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Abstract Introduction: The objective of this study was to estimate longitudinal changes in disease progres-
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sion (measured by Alzheimer’s disease assessment scale-cognitive 11-item [ADAS-cog/11] scale) af-
ter bapineuzumab treatment and to identify covariates (demographics or baseline characteristics)
contributing to the variability in disease progression rate and baseline disease status.
Methods: A population-based disease progression model was developed using pooled placebo and
bapineuzumab data from two phase-3 studies in APOE ε4 noncarrier and carrier Alzheimer’s disease
(AD) patients.
Results: A beta regression model with the Richard’s function as the structural component best
described ADAS-cog/11 disease progression for mild-to-moderate AD population. This analysis
confirmed no effect of bapineuzumab exposure on ADAS-cog/11 progression rate, consistent with
the lack of clinical efficacy observed in the statistical analysis of ADAS-cog/11 data in both studies.
Assessment of covariates affecting baseline severity revealed that men had a 6% lower baseline
ADAS-cog/11 score than women; patients who took two AD concomitant medications had a 19%
higher (worse) baseline score; APOE ε4 noncarriers had a 5% lower baseline score; and patients
who had AD for a longer duration had a higher baseline score. Furthermore, shorter AD duration,
younger age, APOE ε4 carrier status, and use of two AD concomitant medications were associated
with faster disease progression rates. Patients who had an ADAS-cog/11 score progression rate
that was not statistically significantly different from 0 typically took no AD concomitant medications.
Discussion: The beta regression model is a sensible modeling approach to characterize cognitive
decline in AD patients. The influence of bapineuzumab exposure on disease progression measured
by ADAS-cog/11 was not significant.
Trial Registration: ClinicalTrials.gov identifier: NCT00575055 and NCT00574132.
� 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Disease-modifying therapies that can potentially alter the
underlying progressive cytopathology and pathophysiology
of Alzheimer’s disease (AD) are being evaluated to slow
or possibly arrest cognitive and functional decline. Because
AD progresses very slowly, long-term data collection is
required for accurately analyzing effects of novel modalities
aiming to modify the underlying pathologic changes.
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One of the aims of this analysis was to understand patient
heterogeneity in disease progression. This methodology is
analogous to the exercise performed as part of the AD
assessment scale-cognitive 11-item (ADAS-cog/11) quanti-
tative clinical trial simulation model that was recently qual-
ified by the Food and Drug Administration and European
Medical Association, for mild-to-moderate AD [1–3]. So
far, numerous model-based approaches have been proposed
based on Alzheimer’s Disease Neuroimaging Initiative data
to investigate cognitive decline in AD patients [4–7]. Most
of these models describe disease progression based on the
longitudinal response in ADAS-cog/11 subscale. According
to past reports, an overall annual worsening in the placebo
group is estimated to be 5.5 points in ADAS-cog/11 score
[8–10]. However, despite significant advancements in
quantitative understanding of AD progression, it is
important to understand how important covariates
influence clinical outcomes of disease-modifying treat-
ments. Many risk factors such as age, APOE ε4 genotype,
gender, family history of AD, years of education, total serum
cholesterol, executive function tests, instrumental activities
of daily living [5,11], and baseline severity are thought to
influence AD progression. Several of these covariates such
as serum cholesterol, executive function tests, and
activities of daily living could not be tested in the current
analysis because they were not measured in studies 301/
302. We, therefore, aimed to assess how important
covariates influence disease progression parameters.

In the current analysis, we established a population-based
pharmacodynamic disease progression model using pooled
data from two phase-3 studies of bapineuzumab [12]. The
objectives of this analysis were (1) To model disease pro-
gression in patients with mild-to-moderate AD, considering
baseline disease status and change in cognition as a function
of time; (2) To quantify different sources of variability such
as demographics, number of copies of APOE ε4 allele, and
other covariates that affect disease progression parameters;
(3) To evaluate the magnitude and time course of the placebo
response; (4) To assess missing data mechanisms; and (5) To
estimate the impact of bapineuzumab on disease progression
rate and assess whether its effect was influenced by baseline
disease status.
2. Methods

2.1. Data sources

Pooled data from two phase-3 clinical studies of bapineu-
zumab were included in this analysis. These were 78-week,
randomized, double-blind, placebo-controlled, parallel
group studies that were conducted to investigate the efficacy
and safety of bapineuzumab (0.5 or 1.0 mg/kg infused intra-
venously for 1 hour/13 weeks for six infusions) versus pla-
cebo in apolipoprotein E, ε4 allele (APOE ε4) noncarrier
(study 301) or carrier (study 302) patients with mild-to-
moderate AD. Mild versus moderate AD definitions were
based on baseline mini-mental state examination (MMSE)
score (mild AD: baseline MMSE �21 vs. moderate AD:
baseline MMSE ,21). The detailed inclusion and ex-
clusion criteria and demographic and clinical characteristics
used to build the statistical models and study designs for both
studies are described in the primary publication [12].

ADAS-cog/11 [13] was used as a coprimary efficacy end
point in both studies to measure cognitive performance in
affected domains of AD from baseline to week 78. The data-
base for this disease progression analysis comprised all
ADAS-cog/11 measurements (weeks 0, 13, 26, 39, 52, 65,
and 78) from studies 301 and 302 with an available date
and time of testing.
2.2. Model building process

Model building was performed using a population
pharmacokinetic/pharmacodynamic (PK/PD) approach
(nonlinear mixed-effect modeling [NONMEM] version 7.1
with GFORTRAN compiler). Postprocessing of NONMEM
output i.e. data set exploration, visualization, and diagnostic
plot preparation were completed using S-Plus Professional
version 6.2 (Insightful Corporation, Seattle, WA, USA), R
version 2.13.2 (http://www.r-project.org), and Xpose pack-
age 4 (http://xpose.sourceforge.net). Briefly, a structural dis-
ease progression model was built using available blinded
data set (301 and 302 studies), followed by incorporation
of covariate components into the model, and modeling
missing data effect using a hazard function with covariates
affecting the hazard rate (Fig. 1). Model performance was
evaluated by checking model diagnostics, assessing plausi-
bility of the model parameters, and by performing visual pre-
dictive checks (VPC). After database lock and unblinding of
both studies, the model was run on an entire database to
obtain final parameter estimates and asymptotic standard er-
rors, including the effect of bapineuzumab exposure on dis-
ease progression.
2.3. Population PK/PD model
2.3.1. Structural model selection
Eight possible structural models from previously pub-

lished articles [5,7,14–16] were tested (Table 1) to select a
single base model using the following criteria: (1) Akaike in-
formation criterion (AIC); (2) Goodness-of-fit diagnostics
(h shrinkage); and (3) Ill conditioning and over-
parameterization by inspecting the eigenvalues of the covari-
ance matrix (ratio of the largest eigenvalue to the smallest
eigenvalue to be ,1000).

2.3.2. Beta regression
As ADAS-cog/11 score is a bounded outcome, disease

progression was expected to be nonlinear given the ceiling
and floor effects [17]. Rogers et al. [18] proposed the use
of beta-distributed residuals to model the heteroscedasticity

http://www.r-project.org
http://xpose.sourceforge.net


Fig. 1. Overview of model building process. Abbreviations: GAM, general-

ized additive modeling; VPC, visual predictive check.
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in residual error and to limit ADAS-cog/11 predictions
within the range of the original instrument. Beta regression
models that could produce individual predictions within
the boundaries were tested, and three such previously devel-
oped models [19] were compared against each other using
AIC, h shrinkage, and condition numbers: (1) Richard’s
function [5,16]; (2) linear progression on a logit scale; and
(3) linear progression on a logit scale with disease severity
as a covariate on progression rate.

2.3.3. Residual error structure optimization
In this analysis, ADAS-cog/11 scores were normalized by

dividing by 70 to ensure that the measurement unit for obser-
vations was the same across all models and to keep the
dependent variable within a required range of 0–1 as per
beta regression. Since log-normal, logit-normal, and beta re-
siduals cannot handle data at the lower and/or upper bound-
aries, the boundary data were not incorporated into the
residual error analysis initially for fair comparisons. The
complete log-likelihood function (L5

Pn
i li) for each distri-

bution is listed in Table 2, the model with lowest L value
was chosen for further development.
2.3.4. Handling boundary data
Some residual error models assumed that the dependent

PD variable (ADAS-cog/11 score) was continuous in nature
and that the data resided within boundaries of the scale. If
log-normal, logit-normal, or beta residuals were found to
have more suitable distribution, all data were rescaled by a
small noise [d 5 0.01] to use observations at boundaries of
the scale (0.5% of the observations) in subsequent analysis.
The d moved the boundary of observations slightly within
the edges and all rescaled data lay between 0 and 70, which
was ADAS-cog/11 score range. This modification was per-
formed using the scaling method [20], which suggested
0.01 is a reasonable choice for d.
2.4. Modeling covariate effects

The covariates tested in this analysis were age, sex,APOE
ε4 carrier status, years since AD onset (YSO), and AD
concomitant medication use (cholinesterase inhibitors or
memantine). Based on prior knowledge [4,5], the effects of
four covariates (APOE ε4 carrier status [ε4 noncarrier, ε4
heterozygous, and ε4 homozygous], age, sex on
progression rate, and YSO on baseline score) were
embedded in the disease progression model to characterize
their potential effects. Covariate screening was performed
using generalized additive modeling ([GAM],
implemented in the Xpose software), and GAM-selected co-
variates were included in the model via a full model/back-
ward elimination approach [21]. A covariate was included
only if the objective function value (OFV) increased by
7.88 points on its removal (P, .005 criterion) to avoid inclu-
sion of insignificant effects into the model due to multiple
comparisons integral to the backward elimination procedure.
Continuous covariates were included in the model using the
following equation:

TVP5qx$

�
Covariate

Covariate median

�qy

(1)

where, TVP: typical value of the parameter; thetas (q): fixed-
effect parameters.

The impact of baseline disease severity on progression
rate was assessed either as a covariate (linear and beta
regression models) or through the structural model (logistic
and exponential models). Model selection was based on
mechanistic plausibility, OFV, and AIC.
2.5. Missing data analysis

Because the analysis involved likelihood-based mixed-
effects modeling, we assumed a missing at random (MAR)
mechanism to capture missing data (e.g. dropout). This
approach was consistent with primary statistical analysis
of both studies in which a mixed-effect model with repeated
measure (MMRM) model was proposed. The missing data
analysis was primarily conducted to assess the missing



Table 1

Summary of structural models

Model description Base models

Objective

function

value

Number

of qs

AIC*

value

Linear progression model #1 with shape parameter

q (Ito 2010)

Ri(t) 5 R0i 1 ai$t 1 ε

R0i 5 R0 $ exp(h1i)

ai5a

�
bMMSEi

21

302bMMSEi

9

�q

1h2i

h1i wNð0; u2
1Þ; h2iwNð0; u2

2Þ; εwNð0; s2Þ

63,100.7 3 63,107

Linear progression model #2 with shape parameter

q1 (Ito 2010)

Ri(t) 5 R0i 1 ai$t 1 ε

R0i 5 R0 $ exp(h1i)

ai5a

�
bMMSEi

21

�q1�302bMMSEi

9

�
1h2i

h1i wNð0; u2
1Þ; h2iwNð0; u2

2Þ; εwNð0; s2Þ

63,126.2 3 63,132

Linear progression model #3 with shape parameter

q2 (Ito 2010)

Ri(t) 5 R0i 1 ai$t 1 ε

R0i 5 R0 $ exp(h1i)

ai5a

�
bMMSEi

21

��
302bMMSEi

9

�q2

1h2i

h1i wNð0; u2
1Þ; h2iwNð0; u2

2Þ; εwNð0; s2Þ

63,106.0 3 63,112

Linear progression model #4 with shape parameters

q1 and q2 (Ito 2010)

Ri(t) 5 R0i 1 ai$t 1 ε

R0i 5 R0 $ exp(h1i)

ai5a

�
bMMSEi

21

�q1�302bMMSEi

9

�q2

1h2i

h1i wNð0; u2
1Þ; h2iwNð0; u2

2Þ; εwNð0; s2Þ

63,100.6 4 63,109

Linear progression model #5 with ai dependent on

bMMSEi via a power relationship (Ito 2010)

Ri(t) 5 R0i 1 ai$t 1 ε

R0i 5 R0 $ exp(h1i)

ai5a

�
bMMSEi

21

�q

1h2i

h1i wNð0; u2
1Þ; h2iwNð0; u2

2Þ; εwNð0; s2Þ

63,159.9 3 63,166

Exponential progression model (Faltaos 2011; Yang

2011)

Ri(t) 5 R0i $ exp(ai$t) 1 ε

R0i 5 R0 $ exp(h1i)

ai5a1h2i
h1i wNð0; u2

1Þ; h2iwNð0; u2
2Þ; εwNð0; s2Þ

62,998.6 2 63,003

2-Parameter logistic modely (Samtani 2012)
RiðtÞ5 70$R0i

ð702R0iÞe2ait1R0i
1ε

R0i 5 R0 $ exp(h1i)

ai5a1h2i
h1i wNð0; u2

1Þ; h2iwNð0; u2
2Þ; εwNð0; s2Þ

63,318.1 2 63,322

Richard’s functionz (Samtani 2012; Tsoularis 2002)
RiðtÞ5 70$R0i

½ð70b2Rb
0iÞe2aibt1Rb

0i�
1
b

1ε

R0i 5 R0 $ exp(h1i)

ai5a1h2i
h1i wNð0; u2

1Þ; h2iwNð0; u2
2Þ; εwNð0; s2Þ

62,877.0 3 62,883

Abbreviation: AIC, Akaike information criterion; bMMSEi, baseline Mini Mental State Examination in ith-patient.

*Akaike information criterion is equal to the objective function value plus twice the number of qs in a given model.
yThis model is the explicit solution of the differential equation: dRi/dt 5 ai$Ri$(12[Ri/70]); Ri(0) 5 R0i.
zThis is Richard’s function and is the explicit solution of the differential equation: dRi/dt 5 ai$Ri$(12[Ri/70]b); Ri(0) 5 R0i.
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data mechanisms, and to confirm the assumption proposed
for MAR.

A grouped-time survival model [22,23] was used to
evaluate missing data from these studies:
logð2logð12P½Dropout51�ÞÞ5½a1D0�131a2D13�261a3D26�391
where, a1.a6 are intercept parameters that characterize
baseline hazards at different periods (e.g. 0–13 weeks);
PDij21 is the PD score for the i-th patient at (j21)th time
period (relationship between the probability of dropout
a4D39�521a5D52�651a6D65�78�1b1PDij�11b2ðbAgei � 74Þ
(2)



Table 2

Summary of residual error models

Model description Residual error models

Objective

function

value

Number

of qs

AIC*

value

Normal distribution

(Burnham 2002)

li521
2 logð2ps2Þ2ðyi2miÞ2

2s2
232,496 3 232,490

Log-normal distribution

(Burnham 2002)

li5log

�
1
yi

�
21

2 logð2ps2Þ2ðlogðyiÞ2miÞ2
2s2 230,584 3 230,578

Logit-normal distribution

(Frederic 2008)

li5log

�
1

yið12yiÞ

�
21

2 logð2ps2Þ2ðlogitðyiÞ2miÞ2
2s2

232,344 3 232,338

Beta distribution

(Smithson 2006)

li5log GðtÞ2log GðmitÞ2log Gðð12miÞtÞ1ðmit21ÞlogðyiÞ1ðð12miÞt21Þlogð12yiÞ 232,948 3 232,942

Abbreviation: AIC, Akaike information criterion.

*Akaike information criterion is equal to the objective function value plus twice the number of qs in a given model.
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and PD score before dropout); D (e.g. D0–13) is a dummy
variable coded as 1 if observation represents the
corresponding interval (e.g. 0–13 weeks), otherwise coded
as 0.

2.6. Model qualification

After finalization of the disease progression, placebo
course, covariates, and dropout submodels, model qualifica-
tion was performed in which goodness-of-fit plots were
generated; precision/plausibility of the model parameters
was assessed; and the observed data were visually compared
using VPCs with simulated data at respective time points
(weeks 0, 13, 26, 39, 52, 65, and 78). In addition, Pearson re-
siduals (standardized ordinary residuals) were used for beta
regression. The level to which the median prediction and ex-
tremes of 90% prediction interval replicated the median, 5th,
and 95th percentiles of the observed data was evaluated us-
ing percentile VPC with confidence intervals [24].

2.7. Placebo model

The structural form of the placebo function was selected
based on prior research [15], and inverse Bateman function
and exponential functions were explored to describe the
course of the placebo group. Within-placebo arms of both
studies, an initial period of weeks or months when little or
no change in ADAS-cog scores was evident, suggesting
that a time-dependent placebo effect was present and was
modeled accordingly.

2.8. Final PK/PD model

The impact of bapineuzumab exposure on disease pro-
gression was visualized by graphical exploratory analysis.
This exploratory analysis addressed two critical and relevant
questions about (1) treatment and dose effect, and (2) influ-
ence of APOE ε4 carrier status or baseline disease status on
treatment effect. Depending on baseline MMSE score (mild
AD �21 definition from National Institute for Health and
Clinical Excellence 2011), the patient population was
dichotomized into two groups to visualize the influence of
disease status on the drug effect.

The exposure-response modeling was performed to
facilitate improved understanding of the drug effect, and
to assess the magnitude of the effect. A sequential PK/
PD modeling approach was used, and individual PK pa-
rameters were fixed to their individual Bayesian estimates.
As bapineuzumab is a disease-modifying treatment, the
drug effect was tested on a progression rate parameter to
investigate its disease-modifying effects.
3. Results

The final data set contained ADAS-cog/11 measurements
collected from 2451 patients with mild-to-moderate AD,
who were randomized to bapineuzumab (n 5 1480) or pla-
cebo (n 5 971) over the 78-week duration of the studies.
Detailed baseline patient characteristics of the two studies
are published [12].

An overview of the model building process is provided as
a flowchart in Fig. 1. Sections 3.1, 3.2, 3.3, 3.4, and 3.5
describe the results of the following submodels of the
overall disease progression model: structural model,
residual error model, covariate model, placebo model, and
drug treatment model, respectively.
3.1. Selection of regular structural models versus beta
regression models

Richard’s function with the regular parameterization
(Richard’s function with additive residual error) was most
appropriate to describe AD progression over time as as-
sessed by AIC. The reason it performed better than the expo-
nential and progression models was because the other
models allowed an increase in ADAS-cog/11 scores without
any restriction (which is not mechanistic). Among the three
beta regression models tested, Richard’s function also had
the lowest AIC. Thus, the same structural model was chosen
for both regular parameterization (normally distributed er-
rors) and beta regression.
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3.2. Optimal residual error model and boundary data
handling

The residual error parameterization with the lowest AIC
value was the beta distribution. Richard’s function with
beta residuals was chosen as the base model for covariate
model building. As recommended in published reports
[19,20], all data were rescaled by a d value of 0.01, and
these rescaled data were used in further testing of the model.
3.3. Covariate effects on disease progression parameters
3.3.1. Base reference model: Prior knowledge about
covariate effects

An exploratory graphical analysis was conducted before
covariate model building to assess the influence of five
selected covariates on disease progression. All covariates
R0i5qRo$e
YSO$qRo_YSO$

�
AGEi

74

�qRo_AGE

$Sex_R0i$ApoE4_R0i$Comed_R0i$e
h1i (5)

ai5qa$e
2YSO$qa_YSO

�
AGEi

74

�2qa_AGE

$Sex_ai$ApoE4_ai$Comed_ai1h2i (6)
(age, YSO, sex, APOE ε4 carrier status, and concomitant
AD medications) were found to have a low degree of cor-
relation. This graphical analysis confirmed prior knowl-
edge about covariate effects on disease progression
(Fig. 2). Generally, cognitive performance of APOE ε4 car-
riers, women, younger patients, and patients with longer
AD duration was found to be poor (i.e., any of these cova-
riates could increase ADAS-cog/11 score in a univariate
manner). Furthermore, the impact of age, sex, and APOE
ε4 trichotomous carrier status (ε4 noncarrier, ε4 heterozy-
gous, and ε4 homozygous) on disease progression rate
and influence of YSO on baseline score were incorporated
into the model as follows (equation 1) based on prior
knowledge and graphical analysis:

R0i5qRo$e
YSO$qRo YSO$eh1i (3)

ai5qa$

�
AGEi

74

�2qa_AGE

Sex_ai$ApoE4_ai1h2i (4)

where, qs represent various fixed-effect parameters; Sex_ai
is 1 for women and qa_sex for men;

ApoE4_ai is 1 for patients with one APOE ε4 allele;
qa_ApoE4_0 for patients with zero APOE ε4 alleles, and
qa_ApoE4_2 for patients with two APOE ε4 alleles.

This updated model was referred to as the base reference
model, which showed significant improvement over the base
model, as measured by the OFV (DOFV 5 78.5; P
value ,.0001; degrees of freedom [df] 5 5). As expected,
baseline disease status had a significant impact on disease
progression (Fig. 2), whereas baseline ADAS-cog/11 score
and progression rate differed according to AD concomitant
medications use, and therefore, these were subsequently as-
sessed in detail.
3.3.2. Newly identified covariates in the current analysis
For the covariate search, the next step was a screening

procedure (GAM 1 R software). The h shrinkages on the
baseline (4%) and progression rate parameters (22%) sug-
gested suitability of individual h values for covariate
screening.

All influential covariates from the screening procedure
were added to the base reference model by means of appro-
priate functional forms to generate the full covariate model:
where, Sex, APOE ε4, and YSO were incorporated in a
similar manner as the base reference model; Comed_R0i

and Comed_ai:1 for patients taking acetylcholinesterase in-
hibitors alone, qRo_Comed_0 and qa_Comed_0: 0 for patients
taking no AD concomitant medications, qRo_Comed_1

and qa_Comed_1: patients taking memantine alone, and
qRo Comed 2 and qa_Comed_2: patients taking acetylcholines-
terase inhibitors and memantine

The full covariate model was significantly improved over
the base reference model with OFV change of 270 points
(P value ,.0001, df 5 11). The final covariate model after
backward elimination is presented in Table 3.
3.4. Placebo model

An exponential placebo model was found to be suitable
for describing the transient improvement (or lack of deterio-
ration) in cognitive symptoms, as characterized by an
initially flat shape of ADAS-cog/11 trajectory mainly driven
by study 301 which had milder patients and more amyloid-
negative patients (unlikely to have AD), and it was further
observed that patients with higher MMSE scores (i.e. milder
cognitive impairment) had a greater transient improvement.
The half-life for the development of the placebo course was
10 weeks. The relationship between baseline disease status
and magnitude of placebo course was found to be highly sig-
nificant (Fig. 3), warranting its addition into the model.



Fig. 2. Results of the exploratory placebo covariate analysis. Two Alzheimer’s disease concomitant medications: acetylcholinesterase inhibitors and meman-

tine; one Alzheimer’s disease concomitant medication: acetylcholinesterase inhibitors alone or memantine alone. Responses are scaled to a 0–1 range for data

analysis but for plotting the graphical results are back transformed to present the model performance on the original scale. Abbreviations: ADAS-cog/11, Alz-

heimer’s disease assessment scale-cognitive 11-item; AD, Alzheimer’s disease; APOE ε4, apolipoprotein E, ε4 allele; CI, confidence interval; MMSE, mini-

mental state examination.
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3.5. Final model

The placebo submodel with structural, covariate, and re-
sidual error components of the model was used as a refer-
ence model to test the effect of bapineuzumab treatment.

Bapineuzumab treatment effect was not significant
as indicated by reduction in the OFV by 0.03 points
(P value 5 .872, df 5 1). Furthermore, formal testing of
bapineuzumab exposure suggested that it was not a signifi-
cant factor affecting disease progression (steady-state area
under curve: DOFV 5 0.02, P value 5 .888; steady-state
Ctrough: DOFV 5 0.22, P value 5 .641). This lack of
exposure-response relationship was in agreement with the
exploratory exposure-response plots, showing temporal pro-
files separately for low- and high-exposure groups.



Table 3

Final ADAS-cog/11 model parameter estimates

Parameter* Estimate %CVy

qRo 19.2 1.9

qRo_YSO 0.017 20

qRo_SEX 0.938 1.6

qRo_ApoE4_0 0.952 1.6

qRo_Comed 1.190 1.6

qa 0.219 5.8

qa_YSO 0.0506 22

qa_AGE 1.08 15

qa_SEX 1.05 4.4

qa_ApoE4_0 0.96 4.8

qa_ApoE4_2 1.00 6.5

qa_Comed 1.11 5.0

qplbmax 0.696 13

qMMSE 0.582 10

qkplb 3.59 13

bz 6.03 17

SD of h1x 0.377 3.4

SD of h2x 0.171 7.2

Residual error parameter t 76.0 2.1

Abbreviations: ADAS-cog/11, Alzheimer’s disease assessment scale-

cognitive 11-item; CV, coefficient of variation; SD, standard deviation.

NOTE. All covariate effects reported in this table were significant at the

0.005 level. Between the base model and final covariate model, the between-

patient variability SD estimates improved from 0.445 and 0.202 to 0.377 and

0.171, respectively.

*These equations describe the relationships between covariates

and the parameters in the final model:

R0i519:2$eYSO,0:017$Sex_R0i$ApoE4_R0i$Comed_R0i$e
h1i

ai50:219$e2YSO,0:0506

�
AGEi

74

�21:08

$Sex_ai$ApoE4_ai$Comed_ai1h2i

Placebo Response5

�
ð20:696Þ20:582$ðBaseline MMSEi221Þ

70

�
$ð12e23:59$tÞ, where,

R0i is the individual baseline score, ai is the individual progression rate

parameter; Sex_R0i is 1 for women and qRo_SEX for men; ApoE4_R0i

is 1 for patients with 1 or 2 E4 alleles and qRo_ApoE4_0 for patients

with 0 E4 allele; Comed_R0i is 1 for patients taking 0 or 1 Alzheimer’s dis-

ease concomitant medications and qRo_Comed for patients taking acetyl-

cholinesterase inhibitors and memantine; Sex_ai is 1 for women and

qa_SEX for men; ApoE4_ai is 1 for patients with 1 APOE * E4 allele,

qa_ApoE4_0 for patients with 0 APOE ε4 alleles, and qa_ApoE4_2 for pa-

tients with 2 APOE ε4 alleles; Comed_ai is 1 for patients taking acetylcho-

linesterase inhibitor alone or memantine alone, 0 for patient takings no

Alzheimer’s disease concomitant medications, and qa_Comed for patients

taking acetylcholinesterase inhibitors and memantine.
y%CV represents precision of parameter estimate.
zFinal estimated inflection point is 51 based on the formula (70b/[11 b])

1/b.
xOff-diagonal element of covariance matrix: covariance

h1,h2 5 0.00988 (%CV 5 28.3%); correlation between r and a, r 5
(covariance h1,h2/[SD h1 $ SD h2]) 5 0.153 and r2 5 0.024.

Table 4

Parameter estimates from the dropout model

Parameter Estimate CV%

Baseline hazard (a parameters)

Period 1 in weeks (0,13) 24.320 3.15

Period 2 in weeks (13,26) 24.031 3.18

Period 3 in weeks (26,39) 23.904 3.25

Period 4 in weeks (39,52) 24.042 3.36

Period 5 in weeks (52,65) 23.865 3.49

Period 6 in weeks (65,78) 24.319 3.57

Coefficients (b parameters)

ADAS-cog/11 score before dropout 0.039*,***

Baseline age 0.038*,***

Abbreviations: CV, coefficient of variation; ADAS-cog/11, Alzheimer’s

disease assessment scale-cognitive 11-item.

NOTE. ***P , .0001; (lower boundary, upper boundary) indicates that

the range includes the lower boundary but not the upper boundary.

*Hazard ratios can be obtained by exponentiating these parameter esti-

mates, i.e., indicating there is approximately a 4% increase in the hazard

of dropping out because of data being missing with either 1 point increase

in ADAS-cog/11 score or a 1 year increase in age.
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There was no evidence of treatment effect in either APOE
ε4 subgroups or in mild versus moderate AD patients. Thus,
the reference model without bapineuzumab effect was
considered as the final ADAS-cog/11 disease progression
model (Table 3).

The VPCs (that accounted for dropout) suggested that the
final model without the influence of bapineuzumab describes
longitudinal progression of ADAS-cog/11 scores reasonably
well in both the bapineuzumab and placebo arms, indicating
no treatment effect in the overall ADAS-cog/11 disease pro-
gression data set. The stratification of patients with mild AD
suggested that the model was able to describe the temporal,
initially flat profile for the placebo course, which is much
more prominent in mild AD patients. This supports placebo
subcomponent of the final disease progression model for
ADAS-cog/11 score.

A formal analysis confirmed that the likelihood of
missing data was dependent on the ADAS-cog/11 score
before the event and the patient’s baseline age (Table 4).
The dependence on both these variables was highly signifi-
cant (P , .0001). Hazard ratios indicated that there was a
4% increase in the hazard of dropping out (i.e., data being
missing) with either 1 point increase in ADAS-cog/11 score
or a 1-year increase in baseline age. This finding confirmed
that “missing completely at random” was not the missing
data mechanism and that MAR may be a more reasonable
assumption, which was consistent with the assumption for
the primary statistical analysis (MMRM).
4. Discussion

In this analysis, after thoroughly investigating various
structural models available in the literature [5,7,14–16,18],
a semimechanistic model was developed to describe AD
progression (measured by ADAS-cog/11 scores) in patients
treated with bapineuzumab and placebo. The model is
considered semimechanistic because it accommodates the
nonlinear nature of AD progression and also accounts for
floor and ceiling effects.

Eight different linear and nonlinear structural models
(Table 1) were compared in the current analysis and all these
models have been used in the literature to describe ADAS-
cog/11 progression. There is no consensus in the literature
about which approach is more suitable than the other. It
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may appear that a linear-mixed model for repeated measures
may suffice to model the general profile of the response, and
exceptions (e.g., mild AD plots) could be modeled using the
change point models from the statistical literature. However,
the nonlinear kinetic models offer potential advantage of
modeling both the general profile and the exceptions
together with a single equation such as the Richard’s func-
tion. Furthermore, the transformed residual error models
describe the floor and ceiling effects and may lead to more
effective use of data. A key strength of the current analysis
is that these various approaches of modeling disease progres-
sion data have been formally compared, and to the best of
our knowledge, this is the first study that does such a com-
parison for ADAS-cog/11 data. The analysis reveals that
the Richard’s function is the most appropriate model based
on model diagnostic criteria and semimechanistic consider-
ations (described in Section 3.1) for the current set of data
which represents a large database of 2451 patients.

Several approaches, such as linear, exponential, and lo-
gistic structural models, were formally compared to model
the change in ADAS-cog scores seen in bapineuzumab- or
placebo-treated patients with mild-to-moderate AD. Of the
models tested, linear and exponential models are known to
predict scores outside the range (0–70) of ADAS-cog/11
scale. To circumvent this limitation and to allow the model
to fulfill general expectation that disease progression is
nonlinear in AD, a general logistic model was chosen for
further development. However, the general logistic model
had a disadvantage that it required the inflection point
(ADAS-cog/11 score with fastest progression rate) to be at
the midpoint of the scale. Inclusion of a shape parameter
(b) in the final disease progression model remedied this
problem and enhanced its fit to the data, and, therefore, the
inflection point was estimated to be at ADAS-cog/11 score
of 51 from the current analysis.

ADAS-cog/11 scale is bounded between 0 and 70, and
scores theoretically plateau as deterioration progresses and
scores approach 70 because of floor effects, which makes
it difficult to measure the change in disease status in patients
with severe AD. Thus, use of other clinical end points such
as the severe impairment battery is recommended for severe
AD [4]. In the current analysis, we mathematically described
plateauing effect using Richard’s function. Some of the
salient features of the final disease progression model are
as follows: First, the random effect on the baseline scores
was assumed to follow a log-normal distribution, which
was advantageous over the normal distribution in that it
did not predict negative baseline scores at the individual
level. Second, the random effect on the progression rate pa-
rameters was assumed to follow a normal distribution. This
allowed greater flexibility to accommodate the wide range of
progression rates at the individual level (disease status
improved, deteriorated, or remain unchanged), as observed
in studies 301 and 302.

In the current analysis, different types of residual error
structures (normal, log-normal, logit-normal, and beta distri-
bution) were tested, and beta distributionwas found to capture
the behavior of the residual error most appropriately. Two
main advantages of residual error structure includemodel pre-
dictions, even after accounting for residual error, stayed
within ADAS-Cog/11 scale boundaries. Second, beta resid-
uals accounted for interdependence between the mean and
variance of the data structure. The variance was generally
lower as scores approached the edges of the scale, whereas
variance was greater around middle portion of the scale,
and beta residuals could accommodate this complexity. It is
noteworthy that implementation of beta residuals in NON-
MEM is not common because it can be technically chal-
lenging (the beta distribution is not built into the software).

The rate of disease progression varies among AD patients;
however, there is limited awareness of prognostic factors for
disease progression in mild-to-moderate AD patients. Our
model accounted for many of the previously known disease
progression covariates measured by ADAS-cog/11 scores.
The current data set of studies 301 and 302 confirmed the
impact of AD duration on baseline score and the influence
of age and APOE ε4 carrier status on disease progression
rate. These findings corroborate the high quality of that data
that were obtained in these two studies. The high quality of
the data is further confirmed by the model prediction that
the progression rate in a typical patient (i.e., with median
values of the relevant covariates) was 5 ADAS-cog/11 points
per year for a 74-year-old woman with 1 APOE ε4 allele, tak-
ing one AD concomitant medication, with a baseline ADAS-
cog/11 score of 23, and recently diagnosed with AD. These
estimates are consistent with a progression rate of 5.5
ADAS-cog/11 points per year in the placebo group which is
generally well accepted in the published AD literature
[4,15]. In addition, the richness of data in studies 301 and
302 offered several opportunities to possibly investigate an
expanded list of potential covariates of interest available in
the data set. The influence of sex on progression rate has
been reported [4], in which they observed a small but not sig-
nificant, slow progression rate (10.7%) in men with AD. In
our analysis, the influence of sex on progression rate was
also tested and a small, 5% faster progression rate parameter
was observed in men versus women. A recent, large meta-
analysis (with .3000 patients) has also investigated the
impact of sex on ADAS-cog/11 progression rate [2], which
concluded that disease progresses at a faster rate in men
than women (although it was not significant at the 0.05 level).
Collectively, in the light of available literature and current
analysis, the impact of sex on AD progression rate appears
to be rather minimal.

Literature linking association of APOE ε4 allele with
cognitive deterioration varies. The current analysis also al-
lowed assessment of whether homozygous APOE ε4 carriers
(11% of the overall population) were different from hetero-
zygous APOE ε4 carriers (34% of the overall population)
in terms of disease progression. It revealed that APOE ε4
noncarriers had both a lower baseline ADAS-cog/11 score
and a slower progression rate than APOE ε4 carriers, and



Fig. 3. Stratified visual predictive checks: bapineuzumab versus placebo. The upper, middle, and lower profiles indicated by the open circles represent 95th,

50th, and 5th percentiles of the observed data, respectively. The upper, middle, and lower curves indicated by the lines are the median model–based predictions

for 95th, 50th, and 5th percentiles, respectively, and these predictions account for missing data. The shaded areas are 90% confidence intervals of the corre-

sponding percentiles of the simulations based on the model. To allow stratification by baseline disease status (mild AD vs. moderate AD), baseline ADAS-

cog/11 scores were resampled from the observed scores at time 0 in the respective populations from the PK/PD database. The number of observations at 0,

13, 26, 39, 52, 65, and 78 wk were 2451, 2331, 2215, 2093, 1989, 1870, and 1808 and thus 74% of patients (1808/2451) completed the study. Seventy-four

years (age) and 2.8 y (duration of AD) used as cutoffs in the figures represents the median. Abbreviations: ADAS-cog/11, Alzheimer’s disease assessment

scale-cognitive 11-item; AD, Alzheimer’s disease; CI, confidence interval; PK/PD, pharmacokinetic/pharmacodynamic.
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there was no difference in the modeled baseline score or pro-
gression rate between those subgroups (Table 3). This trend
was also confirmed by the exploratory graph presented in
Fig. 2.

The impact of AD concomitant medication use illus-
trated some differences among the patients recruited in
the two studies [25]. Patients taking memantine and acetyl-
cholinesterase inhibitors (53% of overall population) had
both a higher baseline ADAS-cog/11 score and a faster
progression rate parameter that was 11% higher than that
expected from the higher baseline score alone. Thus, con-
firming that patients requiring both AD concomitant med-
ications represented a subgroup with poorer cognitive
function and, therefore, progress faster, whereas patients
not taking any AD concomitant medications (10% of the
overall population, n 5 232) had a progression rate that
was not significantly different from 0 (P value 5 .154).
Importantly, there were more APOE ε4 noncarriers (146/
232) who were not taking any AD concomitant medica-
tions. Assessment of covariates affecting baseline severity
revealed that men had a 6% lower baseline ADAS-cog/11
score than women; patients who took two AD concomitant
medications had a 19% higher (worse) baseline score;
APOE ε4 noncarriers had a 5% lower baseline score; and
patients who had AD for a longer duration had a higher
baseline score. Furthermore, shorter AD duration, younger
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age, APOE ε4 carrier, and use of two AD concomitant
medications were associated with faster disease progres-
sion rates.

Estimates from the current model suggest that progres-
sion rates change with baseline severity, decrease with
increasing age and years since disease onset, APOE ε4 car-
riers progress more rapidly than noncarriers, and males
progress at a faster rate than females. Most of these rela-
tionships are directionally consistent with previously re-
ported associations. In contrast to the present study, other
authors have observed that AD progresses at a faster rate
in women than men [26,27]. One of the limitations of the
present study is that the years of education was not
included in the covariate submodel. The absence of this
variable might have affected the result because men have
higher education than women. However, a recent analysis
[5] has shown that it is difficult to detect the influence of ed-
ucation on cognitive performance in clinical trials because
clinical trial participants have higher levels of education
i.e., the models are not able to describe this effect, likely
because of the narrow distribution of years of education
in the trial participants. Although few authors reported con-
flicting results for APOE ε4 genotype effect on the rate of
AD progression [28,29], our results indicate that APOE
ε4 carriers were found to progress more rapidly than
noncarriers, which is consistent with the recent
publications using larger studies [2,4,25]. Furthermore,
differences in AD clinical trial outcomes based on age of
the participants have been recently reported by Schneider
et al. [30], younger age also found to be associated with
faster disease progression [2,4,25]. The current analysis
confirms that older groups of patients show slower rates
of decline on the ADAS-cog than the younger groups.
Finally, patients not taking any AD concomitant medica-
tions had a progression rate that was not significantly
different from zero and this could partly be attributed to
the amyloid-negative patients unlikely to have AD that
were enrolled in these two bapineuzumab phase-3 studies.
This is based on the Pittsburgh compound B-Positron emis-
sion tomography (PIB-PET) substudy of the 301/302
studies (n5 154) where a total of 6.5% of APOE ε4 carriers
and 36.1% of APOE ε4 noncarriers were amyloid negative
at baseline [11]. Recently, Samtani et al. [6] have shown
that amyloid-negative patients do not exhibit decline in
ADAS-cog/11 and the current model allows zero progres-
sion rate (and even improvement in cognition). This is
possible through covariate effects such as comedication
status and allowing the random effect on the slope param-
eter to be additive in nature allowing progression rate to
positive, zero, and negative at the individual level.

The richness of the current data set also allowed delinea-
tion of the transient placebo course observed in both studies.
Patients with milder AD and higher baseline MMSE scores
had a transient lack of deterioration in cognitive symptoms at
the beginning of the study (i.e., an initially flat shape was
observed in the ADAS-cog/11 score trajectory). This phe-
nomenon has also been recently seen in two other studies
(large, 54-week clinical studies in AD involving 926 pa-
tients), wherein results of placebo-treated patients were pub-
lished [31]. In the present study, the placebo course had a
half-life of 10 weeks and the MMSE score was found to
be a highly significant covariate for the amplitude of the pla-
cebo course.

The dropout process for this population exhibited the
“healthy survivor effect”, wherein as the ADAS-cog scores
increased with cognitive decline, the probability of dropout
increased. Thus, the completers had less disease severity and
tended to be mild AD subjects compared with moderate AD
subjects that tended to dropout. This phenomenon was
captured in the model through the dropout submodel. There-
fore, simulations for the VPC were performed with the com-
bined disease progression plus dropout model. This joint
prediction is particularly helpful with improving the predic-
tive performance of the model at later times where scores are
high and probability of dropout higher (for an illustration see
Samtani et al. [17]).

The final step of this modeling exercise tested treatment
and exposure-response effects of bapineuzumab on disease
progression. The analysis suggested a “lack of treatment” ef-
fect in the overall population and various subpopulations.
Although an exposure-response relationship could also not
be elucidated, the model could still represent a suitable
tool for clinical study simulation. The influential covariates
on AD progression identified in this analysis could poten-
tially be used for future study designs, identifying inclusion
and exclusion criteria or stratification criteria, and for
modeling outcomes.

One of the limitations of the present study is that the years
of education was not included in the covariate submodel.
The absence of this variable might have affected the result
because men have higher education than women. However,
a recent analysis [5] has shown that it is difficult to detect the
influence of education on cognitive performance in clinical
trials because clinical trial participants have higher levels
of education i.e., the models are not able to describe this ef-
fect, likely because of the narrow distribution of years of ed-
ucation in the trial participants.
5. Conclusion

A beta regression model with Richard’s function best
described the disease progression as measured by ADAS-
cog/11 scores in patients with mild-to-moderate AD. The in-
fluence of bapineuzumab exposure on disease progression
was not significant and this is consistent with the results
from the primary statistical analysis of the ADAS-cog/11
data and other efficacy data in studies 301 and 302. A placebo
course was apparent in the current ADAS-cog/11 data set and
the amplitude of the placebo course was dependent on base-
line disease status, consistent with known learning effects in
AD. Sex, AD concomitant medication use, Pittsburgh com-
pound B-Positron emission tomography carrier status, and
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YSO had significant effects on the baseline ADAS-cog/11
score, whereas AD concomitant medication use, age, YSO,
and Pittsburgh compound B-Positron emission tomography
carrier status had significant effects on the disease progression
rate measured as ADAS-cog/11 scores.
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RESEARCH IN CONTEXT

1. Systematic review: ADAS-Cog/11 disease progres-
sion modeling was performed on pooled data from
two phase-3 clinical studies of bapineuzumab in pa-
tients with mild-to-moderate AD.

2. Interpretation: The main aim of these current explor-
atory analyses was to model the longitudinal changes
in ADAS-cog scores and to assess impact of exposure
to bapineuzumab on disease progression. Although
the treatment effect (bapineuzumab vs. placebo) was
not statistically significant in both phase-3 studies,
the pharmacokinetic concentration data collected in
the studies provided a unique opportunity to evaluate
the relationship between individual bapineuzumab
exposure and disease progression of ADAS-cog
scores. We observed that bapineuzumab exposure
had no significant effect on ADAS-Cog progression;
however, concomitant medication use, age, illness
duration, and APOE*ε4 carrier status had significant
effects on ADAS-Cog progression rate.

3. Future directions: Even though an exposure-response
relationship was not found, the model could still
represent a suitable tool for clinical trial simulation
and could assist in the design of future clinical studies.
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