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Objective: We aim to examine the adequacy of an innovation state-space modeling frame-
work (called TBATS) in forecasting the long-term epidemic seasonality and trends of 
hemorrhagic fever with renal syndrome (HFRS).
Methods: The HFRS morbidity data from January 1995 to December 2020 were taken, and 
subsequently, the data were split into six different training and testing segments (including 
12, 24, 36, 60, 84, and 108 holdout monthly data) to investigate its predictive ability of the 
TBATS method, and its forecasting performance was compared with the seasonal autore-
gressive integrated moving average (SARIMA).
Results: The TBATS (0.27, {0,0}, -, {<12,4>}) and SARIMA (0,1,(1,3))(0,1,1)12 were 
selected as the best TBATS and SARIMA methods, respectively, for the 12-step ahead 
prediction. The mean absolute deviation, root mean square error, mean absolute percentage 
error, mean error rate, and root mean square percentage error were 91.799, 14.772, 123.653, 
0.129, and 0.193, respectively, for the preferred TBATS method and were 144.734, 25.049, 
161.671, 0.203, and 0.296, respectively, for the preferred SARIMA method. Likewise, for the 
24-, 36-, 60-, 84-, and 108-step ahead predictions, the preferred TBATS methods produced 
smaller forecasting errors over the best SARIMA methods. Further validations also sug-
gested that the TBATS model outperformed the Error-Trend-Seasonal framework, with little 
exception. HFRS had dual seasonal behaviors, peaking in May–June and November– 
December. Overall a notable decrease in the HFRS morbidity was seen during the study 
period (average annual percentage change=−6.767, 95% confidence intervals: −10.592 to 
−2.778), and yet different stages had different variation trends. Besides, the TBATS model 
predicted a plateau in the HFRS morbidity in the next ten years.
Conclusion: The TBATS approach outperforms the SARIMA approach in estimating the 
long-term epidemic seasonality and trends of HFRS, which is capable of being deemed as 
a promising alternative to help stakeholders to inform future preventive policy or practical 
solutions to tackle the evolving scenarios.
Keywords: HFRS, hantavirus, TBATS, SARIMA, ETS, trend, seasonality, time series 
analysis

Introduction
Hemorrhagic fever with renal syndrome (HFRS) is a zoonosis as a consequence of 
the infection with several different families of Hantaviruses, which are predomi-
nantly carried and transmitted by the natural reservoir of rodents and can be 
exposed to humans via the urine, droppings, or saliva of virus carriers.1 The clinical 
manifestations of HFRS are characterized by different degrees of fever, bleeding 
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headache, abdominal pain, and acute kidney damage.2 The 
Hantaviruses are distributed globally yet varied greatly in 
different regions.3 In Asia, the HFRS-causing pathogenic 
agents predominantly include Hantaan virus (HTNV), 
Seoul virus (SEOV), and Amur virus (AMRV); whereas 
in Europe, mainly comprising Puumala virus (PUUV), 
Sochi virus (SOCV), and Dobrava-Belgrade virus 
(DOBV).3–5 HFRS is currently found in more than 70 
countries, but it is mainly endemic in Asian and 
European continents, especially in China, Russia, and 
Korea.1,3,4 Among them, China is always hit the hardest 
country with HFRS in the past, accounting for around 70– 
90% documented case notifications throughout the world 
each year.6 HFRS still poses a major public health concern 
in China because of its ongoing epidemic in 28 of 31 
provinces, with approximately 10,000–30,000 case notifi-
cations annually,7,8 resulting in case-fatality rates (CFRs) 
from 1%-14%, contingent on which virus is causing the 
HFRS.1,4 In China, the reported HFRS cases are predomi-
nately associated with the causative pathogens of HTNV 
and SEOV,9 and the HFRS-causing HTNV accounts for 
around 70% of the number of case notifications.8 Since the 
1990s, a considerable reduction in the HFRS incidence has 
been witnessed, attributable to the implementation of such 
comprehensive interventions as effective rodent control, 
environmental management, improvement of people living 
standards, and vaccination in China.5 However, HFRS 
seemingly signals a recurring risk in China in recent 
years owing to its continued rise in case notifications and 
the extension of geographical distribution to 31 provinces 
across China.5,8,10 Basic to any development of prevention 
and control measures is an accurate quantitative analysis 
for the secular epidemiological trends and seasonality of 
diseases. Therefore, it is essential to make a long-term 
estimation for the timing, extent, and duration of HFRS 
by use of a forecasting model with good reliability and 
strong robustness.

There are a large volume of published researches that 
developed different mathematical techniques to analyze 
and estimate the upcoming epidemics of infectious dis-
eases for different forecasting aims. The common forecast-
ing tools include autoregressive integrated moving average 
(ARIMA) model,11 exponential smoothing (ES) 
methods,12 generalized regression neural network 
method,13 autoregressive distributed lag method,14 grey 
approaches,15 back-propagation neural network 
technique,16 generalized linear regression models,17 sup-
port vector machine regression method,18 and 

autoregressive conditional heteroskedasticity (ARCH) 
method.19 The above-mentioned methods may provide 
a satisfactory result in their respective prediction domain. 
However, on the one hand, these models are often well 
suited for performing a short-term forecast as they are 
under either linear or nonlinear assumption,11 which may 
limit their ability to be generalized in that a long-term 
ahead forecast can often offer informative clues in the 
decision-making process in practice. On the other hand, 
the existing predictive methods typically conduct 
a successful forecast for a simple time series (eg, single 
seasonal time series), and yet it is difficult to handle the 
complex time series with multiple seasonal periods, high- 
frequency seasonality, non-integer seasonality, and dual- 
calendar effects.20,21 Importantly, it has been demonstrated 
that HFRS shows bimodal seasonal patterns in many coun-
tries such as China,6,10 Russia,4 and Korea,22 which may 
lead to an inaccurate forecasting result for the upcoming 
epidemics of HFRS using the common predictive methods. 
At this time, the advanced innovation state-space modeling 
framework by combining Box-Cox transformations, 
Fourier series with time-varying coefficients and autore-
gressive moving average (ARMA) error correction method 
(called TBATS) is tailored for extraction with the informa-
tion included in a complex time series described above.21 

Furthermore, the TBATS approach can not only be used to 
deal with the linear issue but can handle some types of 
non-linearity based on Box-Cox transformations,23 whilst 
allowing for time-dependent dynamic seasonality,24 which 
enables this advanced method to have the potential to 
make a long-term forecast. Moreover, the TBATS 
approach also has a powerful ability to decompose 
a complex seasonal time series into constituent latent 
subseries,21 which fails to be done by the aforementioned 
common methods. In the past, the advanced TBATS model 
has been used to nowcast and forecast the flow time series 
in water distribution systems,25 the demand for the electric 
energy,26 and spatiotemporal variations and characteriza-
tion of benzene,23 and the resulting results indicated that 
this advanced method could produce a relatively high 
forecasting accuracy in these fields. However, there is no 
study to use this advanced method to analyze and evaluate 
the long-term epidemiological trends and seasonality of 
HFRS. Considering the attractive performance of the 
TBATS approach and the epidemic patterns of HFRS in 
China, the primary goal of this study is to describe and 
forecast the long-term epidemic trends and seasonality of 
HFRS with the advanced TBATS method. Meanwhile, to 
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demonstrate the potential of this advanced method and its 
suitability for the application in forecasting the long-term 
spreading patterns of HFRS, its predictive accuracy level 
was compared with the ARIMA method that has been 
deemed as the most common and useful methodology in 
the different domains of time series forecasting.6,7,27–29

Materials and Methods
Data Collection
Currently, there are 40 notifiable contagious diseases in 
China. The confirmed cases of these diseases must be 
reported to the National Notifiable Infectious Disease 
Surveillance System (NNIDSS). HFRS is among them. 
Thus, we retrospectively took the monthly HFRS incidents 
and population data between January 1995 and 
December 2020 from the internet-based NNIDSS and the 
Statistical Yearbook of China, respectively. Finally, a total 
of 312 observations covering 26 years were gathered. 
Often, to build an effective and stable method, preferably 
100 observations or more are expected to be adopted.30 In 
this study, we aim to conduct a long-run forecast for the 
HFRS epidemics. To this end, we split the whole data into 
six different training datasets and testing datasets (ie, the 
forecast horizons included 12, 24, 36, 60, 84, and 108 
data) so that a series of experiments were performed to 
validate the generalization and the forecasting robustness 
of the methods.

The study protocol was approved by the institutional 
review board of Xinxiang Medical University (No: XYLL- 
2019072), and the ethical approval is not warranted for 
this research as these data without personal information 
are publicly available.

Developing SARIMA Method
Time series often shows a noticeable link between succes-
sive data. The ARIMA method is introduced to make 
a forecast by mining the intrinsical attributes and inherent 
rules of time series data.31 HFRS frequently has notable 
seasonal effects,2,10 and hence the seasonal ARIMA 
(SARIMA) method should be adopted. In this method, 
the seasonality of HFRS was thought of as the predictors 
and the monthly HFRS incidence as the response variable. 
The SARIMA method is composed of three parts:28 the 
“AR” signifies the autoregressive approach, the “I” 
denotes integration, and the “MA” refers to the moving 
average approach. The basic notation of this method can 
be written in the form of SARIMA(p, d, q)(P, D, Q)s, 

where p is the orders of AR, d is the orders of integration, 
and q is the orders of MA, (P, D, Q) correspond to the 
seasonal components of the above three parameters.28 In 
creating the best SARIMA method, the most key step is to 
search for its suitable parameters. Currently, most software 
programs allow an automatic selection of the most appro-
priate parameters. The “Expert Modeler” in SPSS software 
provides an elegant way of choosing the preferred para-
meters of the SARIMA method.32 Of all the plausible 
parameters, those that maximize the R-square (R2) and 
stationary R2, and minimize the Normalized Schwarz’s 
Bayesian Information Criterion (NBIC) were first 
selected.33 Subsequently, the t-test was used to investigate 
the statistical significance of the identified parameters.29 

Next, autocorrelogram, partial autocorrelogram, and 
Ljung-Box Q test were applied to the residuals to investi-
gate whether the produced forecasting errors behaved like 
a white noise series.29 Once the method passed all the 
required tests, it can be said that the selected parameters 
are suitable and adequate. Finally, a forecast into the next 
periods can be done with this best approach.

Developing TBATS Method
The traditional single seasonal ES models have a limited 
capacity to deal with such a complex time series compos-
ing of multiple seasonal behaviors, non-integer seasonal 
behaviors, and dual-calendar effects,21 despite their wide-
spread use in practice.12,34 Some researchers strive for the 
extension of the single seasonal Holt-Winters’ method by 
accommodating a second seasonal pattern to analyze the 
time series including two seasonal behaviors.20 However, 
this extended model was shown to suffer from over-para-
meterization as there are a large number of parameters that 
require to be calculated for the preliminary seasonal beha-
viors, especially when the target series is composed of 
high-frequency seasonal behaviors, further heightening 
the need for the modifications of the traditional ES 
approaches to deal with a wider variety of seasonal pat-
terns and to resolve the issues raised above. To do this, 
researchers pay more attention to linear homoscedastic 
approaches but consider some types of non-linear patterns 
with Box-Cox transformations, in view of the complexity 
by extending non-linear ES approaches to deal with the 
complex time series described above, and the BATS(p, q, 
m1, m2,…, mT) method was hence introduced, herein 
B signifies the Box-Cox transformation, A signifies the 
ARMA model, T and S signify the trend and seasonal 
patterns in the target series, respectively. The parameters 
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include the orders (p and q) of the ARMA approach and 
the seasonal periods (m1,…, mT). Albeit the BATS method 
is successful in modeling multiple seasonal periods in the 
target series, it fails to address the non-integer seasonality 
issue and needs to estimate a considerably large number of 
parameters since the initial seasonal patterns separately 
include m1 + m2 + · · · + mT parameters, resulting in too 
many values when the target series contains high-fre-
quency seasonal components. To deal with the problems 
raised above, researchers made a further generalization of 
the BATS method by introducing a novel trigonometric 
representation of seasonal behaviors based on the Fourier 
series. By doing so, this new method can significantly not 
only cut the number of parameters that need estimation but 
can model the non-integer seasonality in the time series.21 

This advanced modified method can be denoted as TBATS 
(ω, p, q, φ, {m1, k1}, {m2, k2},…,{mT, kT}), herein ki 

represents the corresponding number of Fourier terms used 
for each seasonality, ω signifies the BoxCox parameter, 
and φ refers to the damping parameter that facilitates the 
trend extrapolation of the model when the trend pattern is 
dampened.23 Additionally, the use of trigonometric func-
tions also helps the TBATS method to decompose 
a complex time series into secular trend, seasonality, and 
error components.25

Statistical Analysis
The changing epidemiological trends of HFRS were esti-
mated using average annual percentage change (AAPC) 
and annual percentage change (APC) based on the join-
point regression program (Version 4.8.0.1). The SARIMA 
method was created using the “Expert Modeler” function 
in SPSS software (version 17.0, IBM Corp, Armonk, NY) 
and the TBATS method was built with R software (Version 
3.4.3, The R Foundation for Statistical Computing, 
Vienna, Austria). The incidence rate ratio (IRR) with 
95% confidence intervals (CIs) between different variation 
trends of HFRS was computed by use of comparison of 
two proportions.35

To see the predictive accuracy, two types of measure-
ment indicators were computed, including the scale-depen-
dent measurement indicators comprising the mean 
absolute deviation (MAD) and root mean square error 
(RMSE), and the measurement indicators based on percen-
tage errors comprising the mean absolute percentage error 
(MAPE), mean error rate (MER), and root mean square 
percentage error (RMSPE). The smaller values of these 
measures above corresponded to a better model.

MAD ¼
1
N

∑N
i¼1 Xi � X̂ i
�
�

�
� (1) 

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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1
N
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Xi � �X i

Xi
Þ

2
s

(5) 

where Xi represents the monthly HFRS incidence data, X̂i 

refers to the forecasting data, �Xi stands for the mean of the 
HFRS incidence data, and N is the number of forecasts.

Results
Statistical Description
There were 576,361 notified HFRS cases over the period 
1995–2020, resulting in yearly and monthly average mor-
bidity rates of 1.689 and 0.141 per 100,000 people, respec-
tively. According to the resultant results of joinpoint 
regression (Figure 1), overall a notable reduction in 
HFRS morbidity was seen, with AAPC=−6.767 (95% 
CIs: −10.592 to −2.778; t=−3.278, p=0.001), and yet dif-
ferent stages had different variation trends: a decreasing 
trend during 1995–2004, with APC=−8.964 (95% CIs: 
−11.667 to −6.179; t=−6.547, p<0.001); during 2004– 
2008, with APC=−37.153 (95% CIs: −37.153 to 3.279; 
t=−1.828, p=0.084); during 2008–2020, with APC= 
−0.349 (95% CIs: −3.992 to 3.431; t=−0.197, p=0.846), 
and it seemed to show a cyclical fluctuation with 3–5 years 
since 2008. The average incidence for the period 2008– 
2020 decreased by a factor of almost four compared to that 
for the period 1995–2004 (0.805 vs 3.065 per 100,000 per-
sons; IRR=3.807, 95% CIs: 3.786 to 3.828), decreased by 
1.6-fold than that for the period 2004–2008 (0.805 vs 
1.324 per 100,000 persons; IRR=1.643, 95% CIs: 1.630 
to 1.656). Visibly, as depicted in Figure 2, people could be 
infected with HFRS all through the year. Nonetheless, the 
HFRS epidemics presented pronounced dual seasonal pat-
terns per year, with a weak peak between May and June, 
a secondary strong peak between November and 
December, and a trough between August and September.
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The Optimal SARIMA Method
In constructing the SARIMA method, the “Expert 
Modeler” function was run on the in-sample data between 
January 1995 and December 2019, which automatically 
identified the SARIMA(0,1,(1,3))(0,1,1)12 specification as 
the preferred model for the 12-data ahead forecast since 
among all the possible methods, the parameters of this 
method corresponded to the maximum R2 value of 0.933 
and stationary R2 value of 0.473, along with the minimum 
NBIC value of 11.702 (Table 1). Further diagnostic check-
ing for this optimal method showed that the resulting key 
parameters were statistical significance (MA1=0.355, 
MA3=0.253, SMA1=0.747; all p-values<0.001), and the 
resulting forecast errors could be thought of as an uncor-
related series in that there were little sample autocorrela-
tion function (ACF) and partial ACF (PACF) outside the 
95% CIs and there was no statistical difference under 
Ljung-Box Q test (Q(18)=13.709, p=0.548) (Table 1 and 
Figure 3). The above diagnostic results meant that the 

identified SARIMA (0,1,(1,3))(0,1,1)12 specification was 
capable of tracking the epidemiological trends of HFRS 
effectively and sufficiently. Likewise, the SARIMA (1,1, 
(2,3))(0,1,1)12, SARIMA (0,1,(1,3))(0,1,1)12, SARIMA 
(0,1,1)(0,1,1)12, SARIMA (1,0,0)(0,1,1)12, and SARIMA 
(1,0,0)(0,1,1)12 specifications were considered as the best 
model to forecast the 24, 36, 60, 84, and 108 holdout data, 
respectively, and the resulting diagnostic overviews for the 
five best SARIMA versions were visible in Table 1 and 
Figures S1–S5. Afterward, projecting into different future 
periods could be done by use of these best SARIMA 
methods (Figure 4 and Tables S1–S6).

The Optimal TBATS Method
The predictive results under TBATS method depend largely 
on the number of Fourier terms used for each seasonal 
component, and it is difficult to consider all potential com-
binations when detecting the most adequate harmonics ki in 
application.21 It was demonstrated that the use of Akaike’s 

Figure 1 Joinpoint regression plot displaying the HFRS epidemiological trends from 1995 to 2020. *Showed that the annual percent change (APC) is statistically significant.
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Information Criterion (AIC) is of great help for automated 
method selection.23 Therefore, in choosing the best TBATS 
method, taking one seasonal pattern each time into account, 
we simulated the model to the training series repeatedly by 
the gradual increase of the numbers of ki but keeping all 
other harmonics constant each time, until the lowest AIC 
value is detected. In searching for the best TBATS method, 
appropriate parameters of the orders (p and q) of the ARMA 
method must also be selected. Fortunately, these two values 
can be determined by use of the automatic ARIMA algo-
rithm to the forecast errors under the model with optimal ki 

combination above.36 If the identified method with ARMA 
component gives lower AIC compared to that without 
ARMA component, this model would be retained; other-
wise, the ARMA component was not included in the 
model. After a series of attempts, it was discovered that 
the TBATS (0.27, {0,0}, -, {<12,4>}) specification was 
expected to be the preferred model for the forecast of 12 
holdout periods because there was a lower AIC value of 
5012.207 in this TBATS model than in others, and the 

resulting key parameters, statistical checking and constituent 
latent subseries are illustrated in Table S7 and Figures S6 
and S7. Similarly, according to the modeling processes 
above, the TBATS (0.285, {3,0}, -, {<12,4>}), TBATS 
(0.289, {0,3}, -, {<12,4>}), TBATS (0.302, {0,0}, -, 
{<12,4>}), TBATS (0.34, {0,0}, -, {<12,4>}), and TBATS 
(0.325, {0,0}, -, {<12,4>}) specifications were selected as 
the best models, respectively, for the 24-, 36-, 60-, 84-, and 
108-step ahead forecasts, and the resulting additional sum-
mary statistics for their key parameters, statistical checking 
and constituent latent subseries are reported in Table S7 and 
Figures S6, S8–S12. Subsequently, a prediction into the 
upcoming HFRS epidemics was able to be achieved based 
on these best TBATS versions (Figure 4 and Tables S1–S6).

Forecasting Performance Evaluation 
Between Methods
Table 2 summarizes the measurement metrics testing the 
predictive accuracy on different datasets under the best 
SARIMA and TBATS approaches, and the resulting data 

Figure 2 Probability density plot showing the monthly HFRS incidence. As depicted, HFRS showed notable seasonal variation, with a strong peak in November and 
December, and a weak peak in May and June.
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pinpointed that the advanced best-fitting TBATS methods 
presented notably lower values of MAD, MAPE, RMSE, 
RMSPE, and MER over the best-fitting SARIMA meth-
ods, with improvements of at least 18% and at most 88% 
in the accuracies for analyzing both the short- and long- 
term trends, although the forecasting accuracy displayed 
a slight decrease with the increase of holdout periods 
(Table 2 and Figure 4). Considering the advantage of the 
TBATS method in the estimation of the HFRS epidemics, 
we re-constructed the best-performing TBATS (0.286, 
{3,0}, -, {<12,4>}) model based on the 26 entire years 
of data to nowcast and forecast the HFRS morbidity into 
2030 accordingly, and seemingly projecting a plateau of 
around 90,120 (95% CIs: 25,358 to 244,667) cases, with 
monthly average 751 (95% CIs: 211 to 2039) case notifi-
cations in the next ten years (Figure 5).

Discussion
HFRS poses a serious public health threat in China. 
Accurately nowcasting and forecasting its epidemic trends 
and seasonality in the next years are capable of providing 
the stakeholders some significant hints to develop effective 
and feasible plans to address the evolving scenarios.37 

Although numerous forecasting tools have been applied 
to do this,38–44 most existing predictive models may be 
inadequate in analyzing time series with complex seasonal 
patterns due to their different assumptions,44 enhancing the 
need for the use of the statistical approaches to handle 
complex seasonal traits. The advanced TBATS approach is 
tailored for suiting all the requirements of complex time 
series.21 However, studies on the use of the TBATS 
approach to analyze the long-term epidemic trajectories 
of contagious diseases are rare. Therefore, the current 

Table 1 The Best-Performing SARIMA Models Obtained on the Various Training Sets and Their Parameter Estimations and Goodness 
of Fit Tests

Parameters Coefficients S.E. t p Stationary 
R2

R2 NBIC Ljung-Box(18)

Statistics p

SARIMA(0,1,(1,3))(0,1,1)12 approach created with the log-transformed data between January 1995 and December 2019

MA1 0.355 0.054 6.587 <0.001 0.473 0.933 11.702 13.709 0.548
MA3 0.253 0.054 4.684 <0.001

SMA1 0.747 0.044 17.115 <0.001

SARIMA(1,1,(2,3))(0,1,1)12 approach created with the log-transformed data between January 1995 and December 2018

AR1 −0.359 0.061 −5.874 <0.001 0.459 0.931 11.781 20.796 0.107
MA2 0.141 0.063 2.259 0.025

MA3 0.245 0.059 4.152 0.001

SMA1 0.743 0.046 16.237 <0.001

SARIMA(0,1,(1,3))(0,1,1)12 approach created with the log-transformed data between January 1995 and December 2017

MA1 0.357 0.057 6.298 <0.001 0. 459 0.930 11.789 11.570 0.711
MA3 0.253 0.057 4.441 <0.001
SMA1 0.738 0.047 15.713 <0.001

SARIMA(0,1,1)(0,1,1)12 approach created with the log-transformed data between January 1995 and December 2015

MA1 0.371 0.061 6.118 <0.001 0.442 0.922 11.914 23.809 0.094
SMA1 0.721 0.050 14.293 <0.001

SARIMA(1,0,0)(0,1,1)12 approach created with the log-transformed data between January 1995 and December 2013

AR1 0.709 0.048 14.694 <0.001 0.521 0.895 12.288 18.575 0.291
SMA1 0.584 0.062 9.443 <0.001

SARIMA(1,0,0)(0,1,1)12 approach created with the log-transformed data between January 1995 and December 2011

AR1 0.658 0.055 12.000 <0.001 0.507 0.892 12.367 16.163 0.442
SMA1 0.593 0.066 8.983 <0.001

Abbreviations: SARIMA, seasonal autoregressive integrated moving average method; S.E., standard error; NBIC, Normalized Schwarz’s Bayesian Information Criterion; 
AR1, autoregressive method at lag1; MA1, moving average method at lag1; MA2, moving average method at lag2; MA3, moving average method at lag3; SMA1, seasonal 
moving average method at lag1.
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study, for the first time, focused on the exploration of the 
utility and adequacy in nowcasting and forecasting the 
long-term epidemiological trends and seasonality of 
HFRS, and its predictive accuracy level was compared 
with the most versatile SARIMA method in the field of 
time series modeling.11,13,16,33 It was discovered that the 
advanced TBATS methods get a more clear perspective of 
capturing the dynamic dependency structure in the spread-
ing of HFRS over the SARIMA methods in a series of 
modeling experiments. What’s more, the long-term fore-
casting results to emerge from the advanced TBATS 
method remained reliable and robust with the increase of 
prediction time windows, despite a slight rise in the values 
of measurement metrics, including MAD, MAPE, RMSE, 
RMSPE, and MER. By contrast, the SARIMA model has 
been unable to analyze and capture the long-term trends of 
HFRS after 60-step ahead predictions as it produced 
a MAPE value (which is frequently computed to assess 
the forecasting accuracy level, a forecast with MAPE 
value greater than 50% is considered unacceptable45) 
greater than 50% in both 84 and 108 holdout periods, 
further providing evidence that the SARIMA method is 
valid for assessing short- or medium-term trends.46 Our 

recent work suggests that the Error-Trend-Seasonal frame-
work (ETS) technique has many attractive applications in 
analyzing the long-run temporal behaviors.33,46 

Accordingly, we further established the ETS approach 
based on the HFRS incidence data to nowcast and forecast 
its epidemics, and the resulting results indicated that the 
TBATS method is also more useful and robust for describ-
ing the long-term trends of HFRS than the ETS technique, 
except that in 60-step ahead forecast (Table S8). Also, we 
used the HFRS incidence data in Liaoning province and 
Shanxi province (which were hit the hardest with HFRS in 
the past decades in China) to validate the forecasting 
reliability of TBATS model. The remarkable results to 
emerge from these data suggested that the advanced 
TBATS method still generated a higher forecasting accu-
racy compared to the SARIMA model (Table S9). As 
a result, the advanced TBATS method is able to be recom-
mended as a promising and powerful alternative to analyze 
the long-run trends and seasonality of HFRS in China. In 
the meantime, this advanced TBATS approach also pro-
vides a serviceable aid for directing the present intensity 
and type of public health measures.47 For instance, if the 
temporal patterns of HFRS were to start to recede, while 

Figure 3 Diagnostic test plots for the forecasting errors of the SARIMA model created with the data between 1995 and 2019. (A) Autocorrelation function (ACF) plot, (B) 
partial autocorrelation function (PACF) plot, and (C) p-values for Ljung-Box statistic. We could see from the sample correlogram that there were little sample ACFs and 
PACFs touching the significance bounds, except for that at lags 9, 23, and 24, and the p-value was greater than 0.05 under Ljung-Box test statistic. These results meant that 
the selected SARIMA approach provides an adequate predictive model for the HFRS incidence.
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this advanced method assessed a marked upward tendency, 
intimating that the current interventions would be at work 
in containing the epidemics; otherwise, the present mea-
sures required to be optimized.

Time series forecasting is a useful aid for forming hypoth-
eses to understand the epidemic behaviors of different diseases 
and to estimate their spreading dynamics, and thus favoring the 
establishment of a quality control system.33 The SARIMA 
method has been the most popular time series forecasting 
tool to analyze the morbidity, mortality, and prevalence of 
infectious diseases (eg, HFRS,40,41 Human Brucellosis,48 

COVID-19,33 hand-foot-mouth disease (HFMD),28 

Syphilis,49 dengue,50 Dysentery51) over the last years because 
of its simple structure, fast applicability, relatively high predic-
tion accuracy, and potential to interpret the target series. 
However, as evidenced by the findings from our study and 
others, the SARIMA method is only appropriate for analyzing 
short- or medium-term trends and cannot deal with the non-
linear information in a complex time series due to its linear 
assumption.13,16,52,53 Instead, the advanced TBATS method 
was developed by adding the trigonometric representation of 
seasonal components based on Fourier series to the traditional 
BATS approach, which allows it to not only deal with all of the 
complex time series but also to handle both linear and non- 

Figure 4 Time series plots showing the forecasted results on different datasets between the SARIMA models and the TBATS models. (A) 12-step ahead forecast, (B) 24- 
step ahead forecast, (C) 36-step ahead forecast, (D) 60-step ahead forecast, (E) 84-step ahead forecast, and (F) 108-step ahead forecast. The out-of-sample predictions are 
shown as a shaded area in these plots. It was discovered that the out-of-sample predictions under TBATS approaches agreed better with the observed values over the 
SARIMA approaches, especially for the long-term out-of-sample predictions.
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linear components,23,25 whilst accommodating a dynamic sea-
sonal patterns over time,25 and hence leading to its usefulness 
and flexibility in analyzing the long-term trends and 

seasonality of time series. Given its attractive applications of 
the TBATS method and our previous work,53 it appears that the 
importance of this advanced method as a powerful forecasting 
tool is expected to be emphasized in analyzing the long-term 
temporal levels of HFRS in other regions or other communic-
able diseases, and yet validation needs to be done. Besides, 
some new advanced statistical techniques (eg, bayesian struc-
tural time series technique,37 flexible transmitter network,54 the 
optimized theta method,55 and age-structure mathematical 
model56) are also recently demonstrated to have the potential 
to make a long-term forecast for the time series. As a result, 
what is now required is work focused on the comparisons of 
the forecasting accuracy between the TBATS approach and the 
above-mentioned models.

Different from prior studies that reported a re-emerging 
risk in the HFRS morbidity in China,5,6,8,10 our study indicated 
an evident reduction in the numbers of HFRS cases over the 26 
years of data (AAPC=−6.767, 95% CIs: −10.592 to −2.778; t= 
−3.278, p=0.001), consistent with the epidemiological trends 
reported in several countries in Asia,57 and yet in disagreement 
with that in Russia.4 This discrepancy may be related to the 
different causative agents, geographical environments, social 
economy, preventive measures, and public awareness. In 
China, many enhanced prevention and control measures, 
including effective environmental management, elimination 
of rodents, vaccination, publicize education, improvement of 
the living and working environments, along with rapid urbani-
zation and mechanization of farming, have favored the 
decrease in the HFRS-related morbidity and mortality in the 
past.58 Even so, it was discovered that HFRS displayed chan-
ging epidemiological trends in different stages, a remarkable 
reduction during 1995–2004 (APC=−8.964, 95% CIs: −11.667 
to −6.179; t=−6.547, p<0.001) and during 2004–2008 (APC= 
−37.153, 95% CIs: −37.153 to 3.279; t=−1.828, p=0.084), and 
a relatively stable epidemic trend during 2008–2020 (APC= 
−0.349, 95% CIs: −3.992 to 3.431; t=−0.197, p=0.846). 
Importantly, such an epidemiological trend would be predicted 
to continue in the ten years to come under TBATS model. 
Besides, it was noted that HFRS showed a cyclical fluctuation 
with 3–5 years since 2008, in agreement with the findings in 
previous reports,59,60 which also indicated that periodic out-
break is an important epidemiological feature in the HFRS 
incidence, albeit these studies reported a longer time window 
of 7–12 years.59,60 It seems that several possible reasons con-
tribute to the changing epidemiology in the HFRS incidence in 
recent years; one may be associated with the effects of climate 
variability, responsible for many emerging or re-emerging 

Table 2 Comparisons of the Out-of-Sample Forecasting Powers 
Between SARIMA Models and TBATS Models

Models Testing Power

MAD MAPE RMSE MER RMSPE

12-data ahead forecast

SARIMA 144.734 25.049 161.671 0.203 0.296

TBATS 91.799 14.772 123.653 0.129 0.193

Decreased percentage (%)

TBATS vs SARIMA 36.574 41.028 23.516 36.453 34.797

24-data ahead forecast

SARIMA 357.734 53.753 406.278 0.460 0.625

TBATS 260.619 38.407 301.441 0.335 0.469

Decreased percentage (%)

TBATS vs SARIMA 27.147 28.549 25.804 27.174 24.960

36-data ahead forecast

SARIMA 290.782 42.156 365.570 0.334 0.560

TBATS 204.151 28.685 254.418 0.235 0.387

Decreased percentage (%)

TBATS vs SARIMA 29.792 31.955 30.405 29.641 30.893

60-data ahead forecast

SARIMA 224.931 28.874 310.043 0.258 0.424

TBATS 183.780 21.558 235.665 0.211 0.250

Decreased percentage (%)

TBATS vs SARIMA 18.295 25.338 23.990 18.217 41.038

84-data ahead forecast

SARIMA 931.622 134.915 1016.813 1.040 1.679

TBATS 167.432 20.081 204.172 0.187 0.240

Decreased percentage (%)

TBATS vs SARIMA 82.028 85.116 79.920 82.019 85.706

108-data ahead forecast

SARIMA 1483.868 202.729 1588.876 1.560 2.500

TBATS 208.775 22.849 287.536 0.220 0.310

Decreased percentage (%)

TBATS vs SARIMA 85.930 88.729 81.903 85.897 87.600

Abbreviations: SARIMA, seasonal autoregressive integrated moving average method, 
TBATS an advanced innovation state-space modeling framework by combining Box-Cox 
transformations, Fourier series with time-varying coefficients and autoregressive moving 
average error correction; ETS, Error-Trend-Seasonal framework; MAD, mean absolute 
deviation; MAPE, mean absolute percentage error; RMSE, root mean square error; MER, 
mean error rate; RMSPE, root mean square percentage error.

https://doi.org/10.2147/IDR.S325787                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2021:14 3858

Xiao et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


infectious diseases around the world.8,61 HFRS has been 
thought of as a climate-sensitive illness since meteorological 
parameters play an important indirect or direct role in the 
infection rates, habitats, reproductive rates, and incubation 
period of rodents.8,62 Another may be closely correlated with 
the rapidly growing tourism in China; tourists can be infected 
with the pathogenic agents of HFRS in the endemic areas and 
then can be spread to the non-epidemic areas,63 which seems to 
well explain the geographical expansion of HFRS in recent 
years.10 The third may be due to the emergence of new 
Hantavirus subtypes.9 Recent several studies have suggested 
that the novel identified Seoul viruses may pose a great threat 
to the control of HFRS.9,64 Finally, the continued decrease in 
the HFRS incidence in the past may also have relaxed the 
interventions and public awareness, leading to the changing 
epidemiology and even the recurring risk.65

Seasonal profile of HFRS has been reported in different 
countries.4,22,58 A marked semi-annual seasonal behavior 
was also seen in our study, with a weak peak between May 
and June, and a strong one between November and 
December. Besides, the predicted HFRS morbidity also 
showed the same seasonal pattern as that during 1995– 
2020 (Figure S13). Our seasonal profile concurs well with 
previous findings from Russia4 and South Korea,66 also in 
line with that in most provinces or cities from across China 
(eg, Changsha city,60 Heilongjiang province,67 Anqiu 

city,7 Zibo city,68 Shanxi province,69 Zhejiang 
province70). We surmised that different climatic features 
and etiological factors contributed to this difference in the 
amplitude of peak activities. In China, it was discovered 
that the HFRS-causing HTNV can occur throughout 
the year, and yet the majority of them became infected 
with HTNV in fall and winter; by contrast, the HFRS- 
causing SEOV is mainly reported in spring.6,10 The main 
natural reservoir hosts of the above two causative factors 
are predominantly spread by the striped field mouse (A. 
agrarius) and brown Norway rat (R.norvegicus), 
respectively.8 Weather factors (eg, temperature, rainfall, 
relative humidity, precipitation) have been shown to have 
a great influence on the population dynamics of the main 
natural reservoir hosts of HTNV and SEOV,8,62,64,71 and 
the effects of temperature and relative humidity on HFRS 
was demonstrated to show a U-shaped curve,64 this fits 
well with the bimodal seasonal distribution present in 
spring and winter in the HFRS case notifications.

Our findings emerged from the present investigation 
successfully indicate the usefulness and flexibility of the 
TBATS approach in describing and forecasting the long- 
term seasonality and trends of HFRS. Nevertheless, this 
work also suffers from certain shortfalls. First, under- 
reporting and under-diagnosis of HFRS cases may be 
inevitable in passive surveillance, notwithstanding the 

Figure 5 Estimated epidemiological trends and seasonality of HFRS between January 2021 and December 2030 using the best-performing TBATS (0.286, {3,0}, -, {<12,4>}) 
model.
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well-monitored data quality under mandatory reporting in 
China. Second, we noted from Tables S1–S6 and Figure 5 
that the resulting predicted 95% CIs visibly broadened 
with the increase of the forecasted time windows, despite 
its high forecasting accuracy and robustness of the TBATS 
method. Thus, the model should be updated in time by 
including new series to ensure its forecasting reliability 
level. Third, from Figure S6 we can see that the forecast-
ing potential of the TBATS model may be further 
improved, despite its high forecasting accuracy. 
Therefore, further work needs to be performed to establish 
whether the predictive ability of the TBATS model can be 
improved by combing this model and neural network 
techniques. Fourth, the current findings from this study 
reflect how well the TBATS method estimates the long- 
run seasonality and trends of HFRS in China, whether it is 
valid for analyzing the long-term trends and seasonality in 
other countries or other communicable diseases, additional 
studies are required to investigate. Finally, the multivariate 
TBATS method may provide a higher forecasting accu-
racy. However, we are unable to do this owing to the 
unavailability of such a TBATS model with regression 
covariates and HFRS-associated factors in this study.

Conclusion
The interesting findings to emerge from this work reveal that 
the TBATS method does a better job of describing and 
forecasting the long-term seasonality and trends of HFRS, 
which is capable of being deemed as a feasible and service-
able alternative to help stakeholders to inform future pre-
ventive policy or practical solutions to control the HFRS 
epidemics in China. Besides, under current interventions, it 
is challenging to eliminate the HFRS epidemics in the next 
ten years considering the resultant forecasts of around 
90,120 (95% CIs: 25,358 to 244,667) cases, with monthly 
average 751 (95% CIs: 211 to 2039) case notifications in the 
ten years to come using the TBATS method, intimating that 
additional or comprehensive prevention and control mea-
sures must be formulated to tackle this evolving scenario.
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