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Copy number variations (CNVs) are gains and losses of large regions of genomic 
sequence between individuals of a species. Although CNVs have been associated with 
various phenotypic traits in humans and other species, the extent to which CNVs impact 
phenotypic variation remains unclear. In swine, as well as many other species, relatively 
little is understood about the frequency of CNV in the genome, sizes, locations, and other 
chromosomal properties. In this work, we identified and characterized CNV by utilizing 
whole-genome sequence from 240 members of an intensely phenotyped experimental 
swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included 
all 24 of the purebred founding boars (12 Duroc and 12 Landrace), 48 of the founding 
Yorkshire-Landrace composite sows, 109 composite animals from generations 4 through 
9, 29 composite animals from generation 15, and 30 purebred industry boars (15 Landrace 
and 15 Yorkshire) used as sires in generations 10 through 15. Using a combination of split 
reads, paired-end mapping, and read depth approaches, we identified a total of 3,538 
copy number variable regions (CNVRs), including 1,820 novel CNVRs not reported in 
previous studies. The CNVRs covered 0.94% of the porcine genome and overlapped 
1,401 genes. Gene ontology analysis identified that CNV-overlapped genes were enriched 
for functions related to organism development. Additionally, CNVRs overlapped with 
many known quantitative trait loci (QTL). In particular, analysis of QTL previously identified 
in the USMARC herd showed that CNVRs were most overlapped with reproductive traits, 
such as age of puberty and ovulation rate, and CNVRs were significantly enriched for 
reproductive QTL.
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INTRODUCTION

One of the important challenges in post-genomic biology is relating observed phenotypic variation to 
the underlying genotypic variation. Genome-wide association studies (GWAS) have made thousands 
of connections between single-nucleotide polymorphisms (SNPs) and phenotypes, implicating 
regions of the genome that may play a causal role in a variety of complex traits. Despite their success 
in identifying associated variants, association studies account for only a small percentage of the total 
heritability (Maher, 2008). Hence, determining other types of variation that may make a substantial 
contribution to variation in complex traits is a meaningful goal.
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Copy number variations (CNVs) are gains and losses of 
large regions of genomic sequence between individuals of a 
species, ranging from kilobases to megabases in length (Feuk 
et al., 2006). It is hypothesized that CNVs represent a significant 
source of genetic variation, as they have been shown to cover 
approximately 7% of the mouse genome (Locke et al., 2015), 
12% of the human genome (Redon et al., 2006), and 7% of the 
cattle genome (Keel et al., 2016a). Significant overlap between 
protein-coding genes and CNV has been reported in a number 
of species, including human (Bailey et al., 2009), mouse (Locke 
et al., 2015), cattle (Keel et al., 2016b), and pig (Paudel et al., 
2013). Conrad et al. (2010) found that 40% of validated CNV 
overlapped with at least one gene. In addition, CNVs appear 
to influence gene expression levels (Stranger et al., 2007; 
Henrichsen et al., 2009).

In humans and rodents, CNVs have been well studied and 
linked to various phenotypic traits and diseases (Cook and 
Scherer, 2008; Almal and Padh, 2012; Girirajan et al., 2013). 
Initial CNV studies have been performed in a number of 
domesticated animals: dog (Nicholas et al., 2011; Alvarez and 
Akey, 2012; Berglund et al., 2012), cattle (Fadista et al., 2010; Liu 
et al., 2010; Hou et al., 2011; Stothard et al., 2011; Zhan et al., 
2011; Bickhart et al., 2012; Hou et al., 2012a; Hou et al., 2012b; 
Jiang et al., 2012; Choi et al., 2013; Wu et al., 2015; Keel et al., 
2016a), sheep (Fontanesi et al., 2011; Liu et al., 2013), chicken 
(Crooijmans et al., 2013; Yi et al., 2014), and goat (Fontanesi 
et al., 2010).

Swine CNVs have been reported using a variety of array-
based platforms, including comparative genomic hybridization 
arrays (Fadista et al., 2008; Li et al., 2012; Wang et al., 2014; 
Wang J. et al., 2015), the Illumina PorcineSNP60 BeadChip 
(Ramayo-Caldas et al., 2010; Chen et al., 2012; Wang et al., 
2012; Wang L. et al., 2013; Schiavo et al., 2014; Wiedmann et al., 
2015; Xie et al., 2016; Zhou et al., 2016; Hay et al., 2017), and 
the Illumina Infinium II Multisample SNP assay (Wang J. et al., 
2013; Long et al., 2016). These approaches are known to suffer 
some drawbacks, including limited coverage of the genome due 
to low probe density, low resolution, and hybridization noise 
(Zhao et al., 2013). Ongoing developments and cost decreases 
in next-generation sequencing (NGS) technology have led to an 
increased popularity of sequence-based CNV detection. To date, 
a limited number of studies have utilized NGS data to identify 
CNV in the porcine genome.

The number and size ranges of CNV detected in previous swine 
studies utilizing NGS vary dramatically. These discrepancies may 
be artifact of differences in many aspects of the study, including 
sequence coverage, sample size, breed, and CNV detection 
algorithm. In swine, as well as many other species, relatively little 
is known about the properties of CNV, including their frequency 
in the genome, sizes, locations, and chromosomal properties. 
Of all the topics related to CNV, knowledge of their functional 
impact is the most limited. Despite the wide range of number 
and size of CNV reported between previous swine NGS studies, 
the results from functional enrichment analysis of CNV are 
quite consistent. Gene ontology (GO) terms related to sensory 
perception (Paudel et al., 2013; Jiang et al., 2014; Paudel et al., 
2015), response to stimuli (Paudel et al., 2013; Jiang et al., 2014), 

immunity (Jiang et al., 2014; Paudel et al., 2015), and olfactory 
receptor (OR) activity (Paudel et al., 2015; Revilla et al., 2017) were 
the most significant in these studies. The same GO terms have 
been identified in CNV studies in humans and cattle. ORs, which 
are G-protein-coupled receptors involved in signal transduction, 
play a role in all the GO terms listed above. The results from 
previous studies suggest that CNVs may play a role in olfactory 
ability and sensitivity, which may be related to economically 
relevant traits in swine including feeding behavior (Connor et al., 
2018) and reproduction (Baum and Cherry, 2015).

The CNVs reported in the aforementioned studies represent 
several diverse pig breeds and wild boars from different regions 
of the world. Very few animals in these studies (only 37 of 
353) represent commercial swine germplasm, which, through 
domestication, has been shaped by selection for docility and lean 
meat production. Additionally, previous CNV studies in swine 
have been conducted using the Sscrofa 9.2 and 10.2 genome 
builds. The purpose of this study is to identify and characterize 
CNV regions detected from whole-genome sequence of 240 
members of an experimental swine herd at the U.S. Meat Animal 
Research Center (USMARC), a resource representative of 
commercial swine germplasm, utilizing the newly released, high-
quality Sscrofa 11.1 genome assembly.

MATERIALS AND METHODS

The DNA samples sequenced for this study were extracted from 
semen, blood, and tail tissue archived under standard operating 
procedures for the U.S. Meat Animal Research Center tissue 
repository. The research did not involve experimentation on 
animals requiring IACUC approval.

Sequencing and Data Acquisition
CNVs were detected from whole-genome sequence of 240 
members of an experimental swine herd. This composite 
population, developed at USMARC, began in 2001 by mating 
mixed Landrace-Yorkshire sows with 24 purebred founding 
boars—12 Landrace and 12 Duroc. To produce the second 
generation, Landrace-sired animals were mated to Duroc-sired 
animals. Subsequent generations were produced by selecting 
1 male and 10 females produced by each founding boar and 
then randomly mating them, avoiding full-sib and half-sib 
pairings (Lindholm-Perry et al., 2009). Industry sires were then 
introduced in generation 10 and used in subsequent generations. 
This study utilizes whole-genome sequence from all 24 founding 
boars, 48 of the founding sows, and 109 animals from generations 
4 through 9, 29 animals from generation 15, and 30 purebred 
industry boars (15 Landrace and 15 Yorkshire) used as sires in 
generations 10 through 15.

DNA extraction and library preparation have been previously 
described in Keel et al. (2017) and Keel et al. (2018) for the 72 
founding animals and the remaining 168 animals, respectively. 
Libraries were paired-end sequenced (150 bp read length) on 
an Illumina NextSeq500 (Illumina, San Diego, CA, USA) at 
USMARC. Bases of the paired-end reads for all sequenced 
genomes were identified with the Illumina BaseCaller, and 
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FASTQ files were produced for downstream analysis of the 
sequence data. Sequence data are available for download from 
the National Center for Biotechnology Information (NCBI) 
Sequence Read Archive (SRA) BioProjects PRJNA343658, 
PRJNA414091, and PRJNA482384.

Sequence Data Processing
The Trimmomatic software (Version 0.35; Bolger et al., 2014) 
was used to trim Illumina adaptor sequences and low-quality 
bases from the reads. The quality cutoff was a PHRED33 score 
of >15. Reads containing any portion with an average PHRED33 
score <15 spanning at least 4 bp were removed. The remaining 
reads were mapped to the Sscrofa 11.1 genome assembly using 
Burrows-Wheeler Alignment (BWA, Version 0.7.12; Li and 
Durbin, 2009) with the default parameters.

CNV Detection and Defining CNVRs
A combination of the CNVnator (Version 0.3.2; Abyzov et al., 
2011) and LUMPY (Version 0.4.13; Layer et al., 2014) software 
was used to identify putative CNV in the genome sequence of the 
240 pigs. LUMPY is a probabilistic CNV discovery framework 
that integrates multiple detection signals, including split reads 
and paired-end mapping, while the CNVnator is a read depth 
method that uses a mean-shift-based approach to call CNV 
based on the depth of sequencing.

CNVs were first called for each sample using the CNVnator. 
The program was run using a window size (bin size) of 1 kb, 
and all other parameters were set to the default. Next, CNVs 
were detected using LUMPY with default parameters. CNV 
breakpoints from the CNVnator output were passed as input into 
LUMPY using the –bedpe option.

In an attempt to reduce the number of false positives, CNVs 
were also called using the cn.MOPS algorithm (Version 1.24.0; 
Klambauer et al., 2012). cn.MOPS is a multiple sample read depth 
method that applies a Bayesian approach to decompose read 
variations across multiple samples into integer copy numbers 
and noise by its mixture components and Poisson distributions, 
respectively. cn.MOPS avoids read count biases along the 
chromosomes by modeling the depth of coverage across all 
samples at each genomic position. The cn.MOPS program was 
run using a window length of 1 kb, mean normalization mode, 
and the default values for all other parameters. Autosomal and 
sex chromosomes were processed differently due to differences 
in expected ploidy of the genome. Autosomal CNVs, which are 
expected to be diploid, were identified using all 240 samples. 
CNVs on the sex chromosomes were identified by processing the 
167 males and 73 females separately, as SSCX is expected to be 
diploid in female samples and SSCX and SSCY are expected to be 
haploid in the male samples.

CNVs identified by LUMPY that were at least 10% overlapped 
by a CNV identified by cn.MOPS, meaning that the ratio of the 
number of bp overlapped between the LUMPY CNV and at least 
one cn.MOPs CNV to the length of the LUMPY CNV was greater 
than 0.10, were retained for downstream analysis. Next, CNVs 
were used to construct a set of copy number variable regions 
(CNVRs). A CNVR was constructed by merging CNVs across 

samples that exhibited at least 50% pairwise reciprocal overlap 
in their genomic coordinates. For example, suppose we have two 
CNVs, CNV1 beginning at position a and ending at position b 
and CNV2 running from c to d with a < c < b < d. If the reciprocal 
overlap between the two CNVs is at least 50%, then they are 
merged into a CNVR that runs from a to d on the genome.

Validation of CNVR Using Data From 
Sequenced Parent–Offspring Trios
For the transmission rate (paternal and maternal), in each 
parent–child pair, CNVRs in the parent also called in the child 
were counted and then divided by the total number of CNVR 
calls in the parent. For the inheritance rate, CNVR calls in the 
child also present in at least one parent were counted and then 
divided by the total number of CNVRs in the child.

Gene Content and GO
Genes from the NCBI Sus scrofa annotation (Release 106) 
overlapping by at least 1 bp with CNVRs were identified. Functions 
of protein-coding CNV-overlapped genes were determined using 
the PANTHER classification system (Version 14.0, Mi et al., 2013).

Enrichment analysis of gene function was performed using  
PANTHER’s implementation of the binomial test of 
overrepresentation. Significance of GO terms was assessed using 
the default Sus scrofa GO annotation as the reference set for 
the enrichment analysis, and data were considered statistically 
significant at a Benjamini-Hochberg-corrected P value < 0.05.

Enrichment of Quantitative Trait Loci
Enrichment analysis of quantitative trait loci (QTL) overlapped 
with CNVR was performed using Fisher’s exact test. Data were 
considered statistically significant at a Benjamini-Hochberg-
corrected P value < 0.05.

RESULTS AND DISCUSSION

Sequencing and Read Mapping
Genomic DNA from 240 pigs, from a composite population 
at USMARC, was sequenced on Illumina HiSeq and NextSeq 
platforms, generating approximately 72 billion paired-end reads 
(Table S1). Sequence reads covered each pig’s genome at a mean 
of 13.62-fold (×) coverage. Individual coverage per animal ranged 
from 0.97× to 31.13×; 24 animals were covered at less than 3×, 
and 44 were covered at more than 20×.

When generating our sequence data, we targeted a minimum 
of 3× coverage for each of the founding sows and 10× coverage 
for the remaining 168 animals. However, there was considerable 
variation around the 3.66× and 18.41× mean coverage for the 
founding sows and other animals, respectively. Some of this 
variation can be attributed to technical aspects of NGS technology, 
such as the stochasticity of sequencing, DNA quality, and library 
preparation. The combined sequence from all 240 animals covered 
99.99% of the reference genome.
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CNVR Discovery and Statistics
CNVs in the genome of the 240 pigs were identified by taking 
the overlap of two methods: (1) a combination of CNVnator 
and LUMPY and (2) cn.MOPS. Most of the previous NGS CNV 
studies in swine have utilized read depth approaches to identify 
variants (Paudel et al., 2013; Jiang et al., 2014; Paudel et al., 2015; 
Wang H. et al., 2015; Wang et al., 2016; Revilla et al., 2017). 
Although read depth can be a powerful tool to identify CNV, 
often the boundaries are not well determined because of the 
sliding window approach. The exact boundaries of CNV events 
can be important for determining their functional effect (e.g., 
affecting coding sequence). Other CNV detection strategies, 
such as paired-end mapping or split reads, can be used to 
fine map CNV and determine more precise boundaries of the 
variants. The CNVnator–LUMPY combination approach used 
in this work calls CNV in individual samples utilizing paired-
end mapping, split reads, and read depth. Although this method 
should give more accurate CNV breakpoints than read depth 
signal alone, single sample CNV callers are known to suffer from 
decreased detection power and high false-positive rates. A total of 
2,079,579 were identified using CNVnator–LUMPY. Utilization 
of data from multiple samples has been shown to improve CNV 
detection (Klambauer et al., 2012; Duan et al., 2014). Therefore, 
as a further error correction step, CNVs were also detected using 
a multiple sample read depth caller, cn.MOPS (695,741 CNV 
identified). A total of 39,315 CNVs, overlapping between the 
two methods, were retained for downstream analysis (Table S2). 
CNVs were merged across each genome and then across samples 
into CNVRs, and CNVRs less than 200 bp in length were filtered 
out. This resulted in a final set consisting of 3,538 CNVRs (Table 
S3), including 1,820 novel CNVRs that were not reported in 
previous studies.

Note that approximately 19% (45 of 240) of the animals in 
this study had low to moderate sequence depth (<5× coverage). 
The highest sensitivity and resolution in CNV detection are 
attained through high coverage sequencing (>10×; Alkan et al., 
2011). However, until sequencing costs drop dramatically, it is 
not feasible, in most cases, to generate high coverage genomic 
sequence on large numbers of animals. We consider low-
coverage sequencing data here, because methods for analyzing 
SNP and CNV in low-coverage data will continue to be relevant 
in the future in terms of a study’s discovery power, where a fixed 
number of reads should rather be used for sequencing more 
samples with lower coverage than for sequencing fewer samples 
with higher coverage (Le and Durbin, 2011). Due to the cost-
effectiveness of sequencing at lower coverage, recent studies 
have explored strategies for using low-coverage sequence to 
detect common CNV that could explain a significant amount of 
phenotypic variation (Keel et al., 2016a; Zhou et al., 2018). Both 
CNVnator and cn.MOPS have been shown to have moderate to 
high accuracy in detecting CNV from low-coverage sequence 
in diploid genomes (Keel et al., 2016a; Malekpour et al., 2018), 
particularly in data sets consisting of samples with mixed levels 
of coverage. Therefore, the use of these methods, coupled with 
LUMPY, should provide reasonably accurate results for CNV 
calling in our 240 animals.

Sizes of the CNVRs ranged from 0.203 to 398.9 kb, with an 
average of 6.8 kb and a median of 2.9 kb. The CNVR occupied 
a total of 22.9 unique Mb or 0.94% of the Sus scrofa genome. 
The CNVR coverage of the genome is lower than the results of 
previous reports in swine (4.0%; Jiang et al., 2014) and other 
species, including mouse (6.87%; Locke et al., 2015), human 
(12%; Redon et al., 2006), and cattle (6.7%; Keel et al., 2016a), 
which may be due to our stringent criteria (e.g., requiring 
detection with two different approaches). Among the CNVRs, 
144 showed copy number gain (duplication), 3372 showed copy 
number loss (deletion), and 22 showed a mix of copy number 
loss and gain from different individuals. Clearly, there was a large 
discrepancy in the numbers of duplication and deletion CNVR. 
Overall, read-depth methods are more sensitive to deletion CNV 
calls than duplication calls, especially in mid- to low-coverage 
sequence data, as it is easier to identify a “missing” segment of 
the genome than an amplified one with limited sequence reads. 
In fact, 3.1% (105 of 3372) of deletion calls were identified in only 
animals with <10× coverage. As low-coverage WGS continues 
to become more widely utilized, it will be necessary to focus on 
adapting CNV calling tools to this type of data.

Distribution of CNVR
The distribution of CNVRs along each of the chromosomes is 
shown in Figure 1. Variants were not uniformly distributed 
on the chromosomes. The number of CNVRs was strongly 
correlated with the size of the chromosome (Pearson correlation 
coefficient r = 0.77). SSC1 and SSC13 exhibited the largest 
numbers of CNVRs (1231 and 231, respectively), while SSCY, 
SSC18, and SSC12 had the smallest numbers (2, 49, and 52 
CNVRs, respectively). On average, 0.79% of each chromosome 
was covered by CNVRs (Table 1).

The number of CNVRs per animal ranged from 0 to 348, 
with a mean of 157.8 (Table S4). CNVs spanned up to 0.13% of 
the genome of each animal, with a mean and median of 0.057% 
and 0.062%, respectively. This variation across individuals can 
be partially explained by differences in genomic sequencing 
coverage. Smaller numbers of CNVRs were identified in samples 
with low sequencing depth, and the number of identified CNVRs 
tended to increase as genomic coverage increased (Pearson 
correlation coefficient r = 0.84).

The number of individuals exhibiting each CNVR ranged 
from 1 to 175. Many CNVRs (~2649) were present in a small 
percentage (< 5%) of the animals. Three CNVRs (CNVR 2103, 
1676, and 2104 in Table S3) were present in more than 60% of 
the population. The distribution of deletion, duplication, and 
mixed CNVRs across breeds is shown in Figure 2. The purebred 
Landrace and Yorkshire boars and the composite animals had 
more CNVR of all three types than the purebred Duroc boars. 
This is likely because the Sscrofa 11.1 reference genome assembly 
was obtained from a Duroc animal.

A total of 1620 CNVRs were found to be breed-specific in 
origin (Table S5). Most (64%) breed-specific CNVRs were 
present in only one animal. Breed-specific CNVRs that were 
present in the largest numbers of animals were found in the 
composite breed. This is likely due to the larger number of 
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composite animals in the data set. Increased numbers of animals 
in the three pure breeds will be necessary to conduct a complete 
breed-of-origin analysis. This will be a focus of future work.

CNVR Concordance in Parent–Offspring 
Trios
Pedigree data from 12 sequenced parent–offspring trios were 
used as a substitute for molecular validation, which we have 

chosen to forego since this work was intended to be a discovery. 
In a follow-up study, we are planning to look for CNVRs that may 
associate with phenotypes in our population and validation using 
PCR methods will be performed for those CNVRs. If a CNV is 
transmitted from parent to offspring, then it can be considered 
validated. Although this type of validation is not 100% accurate, 
it is satisfactory to allow us to estimate error rates. In an ideal 
data set, paternal and maternal transmission rates would be 50%, 
and inheritance rates would be 100%. Deviations from this ideal 

FIGURE 1 | Positions of CNVRs identified from the 240 sequenced swine genomes in Circos format (Krzywinski et al., 2009). The outer ideogram runs clockwise 
from chromosome 1 to chromosome Y with labels in Mb of physical distance. The copy number data are represented in the inner tracks. The two innermost tracks 
show scatter plots of the CNVR, where the red track shows copy number loss and the green track shows copy number gain. Concentric circles within these tracks 
indicate y-axis values in the scatter plot. The 10 concentric circles in the red track mark values 0 ≤ y < 2, with 0 being the innermost track, while the 11 concentric 
circles in the green track mark values 2 ≤ y ≤ 8. The size of the dot in the scatter plot is proportional to the number of samples containing the CNVR. The other track 
shows a heat map that indicates the parts of the genome that contain copy number gain and loss. This plot simply collapses the scatter plot values onto a single 
radial position.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Porcine CNVKeel et al.

6 August 2019 | Volume 10 | Article 737Frontiers in Genetics | www.frontiersin.org

could be explained by multiple factors. Both false-positive and 
false-negative CNV calls will cause a decrease in transmission and 
inheritance rates. Another possible factor is de novo mutations in 
offspring, which will not affect transmission rates, but will affect 
inheritance rates. Additionally, there is the possibility of somatic 
mutation in one or more of the parents, essentially a de novo 
mutation in parents as they age. Somatic mutations would affect 
transmission rates but not inheritance rates. All of these factors 
could potentially affect the data simultaneously. Therefore, they 
cannot be individually estimated. However, assuming that de 
novo and somatic mutations are rare compared to CNVR calling 
errors, we can use transmission and inheritance rates to estimate 
error rates.

Table 2 shows the paternal and maternal transmission rates 
and the inheritance rate for each of the 12 sets of trios. The 

average transmission rates were 37.7% and 41.4% for maternal 
and paternal, respectively. These rates are much closer to the 
ideal 50% transmission rate than what was reported in a similar 
study in humans (27% for maternal and 28% for paternal; Zheng 
et al., 2012). The average inheritance rate was 52%, which falls 
between inheritance rates reported in previous studies, 42% in 
Zheng et al. (2012) and 74.8% in Wang et al. (2007). Therefore, 
under the assumption that the de novo and somatic mutations 
are rare, we approximate the error rate in CNVR calls to be 48% 
(100% minus the inheritance rate). This error rate is comparable 
to previously published results for several different CNV-calling 
algorithms for whole-genome sequence data (26%–77%; Legault 
et al., 2015). This consistency suggests that high error rates may 
be due to algorithmic issues rather than the input data. Clearly, 
further development of bioinformatics protocols and tools for 

TABLE 1 | CNVR distribution across the genome.

Chromosome Chromosome length (bp) No. of CNVR on chromosome Unique bp covered by CNVR Ratio covered by 
CNVR

SSC1 274330532 1231 7969003 2.90%
SSC2 151935994 192 1318835 0.87%
SSC3 132848913 101 570813 0.43%
SSC4 130910915 137 523004 0.40%
SSC5 104526007 146 1132811 1.08%
SSC6 170843587 152 772899 0.45%
SSC7 121844099 141 638302 0.52%
SSC8 138966237 203 1599178 1.15%
SSC9 139512083 167 1088850 0.78%
SSC10 69359453 82 407652 0.59%
SSC11 79169978 103 1338230 1.69%
SSC12 61602749 52 337802 0.55%
SSC13 208334590 231 1636688 0.79%
SSC14 141755446 126 1099698 0.78%
SSC15 140412725 141 734861 0.52%
SSC16 79944280 127 449040 0.56%
SSC17 63494081 62 277525 0.44%
SSC18 55982971 49 433245 0.77%
SSCX 125939595 93 582165 0.46%
SSCY 43547828 2 17943 0.04%

FIGURE 2 | Distribution of CNVR types across breeds.
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producing high-confidence, consistent CNV calls is necessary to 
improve the quality of CNV discovery studies.

Comparison of CNVRs with Previous 
Studies
Comparison of our results with CNVRs identified in several 
previous swine studies showed varying levels of overlapping 
CNVRs between studies (Table 3). Here, we used a much less 
stringent definition of overlap than that used in identifying 

overlapping CNV, where two CNVRs were considered overlapped 
as long as they shared at least one base.

Generally speaking, percentages of overlap in CNV events 
identified between this work and previous studies were low 
(average of 4.33% overlap). This result is very similar to what 
has been observed in cattle CNV studies, where typically <40% 
overlap exists between studies (Keel et al. 2016b). These 
discrepancies are likely driven by many technical aspects of the 
experiments, including vastly different sample sizes, differences 
in breeds and the number of breeds represented, detection 
platform (array-based vs. NGS), and CNV detection algorithms. 
Many of the CNV discovery studies in swine have involved 
pure and half Chinese breeds. Therefore, it is likely that many 
of the CNVRs identified in those studies do not segregate in 
our population. Our population represents commercial swine 
germplasm and, because of domestication and selection for 
lean meat production and reproductive efficiency, has diverged 
from germplasm studied in other experiments.

It should be noted that two of the three studies with highest 
overlap percentages, Wang et al. (2013) and Wiedmann et al. 
(2015), were those that had high representations of Yorkshire, 
Landrace, and Duroc animals. In fact, the study of Wiedmann 
et al. (2015) was performed on animals from the same population 
used in this study. The discrepancy in CNV identified in their 
study and ours is likely due to differences in platform (SNP 
beadchip vs. whole-genome sequence), detection algorithm, and 
genome build (Sscrofa 10.2 vs. Sscrofa 11.1).

TABLE 2 | Transmission and inheritance rates in parent–offspring trios.

Trio 
number

Paternal 
transmission rate

Maternal 
transmission rate

Inheritance 
rate

1 0.277 0.270 0.549
2 0.414 0.352 0.453
3 0.351 0.519 0.524
4 0.370 0.369 0.356
5 0.396 0.714 0.417
6 0.373 0.448 0.576
7 0.393 0.382 0.570
8 0.428 0.403 0.482
9 0.428 0.367 0.603
10 0.401 0.390 0.441
11 0.360 0.408 0.668
12 0.335 0.343 0.594

Mean 0.377 0.414 0.520

TABLE 3 | Comparison of CNVRs identified in this study to results from other studies (based on the Sscrofa 11.1 genome assembly).

Platform Findings from other studies CNVR overlap with this study

Studya Breeds Samples No. of CNVRs (No. 
before mapping)

No. of 
overlapped 
CNVRs from 

this study

Ratio of 
overlapped 
CNVRs from 

this study

CGH-based study Fadista et al., 2008** 1 12 31 (37) 1 0.00%
Li et al., 2012* 8 12 241 (259) 47 1.33%
Wang et al., 2014** 9 12 48 (52) 8 0.22%
Wang J. et al., 2015** 9 12 602 (689) 129 3.65%

SNP-based study 
(PorcineSNP60)

Ramayo-Caldas et al., 2010* 2 55 47 (49) 104 2.94%
Chen et al., 2012** 18 1693 537 (565) 262 7.41%
Wang et al., 2012* 3 474 357 (382) 130 3.67%
Wang L. et al., 2013** 2 585 234 (249) 670 18.94%
Schiavo et al., 2014** 1 305 166 (170) 100 2.83%
Wiedmann et al., 2015** 3 1802 480 (502) 579 16.37%
Long et al., 2016** 3 905 3746 (6193) 182 5.14%
Xie et al., 2016** 2 120 166 (172) 84 2.37%
Hay et al., 2017** 1 660 256 (271) 189 5.34%

SNP-based study 
(Infimum II)

Wang J. et al., 2013** 10 14 57 (63) 20 0.57%

Next-Generation 
Sequencing

Paudel et al., 2013** 13 16 2880 (3118) 70 1.98%
Jiang et al., 2014** 10 13 2820 (3131) 238 6.73%
Paudel et al., 2015** 5 16 1238 (1408) 33 0.93%
Wang H. et al., 2015** 13 49 2359 (3131) 53 1.50%
Wang et al., 2016** 6 252 433 (455) 13 0.37%
Revilla et al., 2017** 2 7 508 (540) 153 4.32%

This Study 3 240 3538

aOriginal data set was mapped to Sscrofa 9.2 or Sscrofa 10.2 assembly, denoted by * and **, respectively. CNVRs were converted to Sscrofa 11.1 coordinates using the NCBI 
Genome Remapping tool. Successfully mapped CNVRs are shown in the CNVR column with the original number of published CNVRs shown in parentheses.
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Function of CNV-Overlapped Genes
A total of 1401 genes from the NCBI annotation of the Sscrofa 
11.1 genome were identified to be overlapping with our detected 
CNVRs (Table S3), including 911 protein-coding genes, 58 
pseudogenes, 273 non-coding RNA, and 160 miscellaneous RNA. 
CNV-overlapped genes were overlapped with 2314 CNVRs. Using 
PANTHER’s functional annotation tool to inspect GO slim terms 
mapping to protein-coding CNV-overlapped genes, we identified 
that many of these genes were involved in binding (34.7%), 
catalytic activity (35.7%), metabolic process (23.1%), biological 
regulation (20.3%), cellular process (11.4%), localization (9.3%), 
and molecular transducer activity (9.2%).

Enrichment analysis was performed, using the Sus scrofa GO 
database to identify GO terms that were significantly enriched 
in our gene set. GO enrichment analysis showed that biological 
process terms related to regulation of ion transport, cell 
adhesion, signaling, nervous system development, neurogenesis, 
and locomotion, as well as molecular function terms related to 
glutamate receptor activity, protein binding, enzyme binding, 
ATP binding, and neurotransmitter receptor activity, were 
significantly overrepresented in the genes overlapped by CNVR 
(Benjamini-Hochberg-corrected P value <0.05; Table S6).

Approximately 3.6% of the CNV-overlapped genes belonged 
to the OR gene family, one of the largest gene families in the 
porcine genome (Groenen et al., 2012; Nguyen et al., 2012). ORs 
are G-protein-coupled receptors involved in signal transduction 
and have been found to be copy number variable in many 
mammalian species, including human (Young et al., 2008), rat 
(Guryev et al., 2008), mouse (Pezer et al., 2015), swine (Chen 
et al., 2012; Wang et al., 2012; Paudel et al., 2013; Wang J. et al., 
2013; Paudel et al., 2015), and cattle (Liu et al., 2010; Keel et al., 
2016b; Xu et al., 2016). Young et al. (2008) showed that OR genes 
displayed varying copy numbers among 50 people, and that this 
variation may play a role in olfactory ability and sensitivity. It is 
also thought that ORs may play a chemosensory role as they are 
expressed on sperm and thought to direct them to the egg via 
chemotaxis (Spehr et al., 2006). Paudel et al. (2015) identified that 
OR genes were overrepresented among CNVRs across several 
members of the Sus genus. These genes may have been important 
components of swine evolution, as scent would have been critical 
for foraging for food, avoiding predators, and finding a mate.

Overlap and Enrichment of Known QTL in 
CNVRs
To reveal the potential relationships between CNVRs and QTL, 
we analyzed the overlap between our CNVRs and known swine 
QTL and performed QTL enrichment analyses. Swine QTL 
from the Sscrofa 11.1 genome build were downloaded from the 
Animal QTL database (Release 34; http://www.animalgenome.
org/cgi-bin/QTLdb/SS/index), which includes 26,076 known 
QTL for 647 different traits. QTL overlapping with CNVRs 
were identified (Table S7A), traits were ranked according to 
the number of QTL/CNVR overlaps (Table S7B), and QTL 
enrichment analysis was performed (Table S7B). The 10 highest 
ranked traits included drip loss (519 overlaps), average daily gain 
(235 overlaps), average backfat thickness (195 overlaps), loin 

muscle area (179 overlaps), backfat at last rib (153 overlaps), teat 
number (127 overlaps), carcass length (95 overlaps), ham weight 
(81 overlaps), backfat at tenth rib (75 overlaps), and lean meat 
percentage (73 overlaps).

QTL enrichment analysis, using QTL from the Animal QTL 
database overlapping with CNVR (n = 525 traits), identified 
that QTL for 132 traits were significantly enriched. The most 
significantly enriched QTL was drip loss (P = 4.09E−99). Several 
meat quality traits, including average back fat thickness, loin 
muscle area, ham weight, carcass weight, and dressing percentage, 
were also found to be among the most significantly enriched.

Approximately 840 QTL have been previously reported from 
GWAS utilizing animals from the same experimental herd used in 
this study (Table 4). QTL/CNVR overlaps were identified (Table 
S8A), traits were ranked according to the number of overlaps 
(Table S8B), and QTL enrichment analysis was performed 
(Table S8B). The highest ranked traits included vertebra number 
(28 overlaps), as well as several reproductive traits including age 
of puberty (41 overlaps), ovulation rate (18 overlaps), % stillborn 
ignoring the last piglet (18 overlaps), and last birth interval (17 
overlaps). It should be noted that, in this work, CNVRs were 
not tested for statistical association with QTL, but rather the 
overlapping genomic positions of the latter were used as one 
indicator of the potential function of the CNVRs.

Of the 20 GWAS traits that had QTL overlapping with CNVR, 
7 of them were found to be significantly enriched. These included 
vertebra number (P = 4.35E−07), percent stillborn ignoring the last 
piglet (P = 4.64E−07), last birth interval (P = 2.79E−06), number 
stillborn in the last birth position (P = 1.58E−05), litter average birth 
interval minus the last birth (P = 8.13E−05), kyphosis (P = 1.49E−05), 
and number stillborn ignoring the last piglet (P = 1.49E−04).

These results are similar to those from a study conducted by 
Revay et al. (2015), where age of puberty and teat number were 
found to be the most abundant reproductive QTL overlapped by 
swine CNVRs. This coupled with the overrepresentation of GO 
terms such as cell motility, nervous system development, and organ 
development in CNVR-overlapped genes suggests that CNVR may 
play a role in shaping various reproductive traits in swine.

CONCLUSION

CNV continues to gain considerable interest as a source of genetic 
variation that may play a role in phenotypic diversity. Swine 
CNV research has made significant progress in the last 5 years. 
Genome-wide surveys of CNV have been conducted using a 
variety of platforms and algorithms. Studies that utilize NGS data 
have been limited in swine. Moreover, much of the NGS-based 
studies have focused on diverse pig breeds and wild boars from 
different regions of the world rather than commercial breeds. 
To capture CNV present in commercial swine germplasm, we 
utilized whole-genome sequence from 240 animals. Our study 
is one of the largest sequence-based swine CNV studies to date.

We identified 1401 genes overlapping with CNVRs. GO 
enrichment analysis showed that our set of CNV-overlapped genes 
was enriched with genes involved in organism development, and 
QTL analysis showed that CNVRs overlapped with many QTL 
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for reproductive traits. These results are consistent with findings 
in other swine CNV studies, which suggests that CNV may play a 
role in shaping reproductive traits. Understanding the exact role 
that CNV plays in reshaping gene structure, modulating gene 
expression, and ultimately contributing to phenotypic variation 
are open questions. The focus of our future work will be to develop 
strategies for CNV imputation, identify CNVs that associate with 
phenotypes in our population, and validate those CNVs using 
methods such as digital droplet PCR, with the long-term goal 
of discovering the extent to which CNVs affect economic traits 
of interest and developing strategies for incorporating them into 
genomic selection systems.
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TABLE S1 | Sequencing statistics.

TABLE 4 | QTL identified in USMARC swine population from previously 
published GWAS.

Trait Number of 
reported 

QTL (number 
overlapping 
with CNVR)

Publication

Age of puberty 222 (41) Nonneman et al., 2016
Litter average birth interval (minus 
last birth)

25 (15) Schneider et al., 2015

Last birth interval 25 (17) Schneider et al., 2015
Number stillborn (ignoring last piglet) 25 (13) Schneider et al., 2015
Number stillborn in last birth position 25 (16) Schneider et al., 2015
Percent stillborn (ignoring last piglet) 25 (18) Schneider et al., 2015
Total number born 11 (2) Schneider et al., 2012
Number born alive 14 (4) Schneider et al., 2012
Number born dead 1 (0) Schneider et al., 2012
Litter birth weight 33 (5) Schneider et al., 2012
Average piglet birth weight 65 (9) Schneider et al., 2012
Temperature humidity feeding behavior 
comparison normal-alert temperatures

17 (6) Cross et al., 2018

Temperature humidity feeding 
behavior comparison normal-
danger temperatures

13 (3) Cross et al., 2018

Temperature humidity feeding 
behavior comparison normal-
emergency temperatures

13 (6) Cross et al., 2018

Temperature humidity feeding 
behavior comparison alert-danger 
temperatures

13 (4) Cross et al., 2018

Temperature humidity feeding 
behavior comparison alert-
emergency temperatures

6 (3) Cross et al., 2018

Temperature humidity feeding 
behavior comparison danger-
emergency temperatures

4 (2) Cross et al., 2018

Immunocrit 36 (0) Rohrer et al., 2014
Shear force 3 (0) Nonneman et al., 2013
Intramuscular fat 31 (0) Nonneman et al., 2013
Minolta color score L* 3 (0) Nonneman et al., 2013
Minolta color score b* 2 (0) Nonneman et al., 2013
Cookloss 11 (0) Nonneman et al., 2013
pH 10 (0) Nonneman et al., 2013
Purge 8 (0) Nonneman et al., 2013
Ovulation rate 96 (18) Schneider et al., 2014
Teat number 36 (0) Rohrer and Nonneman, 

2017
Vertebra number 49 (28) Rohrer et al., 2015
Kyphosis 16 (11) Lindholm-Perry et al., 

2010
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TABLE S2 | CNV overlapping between Lumpy and cn.MOPS analyses.

TABLE S3 | CNVR and their overlapping genes.

TABLE S4 | Distribution of CNVR in individual animals.

TABLE S5 | Breed specific CNVR.

TABLE S6 | Results from GO enrichment analysis.  

TABLE S7 | Results from QTL enrichment analysis using QTL from the 
AnimalQTL Database.

TABLE S8 | Results from QTL enrichment analysis using previously identified 
QTL in the USMARC swine population. 
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