (Fig. 1F and fig. S7) (40).
This observation sharply contrasts with previ-
ous investigations of phenylalanine, which is
metabolized by E. faecalis only when tyrosine is
completely consumed (36). Simultaneous decar-
boxylation of L-dopa and tyrosine also occurred
in E. faecalis MMH594 cultures that contained
higher tyrosine concentrations (1.5 mM, ap-
proximating the small intestinal post-meal con-
centration) (fig. S8) and in three human fecal
suspensions (fig. S9). As observed previously
for tyrosine, L-dopa decarboxylation occurred
more rapidly at lower pH across all strains tested
(figs S7 and S8), suggesting that this metabolism
is likely accelerated at the lower pH of the upper
small intestine (41, 42). Because the Michaelis
constant (Km) of TyrDC for L-dopa (1.5 mM) is
below the estimated maximum in vivo small in-
testinal L-dopa concentration even at its lowest
clinically administered dose (5 mM), these data
strongly suggest that peripheral decarboxylation
is performed by both host and gut bacterial
enzymes.

Eggerthella lenta dehydroxylates dopamine
using a molybdenum-dependent enzyme

Having identified a gut bacterial L-dopa decar-
boxylase, we next examined the conversion of
dopamine to m-tyramine because this activity
may influence the side effects associated with
peripheral L-dopa decarboxylation. E. faecalis
did not further metabolize dopamine, indicating
that this stepwas performed by a differentmicro-
organism. Dehydroxylation of dopamine has not
been reported for any bacterial isolate, and a
screen of 18 human gut strains failed to uncover
metabolizers. Therefore, we used enrichment cul-
turing to obtain a dopamine-dehydroxylating
organism. Recognizing the chemical parallels be-
tween this reductive dehydroxylation and reduc-
tive dehalogenation of chlorinated aromatics,
which enables anaerobic respiration in certain
bacteria (43), we inoculated a stool sample from
a human donor into a minimal growth medium
containing 0.5mMdopamine as the sole electron
acceptor (figs. S10 and S11). Passaging over mul-
tiple generations enriched for active strains, as
assessed by means of a colorimetric assay for
catechol dehydroxylation (fig. S11). This effort
identified a strain of the gut Actinobacterium
Eggerthella lenta (referred to herein as strain A2)
that is capable of selectively removing the para
hydroxyl group of dopamine to givem-tyramine
(fig. S12).BecauseE. lentaalso inactivates the cardiac
drug digoxin, our finding suggests awider role for
this gut organism in drug metabolism (44, 45).

Catechol dehydroxylation is a chemically chal-
lenging reaction thathasno equivalent in synthetic
chemistry and likely involves unusual enzymology.
To identify thedopamine-dehydroxylatingenzyme,
we first searched the E. lenta A2 genome for genes
that encode homologs of the only characterized
aromatic para-dehydroxylase, 4-hydroxybenzoyl-
CoA reductase (46), but found no hits. Assayswith
E. lentaA2cell lysates showeddopaminedehydrox-
ylation required anaerobic conditions and was
induced by dopamine (fig. S13).We therefore used
RNA-sequencing of E. lenta A2 to identify the de-

hydroxylase. This experiment revealed >2500-fold
up-regulation of three colocalized genes in re-
sponse to dopamine (Fig. 2A and table S2). These
genes encode a predicted bis-molybdopterin gua-
nine dinucleotide cofactor (moco)–containing
enzyme belonging to the dimethyl sulfoxide re-
ductase family. Moco-dependent enzymes cata-
lyze a wide variety of oxygen-transfer reactions
buthavenotbeendemonstrated tocatalyze catechol
dehydroxylation in vitro (47). We therefore hy-
pothesized that this enzymewas a dopamine dehy-
droxylase (Dadh).
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Fig. 1. E. faecalismetabolizes L-dopa using a PLP-dependent tyrosine decarboxylase. (A) Proposed
major pathway for L-dopa metabolism by the human gut microbiota and potential for interaction
with host-targeted drugs. (B) Phylogenetic distribution of TyrDC in the human microbiota. Human
Microbiome Project reference genomes were queried by means of BLASTP for homologs of the
L. brevis TyrDC, and the results are visualized on a cladogram of phylogeny [based on 16S ribosomal
RNA (rRNA) alignment]. TyrDC homologs found sporadically within Lactobacillus spp. (Lb) are
widely distributed among Enterococcus (Ec; average amino acid identity 67.8% over 97.6% query
length). (C) Testing representative gut microbial strains encoding TyrDC reveals that E. faecalis
strains reproducibly convert L-dopa to dopamine. Strains were cultured for 48 hours anaerobically.
Bar graphs represent the mean ± SEM of three biological replicates. (D) Deletion of tyrDC
abolishes L-dopa decarboxylation by E. faecalis. Dopamine was detected in culture supernatants
after 48 hours of anaerobic growth with 0.5 mM L-dopa. Bar graphs represent the mean ± SEM of
three biological replicates. (E) Kinetic analysis of E. faecalis TyrDC reveals a preference for tyrosine.
Error bars represent the mean ± SEM of three biological replicates. ND, not detected. (F) L-dopa
and tyrosine are simultaneously decarboxylated in anaerobic cultures of E. faecalis MMH594 grown
at pH 5 with 1 mM L-dopa and 0.5 mM tyrosine. Bar graphs represent the mean ± SEM of three
biological replicates.
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To assess Dadh’s role in dopamine dehydrox-
ylation, we first explored whether this activity
wasmolybdenum-dependent by culturingE. lenta
A2 in the presence of tungstate. Substitution of
molybdate with tungstate during moco biosyn-

thesis generates an inactivemetallocofactor (fig. S14)
(48). Treating cultures of E. lenta A2 with tung-
state inhibited dopamine dehydroxylation with-
out affecting growth (Fig. 2B and fig. S15), whereas
incubating cell lysates with tungstate had no ef-

fect, which is consistent with inhibition requir-
ing active moco biosynthesis (fig. S16). We next
confirmed the activity ofDadh in vitro.Heterologous
expression of >20 constructs in multiple hosts
failed to provide active enzyme, prompting us
to pursue native purification. Anaerobic activity–
guided fractionation of E. lenta A2 cell lysates
yielded a dopamine-dehydroxylating fraction
containing four proteins as assessed by means
of SDS–polyacrylamide gel electrophoresis (Fig. 2C,
fig. S17, and table S3). Dehydroxylation activity
correlated with a 115-kDa band that was con-
firmed withmass spectrometry (MS) to be Dadh.
Dadh was the only isolated protein up-regulated
in the presence of dopamine (tables S2 and S3).
Together, these data strongly support the assign-
ment of this enzyme.
We next assessed whether the presence of

dadh inmicrobial genomes correlatedwith dopa-
mine dehydroxylation. ABLASTP search revealed
that this enzyme is restricted to E. lenta and its
close Actinobacterial relatives (table S4), prompt-
ing us to screen a collection of 26 gut Actinobac-
terial isolates (49) for their ability to dehydroxylate
dopamine in anaerobic culture. Although Dadh
appeared to be encoded by 24 of the 26 strains
(92 to 100%amino acid ID) (fig. S18 and table S5),
only 10 Eggerthella strains quantitatively con-
verted dopamine tom-tyramine, with low (<11%)
or no metabolism in the others (Fig. 2D). This
strain-level variability in dopamine metabolism
reinforces that gut microbial species identity
is often not predictive of metabolic functions
(49, 50).
To better understand this variation, we first

performed RNA-sequencing experiments with
metabolizing (E. lenta 28B) and nonmetaboliz-
ing (E. lenta DSM2243) strains in the presence
and absence of dopamine. Surprisingly, dadhwas
up-regulated in response to dopamine in both
strains, indicating that lack of activity in E. lenta
DSM2243 did not arise from differences in tran-
scription (tables S6 and S7). Aligning the Dadh
protein sequences, we instead found a single
amino acid substitution that almost perfectly
predicted metabolizer status: Position 506 is an
arginine in metabolizing strains and a serine in
inactive strains (Fig. 2D and fig. S19). This change
arises from a single-nucleotide polymorphism
(SNP) in dadh. The only exception, E. lenta
W1BHI6, has the Arg506 variant and an addi-
tional substitution nearby (Cys500) (fig. S19).
Thus, specific amino acid residues in the Dadh
enzyme, rather than presence or transcription of
dadh, predict dopamine dehydroxylation among
gut bacterial strains. The Dadh variants do not
correlate with E. lenta phylogeny (Fig. 2D), sug-
gesting that this activity has been gained and/or
lost multiple times.

E. faecalis and E. lenta metabolize
L-dopa in human gut microbiotas

Having identified organisms and enzymes that
perform the individual steps in the L-dopa path-
way, we next tested whether E. faecalis and
E. lenta generated m-tyramine in coculture.
Wild-type E. faecalis grown with E. lenta A2
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(Arg506) fully converted L-dopa to m-tyramine
(Fig. 3A). Although a coculture containing the
E. faecalis tyrDC mutant could not consume
L-dopa, m-tyramine was produced when exog-
enous dopamine was added to this culture, re-
vealing that E. lenta A2 was still metabolically
active. Incubating wild-type E. feacalis with the
nonmetabolizing E. lenta DSM2243 (Ser506)
strain produced only dopamine, indicating that
this Dadh variant is also inactive in a coculture
setting (Fig. 3A).
To investigate whether E. faecalis and E. lenta

transform L-dopa in the human gut microbiota,
we assessed the metabolism of deuterated L-dopa
by fecal suspensions ex vivo. Whereas 7 of 19
samples did not show detectable depletion of
L-dopa, the remaining samples displayed sub-
stantial variability in metabolism, ranging from
partial (25%) to almost full conversion (98%) of
L-dopa to m-tyramine (Fig. 3B). We next asked
whether the abundance of tyrDC predicted me-
tabolism in these samples. Quantitative polymer-
ase chain reaction (qPCR) enumeration of tyrDC

(51) and E. faecalis discriminated metabolizing
and nonmetabolizing samples (P < 0.0001, one-
tailed Mann-Whitney test) (Fig. 3, C and D). By
contrast, E. lenta abundance showed no associa-
tion with L-dopametabolism (fig. S20). We found
a strong linear correlation between tyrDC abun-
dance and E. faecalis abundance [coefficient of
determination (R2) = 0.99, P < 0.0001] (fig. S21),
which likely reflects the high conservation of
tyrDC in E. faecalis genomes. These data also
suggest that E. faecalis is the dominant micro-
organism responsible for L-dopa decarboxylation
in these complex human gut microbial communi-
ties. Consistent with this, E. faecalis abundance
significantly correlated with tyrDC abundance
in 1870 human gut microbiomes (R2 > 0.812, P <
2.2 × 10–16, Pearson’s correlation) (fig. S22).
To confirm thatE. faecalis could decarboxylate

L-dopa in complex gut microbiotas, we added
this organism to nonmetabolizing samples. Al-
though introducing the tyrDC-deficient strain
did not change L-dopa levels, including the wild-
type strain led to complete depletion of L-dopa

(fig. S23, B to E). In some samples, addition of
wild-type E. faecaliswas sufficient to yield quan-
titative production ofm-tyramine, indicating
the presence of dopamine-dehydroxylating orga-
nisms in these communities (fig. S23, B and D).
Last, addition of both the wild-type E. faecalis
and the metabolizing strain E. lenta A2 to non-
metabolizing samples or the addition of E. lenta
A2 alone to a decarboxylating sample generated
m-tyramine (fig. S23, A and C to E). Taken to-
gether, these data indicate that the abundance
of E. faecalis and its encoded tyrDC predicts the
considerable interindividual variation in L-dopa
metabolism observed in complex human gut mi-
crobiota samples.
As expected from our previous experiments,

neither the abundance of E. lenta nor dadh
predicted dopamine dehydroxylation in complex
gut microbial communities (Fig. 3, E and F, and
fig. S24). However, when we amplified dadh
from these cultures and determined the SNP
status at position 506, we found samples that
contained the Arg506 variant quantitatively
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Fig. 3. E. faecalis and E. lenta Dadh predict L-dopa metabolism in
complex human gut microbiotas. (A) Metabolism of L-dopa by cocultures
of E. faecalis and E. lenta strains cocultured for 48 hours with 1mM d3-phenyl-
L-dopa or 1 mM dopamine. Results are mean ± SEM (n = 3 replicates).
(B) Metabolism of d3-phenyl-L-dopa by 19 unrelated human gut microbiota
samples ex vivo. Samples were cultured anaerobically with d3-phenyl-L-dopa
(1 mM) for 72 hours. Results are mean concentration ± SEM (n = 3
replicates). (C) The abundance of tyrDC predicts L-dopa decarboxylation
in human gut microbiota samples. Data represent the average tyrDC
abundance (as assessed with qPCR) across the three replicates for samples
in (B). Results are mean ± SEM (****P < 0.0001, one tailed Mann-Whitney
test). (D) The abundance of E. faecalis (as assessed with qPCR) predicts
L-dopa decarboxylation in human gutmicrobiota samples. Each data point is
the average abundance across three biological replicates for each sample
shown in (B). Results are mean ± SEM (****P < 0.0001, one-tailed Mann-

Whitney test). (E) Dopamine dehydroxylation by gut microbiota samples of
15 unrelated individuals. Samples were cultured for 48 hours with 0.5 mM
dopamine. Bars are mean ± SEM of n = 6 for low reducers (<50%) and n = 9
for high reducers (>50%) (*** P = 0.0002, one tailed Mann-Whitney test).
(F) Dadh abundance does not correlate with dehydroxylation by human
gut microbiotas. Data represent qPCR with Dadh-specific primers. Each
data point is the dadh abundance in each sample shown in (E). Bars
represent the mean and SE. (G) Dadh sequence variants predict dopamine
dehydroxylation ex vivo. Full-length dadh from each culture in (E) was
sequenced by using primers specific for the region containing position
506. Samples in which a mix of variants were present (n = 5) were removed.
Bars represent the mean and SEM [n = 3 for samples encoding the
Arg506 Dadh variant, n = 7 for samples encoding the Ser506 Dadh variant.,
n = 3 for DSM2243, and n = 3 for A2] (** P = 0.0083, one-tailed
Mann-Whitney test, CGC samples versus AGC samples).
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metabolized dopamine, whereas the activity
of samples that carried the Ser506 variant was
indistinguishable from the nonmetabolizing
E. lenta DSM2243 strain (Fig. 3G). These find-
ings indicate that a single amino acid residue
in a gut microbial enzyme predicts dopamine
metabolism in complex communities. Given
that dadh is highly prevalent (>70%) in gut
microbiomes from human subjects and the two
dadh variants are present among this popula-
tion (figs. S22 and S25), we speculate that SNPs
may influence xenobiotic metabolism in the
context of both the host genome (52) and the
human gut microbiome (53).
To further explore the clinical relevance of our

findings, we assessed themetabolism of dopamine
and L-dopa by fecal suspensions from Parkinson’s
disease patients ex vivo. Similar to control sub-
jects, these individuals displayed substantial
variability in metabolism of L-dopa (fig. S26A).
qPCR assays revealed that tyrDC abundance
and E. faecalis abundance discriminated between
L-dopa decarboxylating and nondecarboxylating
samples (P < 0.005, one-tailed Mann-Whitney
test) (fig. S26, C and D).We also observed deple-
tion of L-dopa without corresponding produc-
tion of dopamine orm-tyramine in three samples
(fig. S26A). Instead, L-dopa was converted to
hydroxyphenylpropionic acid (fig. S26B), a path-
way thought to make a minor contribution to
drug metabolism in vivo (22, 25, 26). Last, we
found that the dadh SNP predicted dopamine
dehydroxylation in these samples (fig. S27). Over-
all, these data support a role for gut bacteria in
the extensive interindividual variability in L-dopa
decarboxylation observed in Parkinson’s patients
(13). A recent study reported that stool tyrDC
abundance is positively correlated with L-dopa
dosage in patients (38) but did not demonstrate
a connection between tyrDC and L-dopa de-
carboxylation in these samples. Our findings
indicate this metabolic activity may indeed affect
L-dopa therapeutic efficacy.

(S)-a-Fluoromethyltyrosine (AFMT)
inhibits gut microbial
L-dopa metabolism

Having shown that E. faecalis and E. lenta en-
zymes predict L-dopa metabolism by complex
patient gut microbiotas, we next investigated
whether this interspecies pathway was suscepti-
ble to inhibition by drugs that target peripheral
L-dopa decarboxylation. In the United States,
Parkinson’s patients are coprescribed carbidopa
(Fig. 4A), an L-dopa mimic that inhibits AADC
by forming a stable, covalent hydrazone linkage
with its PLP cofactor (54). We found carbidopa
was 200 times less active toward purifiedE. faecalis
TyrDC [half maximal inhibitory concentration
(IC50) = 57 mM] relative toH. sapiensAADC (IC50 =
0.21 mM) and showed only ~50% inhibition of
L-dopa decarboxylation by E. faecalis cultures at
the solubility limit of 2 mM (Fig. 4, B and C, and
table S8),which is consistentwith recently reported
findings (38). Additionally, carbidopa did not affect
growth of E. faecalis or metabolism or growth
of E. lenta (figs. S28 to S30). Given the maximum
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concentration (Cmax) of L-dopa is significantly higher with AFMT relative to vehicle controls. In (H)
and (I), *P < 0.05, Mann-Whitney U test; n = 4 to 5 mice per group.
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predicted gastrointestinal concentration of car-
bidopa (0.4 to 9mM), these data suggest that this
drug does not fully inhibit gut bacterial L-dopa
decarboxylation in Parkinson’s patients. We
found that 2 mM carbidopa did not alter the
kinetics of L-dopa degradation (fig. S31) or end-
point m-tyramine production in stool samples
from both Parkinson’s patients and neurolog-
ically healthy controls (Fig. 4D and fig. S32).
These observations support previous findings
that carbidopa administration does not affect
m-tyramine production in patients (55).
Our results also highlight the possibility of

therapeutically targeting gut microbial L-dopa
decarboxylation to increase L-dopa efficacy. To
selectivelymanipulate gut bacterial TyrDC in com-
plex microbiotas, we turned to a-fluoromethyl
amino acids, which are knownmechanism-based
inhibitors of PLP-dependent decarboxylases (33).
A survey of potential amino acid substrates re-
vealed that TyrDC requires a p-hydroxyl group
for robust activity, whereas AADC prefers a
m-hydroxyl substituent (fig. S33), leading us to
hypothesize that the L-tyrosine analog (S)-a-
fluoromethyltyrosine (AFMT) (Fig. 4A) might
selectively inhibit themicrobial enzyme. In vitro,
AFMT strongly inhibited L-dopa decarboxylation
by TyrDC (IC50 = 4.7 mM) but not AADC (~20%
inhibition at solubility limit of 650 mM) (Fig. 4E
and table S8). Consistent with this selectivity,
AFMT formed a covalent PLP adduct only in
the presence of TyrDC (Fig. 4F). AFMTwas also
effective in E. faecalis cultures (EC50 = 1.4 mM)
(Fig. 4C), outperforming carbidopa by 1000-fold
without affecting growth (table S8 and fig. S29).
It also reduced L-dopa decarboxylation by co-
cultures of E. faecalis and E. lentawithout affect-
ing growth or metabolism of E. lenta (figs. S29,
S30, and S34). Last, AFMT completely inhibited
L-dopa decarboxylation in gut microbiota samples
from Parkinson’s disease patients and neurologi-
cally healthy control subjects (Fig. 4G and fig. S35)
and was nontoxic to eukaryotic cells (fig. S36).
To investigate AFMT activity in vivo, we ad-

ministered either AFMT (25 mg/kg) or a vehicle
control in combination with L-dopa (10 mg/kg)
and carbidopa (30 mg/kg) to gnotobiotic mice
colonized with E. faecalisMMH594 (Fig. 4H).
We found that AFMT significantly increased
the peak serum concentration (Cmax) of L-dopa
compared with vehicle (P < 0.05, two-tailed
MannWhitney test) (Fig. 4I), which is consistent
with inhibition of first-pass gut microbial metab-
olism in the intestine. Although we cannot rule
out the possibility that AFMT modulates addi-
tional, uncharacterized targets, this observation
is consistent with our in vitro inhibition data.
This result also aligns with a recent report that
small intestinal tyrDC abundance negatively
correlates with plasma L-dopa levels in conven-
tional rats receiving L-dopa and carbidopa (38).
Overall, these data suggest that AFMT could be
a promising tool compound for the study of
bacterial L-dopa metabolism (56) and highlight
the promise of developing L-dopa–based com-
bination therapies containing drugs that target
both host and gut microbial decarboxylation.

Conclusions
Wehave used chemical knowledge and interdis-
ciplinary tools to decipher the molecular mech-
anisms by which gut bacteria interfere with the
treatment of Parkinson’s disease. The decarbox-
ylation of L-dopa by E. faecalismirrors host drug
metabolism and, together with human AADC,
likely limits drug availability and contributes to
interindividual variation in efficacy. Together
with recent work dissecting host and gut micro-
bial contributions to the antiviral drug brivudine
(57), our findings show that gut bacterial metab-
olism need not be chemically distinct from host
activities to alter drug efficacy and suggest that
such interactions may be underappreciated.
Moreover, carbidopa’s failure to prevent L-dopa
decarboxylation by E. faecalis implies that ad-
ditional host-targeted drugs may lack efficacy
toward activities also present in the gut micro-
biota. Although a recent, independent study
also characterized E. faecalis TyrDC’s role in
L-dopa decarboxylation and its lack of sus-
ceptibility to carbidopa (38), it did not show
that this activity occurs in human gut micro-
biotas or identify strategies for inhibiting the
bacterial enzyme. By contrast, we demonstrate that
TyrDC predicts drug metabolism in Parkinson’s
patient microbiotas and use an understanding
of its substrate specificity to identify a small
molecule that prevents L-dopa decarboxylation
in patient samples and increases L-dopa bio-
availability in vivo. Through discovery of pre-
dictive biomarkers for L-dopa metabolism and
identification of an inhibitor of this activity, this
work will enable efforts to elucidate the con-
tribution of the gut microbiota to drug availa-
bility, patient drug response, and treatment
outcomes.
We also show that E. lenta further metabolizes

the dopamine produced by L-dopa decarboxyla-
tion using a distinctlymicrobial reaction, catechol
dehydroxylation. It is possible that this transfor-
mation influences the multiple side effects of
L-dopa administration linked to dopamine pro-
duction. This discovery also raises questions
about the biological consequences of gut micro-
bialmetabolism of endogenous dopamine, which
is present in the gastrointestinal tract and has
been linked to phenotypes ranging from gut
motility to pathogen colonization (58–60). The
biological activity of the gutmicrobialmetabolite
m-tyramine in the host and the benefits of this
metabolism for E. lenta are also poorly under-
stood. Our findings will enable further study of
these phenomena. Given that gut microbes de-
hydroxylate catechol groups found in numerous
aromatic drugs anddietary compounds (18, 61–63),
the discovery of Dadh will enable identification
of additional catechol dehydroxylases and help
to elucidate the biological role of this enigmatic
transformation. Uncovering the unexpected ef-
fect of SNPs on gut microbial dopaminemetab-
olism suggests that simply detecting functional
genes may not accurately predict the activities
encoded by the human gut microbiome and
underscores the importance of studying enzymes
from this community.

Materials and methods summary
Our methods for the identification and bio-
chemical characterization of E. faecalis TyrDC;
characterization of anaerobic L-dopa metabo-
lism by E. faecalis and gut microbiota samples;
enrichment culturing for dopamine dehydrox-
ylating organisms; RNA-sequencing; culture-
based assays; purification of Dadh; assays of
anaerobic dopamine metabolism by Actinobacte-
ria and complex gutmicrobiota samples; PCR and
qPCR assays; liquid chromatography–MS (LC-MS)
methods; and assays for evaluating inhibitors
in vitro, ex vivo, and in vivo are provided in the
supplementary materials. Additional informa-
tion about our protocols, including references
to the supplementary materials, can be found
throughout the main text.
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indicates possibilities for developing combinations of Parkinson's drugs to circumvent microbial inactivation.

-fluoromethyltyrosine (AFMT), whichα)-S-tyramine. The microbial l-dopa decarboxylase can be inactivated by (minto 
 A2 sequentially metabolized l-dopaEggerthella lenta and dopamine dehydroxylase (Dadh) from Enterococcus faecalis

of bacterium are involved in l-dopa metabolism (see the Perspective by O'Neill). Tyrosine decarboxylase (TDC) from 
 found that different specieset al.l-dopa before it crosses the blood-brain barrier, medication is ineffective. Maini Rekdal 

composition of their microbiota. l-Dopa is decarboxylated into active dopamine, but if the gut microbiota metabolize 
The efficacy of l-dopa treatment for Parkinson's disease is hugely variable between individuals, depending on the
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