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Abstract: In the last decades CD38 has emerged as an attractive target for multiple myeloma (MM).
CD38 is a novel multifunctional glycoprotein that acts as a receptor, adhesion molecule interacting
with CD31 and as an ectoenzyme. As an ectoenzyme, CD38 functions as a metabolic sensor catalyzing
the extracellular conversion of NAD+ to the immunosuppressive factor adenosine (ADO). Other
ectoenzymes, CD73 and CD203a, together with CD38, are also involved in the alternative axis of
extracellular production of ADO, bypassing the canonical pathway mediated by CD39. CD38 is
ubiquitously expressed in the bone marrow microenvironment; however, only MM cells display a
very high surface density, which lead to the development of several anti-CD38 monoclonal antibodies
(mAbs). The efficacy of anti-CD38 mAbs depends from the presence of CD38 on the surface of MM
and immune-microenvironment cells. Interestingly, it has been reported that several drugs like
lenalidomide, panobinostat, the all-trans retinoic acid and the DNA methyltransferase inhibitors may
increase the expression of CD38. Hence, the possibility to modulate CD38 by increasing its expression
on MM cells is the pre-requisite to potentiate the clinical efficacy of the anti-CD38 mAbs and to design
clinical trials with the combination of anti-CD38 mAbs and these drugs.
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1. Introduction

Multiple myeloma (MM) cells are characterized by tight relationship with the bone marrow
(BM) microenvironment which supports their growth, survival, and induces drug resistance. MM
cells overexpress several surface adhesion molecules that are involved in the relationship with the
micro-environmental cells like BM stromal cells (BMSCs), osteoblasts (OBs), and endothelial cells [1].
Among the adhesion molecules, CD38 is highly expressed by MM cells. CD38 has become one of the
main targets for monoclonal antibody (mAb) therapy in MM patients [2]. Daratumumab (DARA) is the
first anti- CD38 mAb approved for the treatment of relapsed and refractory MM based on the results
of two phase I/II trials [3]. Other anti-CD38 mAb were also clinically developed as isatuximab and
MOR202 [4]. The combination of anti-CD38 mAbs with main anti-MM drugs as proteasome inhibitors
(PIs) and immunomodulatory drugs (IMiDs) demonstrated a high clinical efficacy in randomized phase
III trials [5] leading to new therapeutic paradigms in relapsed/refractory MM patients. However, a
considerable amount of MM patients does not respond or are refractory to the treatment with anti-CD38
mAbs either as single agents or in combination with PIs or IMiDs [6–8].

The clinical efficacy of anti-CD38 mAbs seems to be related, at least in part, to the intensity of
CD38 expression by MM cells and other cells of the immune-microenvironment. The possibility to
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modulate CD38 through an increase of its expression by MM cells is the pre-requisite to potentiate
the efficacy of anti-CD38 mAbs. Different pharmacological agents have demonstrated the capacity to
increase the expression of CD38 by MM and BM microenvironment cells. This review summarizes the
main experimental evidences on this topic giving the rational for drug combinations with anti-CD38
mAbs in the treatment of MM.

2. CD38 Expression by MM Cells and BM Microenvironment

MM is a hematological cancer characterized by the accumulation and proliferation of malignant
plasma cells (PCs) in the BM [9]. The close interaction between PCs and BM microenvironment cells
creates a permissive niche for tumor survival and disease progression, characterized by osteolytic
bone disease and immune-suppression [10]. Both soluble factors and cell-to-cell contact mechanisms
are involved in this cross-talk. Among the surface molecules, which allow the adhesion to the
microenvironment, MM cells highly express CD38 [11], which made it an attractive therapeutic target
for mAbs [12,13]. Several studies demonstrated that only PCs strongly express CD38 antigens in BM,
and that no PCs are detectable in either CD38neg cell fraction or fraction of cells weakly expressing
CD38 antigens (CD38low) [14,15]. However, activated B cell, T cells and NK cells up-regulate CD38
surface expression to levels similar to that found on PCs [16].

CD38 is a 45-kDa type II transmembrane glycoprotein, which plays a dual role as a receptor and
ectoenzyme [17]. It is expressed on normal cell subsets, such as T cells, NK cells, B cells, and dendritic
cells [18]. It is involved in T cell activation and proliferation, B cell differentiation, and neutrophils and
monocytes chemotaxis, [17,19,20]. In addition, CD38 interacts with the non-substrate ligand CD31,
which is constitutively expressed by endothelial cells [21]. Interestingly, a co-expression of CD38 and
CD31 was also demonstrated in MM cells but not on PC leukemia [22]. Accordingly, we have recently
reported that extra-medullary MM cells can also lose the expression of CD38 [23].

As ectoenzyme, CD38 acts like a metabolic sensor which catalyzes the extracellular conversion
of NAD+ to regulators of calcium signaling, such as adenosine (ADO), according to pH status [24].
Other ectoenzymes, CD73 and CD203a, together with CD38, are involved in the alternative axis of
extracellular production of the immunosuppressive factor adenosine ADO, bypassing the canonical
pathway mediated by CD39 [25].

ADO levels are significantly higher in the BM plasma of MM patients than asymptomatic
monoclonal gammopathies as Monoclonal Gammopathy of Uncertain Significance (MGUS) and
smoldering MM (SMM), suggesting that ADO is produced in the MM niche by an ectoenzymatic CD38
network [26]. Recently, we have also investigated the expression and function of ectoenzymes on
microvesicles (MVs) isolated from BM plasma samples of MM patients. Our results show that the
percentage of MVs expressing high levels of ectoenzymes was higher when derived from MM patients
compared to MGUS and SMM. Consistently, BM CD138+ PCs from MM patients expressed high levels
of all ectoenzymes [27]. The MVs immunophenotype of MM patients indicated a high expression level
of CD38, CD39, CD73, and CD203a ectoenzymes as shared by CD138+ PCs. Finally, we demonstrated
that the ATP, NAD+, ADPR, and AMP to ADO catabolism was higher in MVs from MM patients
than in those from controls. This indicates that the ectoenzymes expressed by MVs isolated from
BM samples of MM patients were functionally active and involved in the higher ADO production as
compared to MGUS and SMM [27].

It is known that the interactions between MM PCs and other cells of the BM niche, such as
osteoclasts (OCs), OBs, and BMSCs, induce the production of ADO, which promotes tumor survival
and immune escape [28–30]. Several studies also reported that ADO concentrations in the BM MM
niche correlates with disease progression and may be an useful prognostic marker related to ISS
staging together with others [26]. In addition, it has been interestingly shown that the fully humanized
anti-CD38 mAb, DARA, is able to modulate CD38 enzymatic activity in vitro, thus reducing ADO
levels and reverting its immunosuppressive effect [28].
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Analysis of CD38 and the other ectoenzyme distribution within MM bone niche revealed that only
PCs express high levels of CD38 [31]. However, some studies showed that CD38 expression intensity
is highly heterogeneous on MM cells, and its expression does not differ from newly diagnosed and
relapsed/refractory MM patients [32]. MM PCs also express other ectoenzymes like CD39 and CD73,
although their levels differ from patient to patient [31].

The expression profile of BMSCs and OBs show that both cell types are CD38−/CD39− while
expressing CD73 and CD203a [26,30,31]. Indeed, CD38 decreases during OB differentiation with a
concomitant increase of CD203a [30].

By using murine and rabbit models, studies from Sun L. et al. [33,34] described an involvement of
CD38 in the remodeling of the adult skeleton [33,34]. Specifically, a reduced bone mineral density was
detected in CD38−/− mice, along with a strong ability of the hematopoietic stem cells to differentiate
into highly resorptive OCs [34]. CD38 was also detectable on rabbit OC plasma membrane where it
exerts an ADP ribosyl cyclase activity [34]. Bone resorption was inhibited after the treatment with an
anti-CD38 agonist antibody, further confirming CD38 involvement in skeleton remodeling [33]. These
studies also supported the hypothesis of CD38 as a metabolic sensor able to couple OC bone resorption
activity with its Ca2+ signaling pathway [35].

However, few data are currently available on CD38 expression on human monocytes and OCs
in MM. A recent study from Costa F. et al. [31] shows that CD38 is expressed on the surface of early
OC progenitors but it is lost during in vitro differentiation toward an osteoclastogenic phenotype [31].
Moreover, in vitro experiments demonstrated that the use of the fully humanized anti-CD38 mAb,
DARA, inhibits OC formation and activity, confirming the involvement of CD38 in bone remodeling,
even in MM patients [31].

Besides their major function in bone remodeling, OCs also display immunosuppressive properties
on T cells [36] which in turn induce osteoclastogenesis [37], thus establishing a feedback loop mechanism.
An G. et al. [38] recently demonstrated that anti-CD38 mAb, SAR650984, enhances the cytotoxic effect
of T cells on OCs in vitro [38]. On the other hand, the presence of SAR650984 in T cells-OCs co-cultures
restores T cell proliferation, reverting the OC immune-suppressive effects [38]. Overall, these data
suggested that targeting CD38 may affect MM-induce bone disease, by restoring T cell function or
inhibiting early OC formation.

Lastly, Krejcik J. et al. [16] suggested that CD38 expression may define a subset of T regulatory cells
(Tregs) with enhanced immune suppressive effect [16]. Studies on MM revealed that Tregs expresses
CD38 at higher level compared to T constitutive cells (Tcons). Moreover, the percentage of CD38high

cells is higher in MM patients versus healthy donors [16,39]. In vitro co-culture also showed that MM
cells significantly induces Tcons conversion toward a Treg phenotype, which is characterized by an
increased expression of CD38, CD25, and FoxP3 compared with natural Tregs [39].

Together all these data indicate a pleiotropic role of CD38 in MM bone niche, supporting the use
of therapeutic strategies targeting this molecule to inhibit MM cell growth, survival, and to revert
immune-suppression and bone disease in MM patients.

3. CD38 Modulation by Anti-CD38 Monoclonal Antibodies in MM Cells

Several anti-CD38 mAbs have been developed and are under clinical development: Two fully
human Abs (MOR202, TAK-079) and one chimeric (isatuximab); while DARA is the yet approved for
the treatment of MM as single agent and in combination with standards of care in relapsed/refractory
MM patients [40].

Anti-CD38 mAbs show different mechanisms of action: Fc-dependent immune effector
mechanisms, direct effects, and immunomodulatory effects. The first mechanism includes
complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC),
antibody-dependent cellular phagocytosis (ADCP), and apoptosis upon secondary cross-linking [40].
The direct effect is mediated by caspase-dependent apoptotic pathway, as well as the lysosomal cell
death pathway [41]. Finally, it has been recently reported that DARA treatment induces elimination
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of CD38-positive immune suppressor cells, such as Tregs, regulatory B cells, and myeloid-derived
suppressor cells [16,42], together with activated NK cells [43], suggesting DARA ability to target cells
with lower levels of CD38.

Despite the in vitro effects results and the well-established clinical efficacy of the anti-CD38Abs,
some open issues may occur. Specifically, a study from Nijhof IS et al. [8] reported that CD38 expression
is reduced in both BM and PB CD138+ cells, together with non-tumor immune cells (NK, T cells,
B cells, and monocytes) following the first DARA infusion and it increases again following DARA
discontinuation [8]. Different mechanisms have been proposed to explain this event. One is that
the interaction of DARA with its target induces a polar aggregation, known as “capping”, of CD38
molecules, followed by exocytosis as MVs [28] or endocytosis of DARA-CD38 complex [44]. Another
mechanism involves the degradation of the antigen–antibody complex or the rapid elimination of
myeloma cells expressing high levels of CD38, as demonstrated by the fact that MM CD38 levels were
only reduced in the presence of complement or effector cells. More recently, it has been suggested a
mechanism called “trogocytosis”, where fragments of the plasma membrane carrying antigen–antibody
complexes, together with other parts of cell membrane (CD49d, CD56, CD138, CD54, and CD44) are
transferred by monocytes and granulocytes, in the absence of evident phagocytosis of tumor cells [44].
This process seems to be involved the reduction of CD38 not only on MM cells but also on NK cells.
Interestingly, these in vitro studies were then confirmed in vivo in patients treated with DARA, both
in the presence or absence of lenalidomide [44].

Since drug-response was maintained in many patients despite the decreased CD38 expression
by MM cells [44], events other than those just described may be responsible for treatment failure.
Nonetheless, repeated treatment with DARA is possible and efficacious [43].

Therapeutic combination with agents that increase CD38 expression, such as panobinostat
an–histone deacetylase inhibitor [45] and trans retinoic acid [32], can overcome these limitations as
demonstrated by the increased of anti-CD38 mAb-mediated ADCC in vitro [32,45]. More details are
reported in the following section.

Recently, Moreno L et al. [46] described that in vitro treatment of several human myeloma cell
lines with another anti-CD38 mAb, isatuximab, induces CD38 internalization without its release from
MM cell surface [46]. The authors found that isatuximab-mediated ADCC, ADCP, and CDC are
triggered only in the presence of a certain number of surface CD38 molecules [46].

All together these data thus suggest that not all patients could benefit from the same anti-CD38
mAbs and combination with other therapeutic agents should be investigated.

4. Drug-Mediated Modulation of CD38 Expression by MM Cells

The expression of CD38 by MM cells is potentially modulated by different agents used in the
treatment of MM or for other hematological malignancies.

Firstly, authors investigated the role of all-trans retinoic acid (ATRA) on the expression of CD38 by
MM cells. Low doses of ATRA were able to increase up to 4.4 fold CD38 expression on MM cell lines.
Accordingly, ATRA significantly increased CD38 expression in all the BM mononuclear cells of MM
patients. Moreover, in a humanized mouse model ATRA enhances DARA mediated ADCC and CDC
against MM cells either in vitro or in vivo [32]. Similarly, we recently observed that the inhibitory effect
of DARA on OC formation is significantly enhanced by ATRA treatment. This treatment increased
CD38 expression by monocytes and early OC progenitors [31].

There are different mechanisms involved in the modulation of CD38 by ATRA. Previous studies
have demonstrated that the retinoic acid receptor has an important role in the induction of CD38 by
ATRA [47]; indeed, the CD38 gene contains a retinoic acid-responsive element. Non-classical retinoic
acid signaling is also involved in CD38 up-regulation, independently from the conventional retinoic
acid receptor pathway [48]. Among these mechanisms, signaling mediated by protein kinase Cδ [48]
and phosphatidylinositol 3-kinase [49] have been described.
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IMiDs are agents able to act on both MM and microenvironment cells by targeting several
adhesion molecules [50]. Specifically, it was reported that the integrin-signaling pathway is significantly
modulated by lenalidomide and pomalidomide in MM cell lines. In particular, CD38 was up regulated
after IMiDs treatment whereas ITGA8 and ICAM2 (CD102) were both down-regulated [51]. More
recently, Fedele P. et al. [52] reported that lenalidomide treatment increases CD38 expression in several
human myeloma cell lines, through Ikaros and Aiolos degradation. Thereafter, the authors tested
the hypothesis that the additive effect observed by the combination of anti-CD38 mAbs and IMiDs
in vitro could be due to the upregulation of CD38 by IMiDs [52]. They found that the additive effect
of the treatment combination was directly correlated with the increased CD38 surface expression on
MM cells [52]. However, in the presence of lenalidomide it was not observed any additional effect on
DARA direct cytotoxicity [52]. On the other hand, lenalidomide potentiated DARA-induced ADCC
against MM cells by directly stimulating NK cells without modifying CD38 expression on these cells.
Overall these evidences indicate that the clinical synergistic effect of the combination of lenalidomide
and DARA is likely due either to the increased CD38 expression on MM cells or to the stimulation of
NK activity [52].

Panobinostat is a pan-histone deacetylase inhibitor (HDACi) approved for the treatment of MM
relapsed patients in combination with bortezomib [53]. Recent data indicate that panobinostat is able
to up-regulate the expression of CD38 by primary PCs either in newly diagnosed MM or in relapsed
MM patients [45]. Interestingly, this effect seems to be specific for MM cells and does not occur in
lymphoma cells [45]. Consistently with the effect of panobinostat on the expression of CD38 by MM
cells, it has been demonstrated that the cytotoxic effect of DARA was increased by the treatment of
panobinostat [45]. A significant increase of ADCC was observed against panobinostat pre-treated cells
compared to untreated myeloma cells in all BM samples obtained from MM patients [45]. Interestingly,
panobinostat treatment did not affect CD38 expression on other cell types as T cells [45].

The mechanism by which panobinostat increases CD38 expression may involve the interaction
between Ikaros and the nucleosome remodeling deacetylase (NuRD) complex, known to regulate
several transcriptional events involved in oncogenesis and cancer progression [54]. NuRD contains at
least two subunits with an ATP-dependent chromatin remodeling, together with HDAC1/2 subunits,
which catalyze protein deacetylation [54]. Co-immunoprecipitation experiments demonstrated that
Ikaros interacts with HDAC1/2 in MM cells, by sharing similar binding patterns in the CD38 locus [52].
It is thus conceivable that Ikaros-induced CD38 repression is mediated by its interaction with HDAC1/2.
These results were further supported by the synergistic upregulation of CD38 after combination
treatment with lenalidomide and low doses of HDAC- inhibitor panobinostat [52].

Together with the pan- HDACi, panobinostat, the effect of the class I HDAC and HDAC6 inhibitors
were investigated. The class I HDAC-specific inhibitor is able to up-regulate CD38 expression by
MM cells and to increase the effect of interferon (IFN)-α and ATRA, in several MM cell lines tested.
On the other hand, HDAC6 inhibitor attenuated the CD38 expression induced by IFN-α and ATRA.
Similarly, these authors found that panobinostat attenuates IFN-α and ATRA up-regulated expression
of CD38 [55]. It is known that the upstream sequence of CD38 gene contains an interferon regulatory
factor 1 (IRF1)-binding site [56,57] suggesting the role of STAT-1-IRF1 pathway activation in the
up-regulation of CD38 by IFN-α. A dual opposite effect was thus observed regarding the different type
of HDAC inhibitors [55]. Indeed, IFN-α and ATRA up-regulation of CD38 expression was attenuated
by HDAC6 inhibitor, ACY-1215, but not by the class I HDAC1 inhibitor, MS-275 [55]. These in vitro
evidences suggest that HDAC class I inhibitors could be used in combination with ATRA to potentiate
the effect of anti-CD38 mAbs.

CD38 was identified as a differential methylating region in MM patients with a negative correlation
between DNA methylation and gene expression. Moreover, analysis of different independent MM
datasets showed an inverse relationship between normal PCs and malignant MM cells in terms of
CD38 methylation and gene expression status [58]. Accordingly, it has been recently demonstrated by
flow-cytometry that DNA methyltrasnferase inhibitors (DNMTi), as azacytidine (AZA) and decitabine
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(DEC), increase CD38 expression on a panel of human MM cell lines, without affecting cell viability [58].
Furthermore, the combination of AZA or DEC with ATRA, significantly increased surface CD38
expression as compared with the treatment with the single drugs [58]. Next, by using immortalized
NK transgenic cell line, the authors showed a significant increase in DARA-mediated-ADCC against
MM cells pre-treated with DNMTi as compared to not-treated cells [58]. The mechanism behind
the AZA-mediated upregulation of CD38 expression by MM cells involved TNF-α signaling as
demonstrated by the abrogation of DNMTi effect in the presence of neutralizing TNF-α antibody [58].

5. Clinical Results of Anti-CD38 mAbs in Combination with Agents Able to Upregulate CD38
Expression in MM Patients

Overall the evidences indicate that different pharmacological agents can modulate the expression
of CD38 with a possible translational effect. Published data suggests that the use of IMiDs, ATRA, and
panobinostat may increase the clinical efficacy of anti-CD38 as DARA, isatuximab and MOR202. The
combination of DARA with IMIDs have been extensively tested in several studies on MM patients at
different stages of disease. The outstanding efficacy of the combination of DARA with lenalidomide
have led to a rapid approval of the regimen in relapsed/refractory MM patients, demonstrating an
overall response rate (ORR) of 92.5% and a progression free survival (PFS) at 12 months of 83.2% [7].
The same regimen has been tried in the first-line setting, showing a complete response (CR) or better in
47.6% of patients, with a 70.6% of patients without disease progression at 30 months [59]. DARA has
also been tested in combination with pomalidomide, showing promising results in a phase Ib trial,
even in heavily pretreated patients and in patients exhibiting high-risk cytogenetic features (ORR:
60% in the whole population, 59% in high-risk patients, 55% in patients with >3 previous lines of
therapy; median PFS: 8.8 months) [60]. Accordingly, it was reported the significant clinical effect of the
combination anti-CD38 antibody isatuximab and lenalidomide. A phase Ib trial reported an ORR of
56% with a median PFS of 8.5 months, with no safety concerns [61]. The phase Ib trial of isatuximab
in combination with pomalidomide showed even more promising results, with an ORR of 62% and
a median PFS of 17.6 months in patients heavily pretreated [62]. The phase III randomized trial is
currently ongoing. However, to our knowledge, none of these studies have evaluated the expression
in vivo of CD38 on MM cells.

Based on the results of pre-clinical studies, a phase I/II clinical trial of DARA in combination
with ATRA has been designed, even if no results have been published yet. Conversely, there is no
evidence of possible clinical use of the combination of anti-CD38 mAbs and panobinostat. Results of
main clinical trial of anti-CD38 antibodies in combination with drugs that potentially modulated the
expression of CD38 by MM cells are reported in Table 1.
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Table 1. Clinical trial of combination of anti-CD38 mAbs with drugs able to modulate CD38 expression.

Drug Combination Trial Name
(NCT number) [Ref.] Phase Number of Patients Primary Outcome Results Reported AEs (Grade 3–4)

DARA/
Lenalidomide 54767414MMY3008 (NCT02252172) [59] III 737 PFS PFS 70.6% at 30 mos Neutropenia 50%,

lymphopenia 15%

DARA/
Lenalidomide Pollux Study (NCT02076009) [7] III 569 PFS

ORR 92.9% vs 76.4%
Median PFS nr vs 17.5

months (HR 0.44)

Neutropenia (54%), anemia
(15.5%), pneumonia (12%)

Isatuximab/
Lenalidomide

A Phase 1b Study of SAR650984
(Anti-CD38 mAb) in Combination with

Len and Dex for the Treatment of RRMM
(NCT01749969) [61]

I 57 MTD of the
combination

ORR 56%
Median PFS 8.5

months

Neutropenia (60%),
lymphopenia (58%)

DARA/Pomalidomide 54767414MMY1001
(NCT01998971) [60] Ib 103 MTD of the

combination

ORR 60%
Median PFS 8.8

months

Neutropenia (77%), anemia
(28%), thrombocytopenia (19%)

Isatuximab/
Pomalidomide

TCD14079
(NCT02283775) [62] Ib 45 MTD of the

combination

ORR 62%
Median PFS 17.6

months

(AEs all grade)
Fatigue (62%), upper

respiratory tract infection (42%)

DARA/
ATRA

A Phase 1 and Phase 2 Study of DARA in
Combination with ATRA in RRMM

(NCT02751255)
I/II 60

1) MTD
2) ORR
3) RDL

No result posted No result posted

Abbreviations: DARA, Daratumumab; ATRA, All Trans-Retinoic Acid; RRMM, Relapsed/Refractory Multiple Myeloma; MTD, Maximum Tolerated Dose; ORR, Overall Response Rate;
RDL, Recommended phase 2 dose level; PFS, Progression Free Survival; HR, Hazard Ratio; CBR, Clinical Benefit Rate; AEs, Adverse events.
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6. Conclusions

CD38 is a suitable target for immunotherapy in MM patients due to its expression profile in
the BM microenvironment. MM cells expressed CD38 at high levels. On the other hand, among the
cells of the BM microenvironment it has been demonstrated that NK, T cells, and monocyte express
CD38 with different levels of expression. Growing evidence indicate that the efficacy of anti-CD38
mAbs is related, at least in part, to the CD38 intensity of expression by MM cells and those of the
immune-microenvironment. The possibility to modulate CD38 increasing its expression by MM cells
is the pre-requisite to potentiate the efficacy of anti-CD38 mAbs. Moreover, it has been shown that
anti-CD38 mAbs may modulate the CD38 expression on the surface of MM cells by its internalization
or capping.

Different pharmacological agents have demonstrated the capacity to increase the expression of
CD38 by MM cells and their BM microenvironment. Particularly different experimental data indicate
that ATRA is able to increase the expression of CD38. Among the anti-MM drugs, it has been shown
that the HDAC inhibitor panobinostat increased CD38 expression by MM cells. The same effect has
been found with lenalidomide and pomalidomide. More recently, it has been reported that DNMTi as
AZA or DEC also increase CD38 expression by MM cells [58].

Figure 1 summarizes the main mechanisms involved in the modulation of CD38 expression in
MM cells and in the BM microenvironment by different molecules with a possible therapeutic impact.

Figure 1. CD38 expression in multiple myeloma (MM) microenvironment and its modulation by
different agents.

These observations provide the rational to design clinical trials using anti-CD38 mAbs such as
DARA and isatuximab in combination with IMiDs, HDACi, and DNMTi. Clinical trial showed that
the combination of DARA with IMiDs is highly clinical efficient to induce a profound response in
relapsed/refractory MM patients.
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